
Automating Component Integration for Web-Based
Data Analysis

John Penix, Bemd Fixher*, Jon Whittle*+’
Computational Sciences Division, M/S 269-2

NASA Ames Research Center / *RIACS/ **Recom Technologies
Moffett Field, CA 94035

jpenix,fisch,jonathw @ ptolemy.arc.nasa.gov
(650)604-6576

Gilda Pour
Department of Computer, Information and Systems Engineering

San Jose State University
One Washington Sqare

San Jose, CA 95192-0180
gpour @ email. sj su.edu

Jeffery Van Baalen
Computer Science Department

University of Wyoming
Laramie, WY 8207 1

jvb @ uwyo.edu

Abstract-In this paper, we describe a component-based
infrastructure for Web-based data analysis applications that
reduces the need for custom integration Programming. Our
vision is that, to construct an application, scientists will give
a specification of three kinds of components: the desired
data source, a data analysis filter, and a visualization device.
From this specification, our infrastructure will automatically

generate the desired application. To support this vision, the
infrastructure contains an intelligent component integration
system (iCIS) that automates component retrieval,
adaptation, and integration. Within iCIS, component
knowledge is represented using formal mathematical
specifications, to provide a common framework for
reasoning about problem decomposition, component
retrieval and adapter generation. Our current focus is on
integration of data analysis filters with online data archives
described using XML-based languages. We also discuss
how iCIS is integrated with a 3-tier clientherver application
architecture to support in a heterogeneous and distributed
computing environment

.

TABLE OF CONTENTS

1. INTRODUCTION
2. COMWNENT RETRIEVAL AND INTEGRATION
3. 3-TIER APPLICATION ARCHITECTURE
4. DATA ARCHIVE INTEGRATION
5. CONCLUSION

1. INTRODUCTION

Data analysis and visualization are major activities required
for the support of NASA science missions. Numerous
software toolkits and libraries are available to support the
construction of custom data analysis and visualization
applications. However, due to differences in data formats
and system implementation styles, using these systems often
requires space scientists to perform extensive custom
programming that is time-consuming, expensive and not
reusable between missions. In addition, current approaches
to developing scientific software do not scale well.
Scientific software is commonly developed from prototype
systems and is evolved through experimentation. As the
software is expanded and generalized, it becomes difficult to
modify and maintain due to this ad-hoc development style.
Because scientific problems are becoming larger and more
complex, these software engineering issues are unavoidable.

To circumvent these problems, our approach is based on
component-based software development (CBSD) [Jell
19981, a rapidly emerging trend in industrial software
engineering. CBSD is based on the concept of building
software systems by selecting, adapting and integrating a set
of pre-engineered and pre-tested reusable software
components. CBSD has the potential to: (1) reduce cost and
development by allowing systems to be built from reusable
components, (2) enhance software reliability as components
undergo evaluation during each use, (3) improve
maintainability and extensibility by allowing plug-and-play
component replacement , and (4) enhance the quality of

’ 0-7803-5846-5/00/$10.00 0 2000 IEEE

465

http://ptolemy.arc.nasa.gov
http://uwyo.edu

enterprise applications by allowing application-domain
experts to develop components [Pour 1999al. Of these
factors, increased reliability is the primary benefit from the
perspective of scientific applications [Dubois 19991. In
addition, CBSD simplifies component integration and
addresses the scalability and maintainability problems of the
current development process used to construct scientific
applications.

To support the use of CBSD for web-based data analysis
applications, we are integrating application generation
technology into a middleware infrastructure. Domain
specific application generation tools can then be developed
using this infrastructure to support application specification
and integration. Using one of these tools, scientists will
provide a specification of three kinds of components: (1) the
desired data source, (2) a data analysis filter, and (3) a
visualization device. From this information, the application
generator will automatically generate the desired
application.

To provide this automated capability, the infrastructure
contains an intelligent component integration system (iCIS)
that automates component retrieval, adaptation, and
integration using automated reasoning. It takes the user's
request, locates the corresponding components in a
heterogeneous and distributed environment, and uses
knowledge about the components to automatically generate
any adapters required for component integration. Thus, the
need for time-consuming and expensive custom
programming will be reduced.

For example, a space scientist may request the image of a
certen astronomical object over a specified time period,
without having to specify the specific instrument or data
archive where the data is to be retrieved from. The scientist
could then request that these images be sent through an
analysis filter that highlights certain frequencies and displays
the results as a Mpeg movie. In this case, iCIS will locate
the appropriate filter, generate an adapter to allow the filter
to use the image archive data format and generate an adapter
to feed the highlighted images into the Mpeg generation
program.

In the next section, we describe the formal framework for
component-based software development that is the
foundation for the intelligent component integration system.
We then describe how iCIS is integrated with a 3-tier
clientkener architecture to support scalability and
concurrent generation of multiple applications in a
heterogeneous and distributed computing environment. The
next section discusses our current work integration of data
analysis filters with data archives described by XML
metadata.

2. COMPONENT INTEGRATION FRAMEWORK

The fact that components have well defined interfaces and
behaviors can be leveraged to provide tools to automate
some software development tasks. By specifying component
interfaces and behaviors in machine-readable form, we can
create algorithms that compare two components by
calculating the difference between their interfaces and
behavior. In our specific approach, we model component
specifications using mathematical logic and base our
algorithms on automated logical inference. Within XIS,
component knowledge is represented using formal
mathematical specifications, specifically, higher-order
parameterized theories. This provides a common framework
to reason about problem decomposition, component retrieval
and adapter generation.

Component Retrieval and Adaptation

For each component there is a specification that describes its
interface and behavior. The interface specification describes
the types and methods provided by the component. The
behavioral specification describes the legal inputs to the
component and the desired relationship between the inputs,
outputs and abstract state of the component. These
specifications are used to retrieve components and to
determine the type of adapters that must be generated for
integration. This is done using specification matching,
where automated reasoning is used to compare component
specifications. We currently have prototype
implementations of component retrieval and matching that
have performed very well in several empirical studies
[Fischer 1998a,1998a, Penix 1999a1.

The results of specification retrieval and matching are used
to guide the selection of adapters that are used to integrate
components. The system contains specifications of standard
adaptation strategies that are used in the system. A strategy
determines which adapter to generate and provides
heuristics describing how to specialize it to the application
being generated. Adapters are associated with each of the
matching relationships that could exist between user request
and library components. These adapters can be mapped
into JavaBeans components using event-based component
integration [Penix 1999bl.

Synthesis Framework

The component retrieval and adaptation approach outlined
above supports a bottom-up development style. This
technique is successful when the problem specification and
the component descriptions are conceptually close. In large-
scale applications, there tends to be a larger gap between
specification and components which must be bridged by a
complementary top-down method. Deductive program
synthesis [Manna 1992, Smith 19901 is such a method. At its
core, it is based on the formal equivalence between proofs
and programs, the so-called Curry-Howard isomoIphism

466

[Howard 19801. Thus, the technique fits well into our into problems that closer match library functionality. The
specification-based framework. component specifications generated during top-down

synthesis are used to retrieve and adapt analysis components
Deductive synthesis starts with a specification of a program from libraries.
to be synthesized. This specification is gradually refined by
applying inference d e s . The inference rules represent the
relationship between domain-specific specification
constructs and the behavior of library components.
Therefore, the rulespide the system toward a reformulation
of the problem in terms of integrated components. In the
higher-order setting, program fragments to be synthesized
are represented by higher-order meta-variables which are
instantiated as the inference rules are applied. The result a
flexible method for synthesizing programs that are
guaranteed correct with respect to their specifications.

Adapter
Data

Analysis
Filter

Data
Source

-

The full potential of the top-down and bottom-up
approaches can be achieved by integrating deductive
retrieval and deductive synthesis. The main problem is that
each technique is suited to its own particular logic. Synthesis
works best in a very expressive higher-order framework
whereas retrieval works well in a first-order framework
more amenable to automation. We have developed an
integration algorithm [Fischer 1999bl which provides a
bridge between these two logics. As input, the algorithm
takes the intemal state of the synthesis proof and identifies
opportunities to reuse library code. In the higher-order
setting, these opportunities correspond to the introduction of
new, higher-order meta-variables (i.e., new program
fragments) into the proof state. Each meta-variable is then
linked to a retrieval query which is automatically extracted
from the proof state. These queries are submitted to the
retrieval system and the retrieved components are plugged
back into the proof state, by instantiating the meta-variables

Data
Visualization

Device

Intelligent Component Integration System

An overview of the information flow in the iCIS architecture
is shown in Figure 1. The input to the system is a user
request that describes a data source, a data analysis task and
a data visualization component. There may also be
additional information in the request that describes the
intended data flow in the application indicating, for
example, which data fields should map to data analysis
parameters. The data source components are described by
metadata that are used to locate the appropriate data set from
a collection of registered data archives. Top-down synthesis
is applied to decompose complex data analysis operations

Figure 2: High-level Architecture of an Integrated Data Analysis System

467

User Reauest

Locate data archive and
use metadata to determine

data format

1
Decompose data analysis Locate visualization

problem and retrieve
relevant components specification

component and interface

Calculate difference
Generate adapter spec.

Select adapter
Cnepio1;7e orlonter

Figure 1: Information Flow in the Intelligent Component Integration System (iCIS)

Calculate difference
Generate adapter spec

Select adapter
C n e A 91; -re orl onter

Once the data and components are located, the metadata and
component specifications are used to compare formats and
calculate the difference that must be overcome for
integration. This difference is converted into a specification
that is used to select the type of adapter that will be created
for integration and specialize it to the specific components
being integrated [Penix 19971. The adapters are stored as
incomplete source code templates (Java Classes) and
specialized by adding information (such as data type and
function names) from the interface. The specialized adapters
are compiled into executable form and instantiated into
JavaBeans components [Penix 1999bl. Signaling the
adapters to execute starts the data analysis application.
Figure 2 shows the high-level architecture of an application
generated by iCIS. The large arrows between the
components represent the adapters that are automatically
generated by the system.

Example

To illustrate how iCIS works, we will use and example from
NASA’s Vulcan Project, which is attempting to detect large
planets in other solar systems. Their method for locating
planets is to attempt to detect a periodic fluctuation in the
intensity of a star that might indicate a large planet passing
across it’s disk. To perform this analysis, they track a
collection of stars as they move across the sky each night.
For each star, a sub-image is cut from the star field and then
the sequence of these sub-images is realigned to correct for

nightly drift. Image realignment is performed using
statistical data analysis techniques.

To support Vulcan image extraction and realignment using
E I S , the format of the image data and the interface and
behavior of the data analysis components must be specified.
Inference rules must also be specified to capture the
relationship between the abstract domain and the data
analysis components. We can then retrieve, evaluate and
integrate components to assemble the application.

The input to the analysis is a set of files that describe an area
of the sky of a specified time window. Vulcan used the
Flexible Image Transport System (FITS) as the data format
to store telescope observations. FITS files contain a header
which includes metadata such as bitdpixel, number of
dimensions, time of imaging,. object observed and telescope
used. Indexing based on the FITS header metadata is used to
catalogue and retrieve the data files and to determine data
file format.

Given a sequence of sky images, the goal of data analysis is
to construct a set of realigned image stacks for a specified
set of stars. This type of analysis is supported by a
statistical analysis software library. The functionality of the
library components is specified in terms of a formal model
of the statistical analysis domain. However, to support
component retrieval and integration, there must be a
mapping from the abstract application domain (star images

468

and sky images) to the statistical domain of the component
library. For example, it is necessary to realize that a star
image is a 2 dimensional image with light intensity
corresponding to a Gausian distribution in both dimentions.
This information is represented in the form of rewrite rules
over an algebraic specification language. For example, the
following is a segment of the abstract domain specification
for the star image domain:

type coord = (intjnt);
type image[X] = seq[seq[X]]
op reow : image[X] -> seq[X]
op subimage : image, coord, coord -> image;
type star-image = { I:image[int] I gausian(1));
type sky-image = image[int];
type star-name = string;
op star-location : sky-image, star-name -> star-image;
op inscope : star-name, sky-image -> bool;
op align : star-image -> (float,float);

Based on these abstract types and operators, we can
construct a formal specification of the Vulcan data analysis
problem in terms of a domain, range, precondition and a
post condition:

Domain: seq[star-name] x seq[sky-image];
Range: seq[float,float];
h e : s in starlist, I in skyimages => inscope(x,I);
Post: map(align, map(extract(starlist),skyimages));

This type of specification can be automatically extracted
from more intuitive graphical representations, such as block
diagrams or constraint graphs. In this case, the specification
could be visualized similar to:

We are currently working on developing a graphical
representation of the star image domain.

(starlist,skyimages) -> extract -> align

The formalized problem specification can be decomposed
using top-down synthesis by applying rules that describe
how functions (such as extract and align) can be applied to
sequences of data. The result are specifications describing
components required to perform the extract and align
functions for star images. For example, it is inferred that
align must consider a Gausian distribution based on the type
restriction specified for star images.

After the appropriate components are retrieved, adapters are
generated to handle conversion from FITS to image
sequences as well as data buffering between components.
The buffers are inferred from the mismatch between the
operator types in the graphical specification which are
compensated for by the map operators in the formal
postcondition. The adapter to perform the conversion from
FITS is selected from a small collection of adapters that map
from FITS tables into data sequences and streams. We
anticipate that several such adapter templates will be
required to support each data format standard.

3. %TIER APPLICATION ARCHITECTURE

Three groups of components are identified in Web-based
enterprise applications: (1) presentation, (2) application
logic, and (3) data. The most commonly used architectures
for Web-based applications are 2-tier and 3-tier
architectures.
In 2-tier architectures, data components run on the server
side (tier 2), and both presentation and application logic
components run on the client side (tier 1) . 2-tier
architectures have been shown to have several drawbacks
affecting their scalability, maintainability and performance.
For example, integrating application and presentation logic
lowers maintainability because evolution of one aspect
cannot be performed independent of the other. In addition, a
user of a 2-tier system can access only one data source at a
time; access to other data sources must be done via
gateways, raising serious performance issues for enterprise
systems. Finally, 2-tier applications have limited scalability
due to lock contention. Lock resolution is independent of
server speed, so installing more powerful DBMS servers
does not provide significantly greater performance.

469

Tier 3 Tier 2 Tier 1

Data Analysis Filters
Web Browser

Legacy Application

Device

&
iClS

I I
U

Figure 3: 3-Tier Web-Based Data Analysis and Visualization

In 3-tier clientherver architectures, each component group
(i.e. presentation, application logic, and data components)
forms a distinct unit. Presentation components operate in tier
1, application logic components in tier 2, and data
components in tier 3. Presentation components manage the
interaction between users and the software system, and make
requests for application services by calling application logic
components in the middle tier. Application logic
components manage the clients' requests for connections to
the data components in tier 3. The client may request
connections to multiple heterogeneous servers including
back-end servers, DBMS servers, legacy applications
through the use of their native interface, such as SQL for
relational databases. The middle tier also resolves many
difficult infrastructure issues such as naming, location,
security and authentication, allowing application developers
to focus on putting their domain expertise into the
application logic.

3-tier architectures allow application components to run on
middle-tier servers, independent of presentation interface
and database implementation. As a result, they provide
developers with more choices for enhancement of
application scalability, performance, reliability, and security
[Pour 1999b-d, Orfali 19981. Additionally, 3-tier
architectures have the following major benefits:

System administrators can replicate application
components and run them on different machines
simultaneously. This will enhance the software
availability, scalability, and performance.
Application logic components can share database
connections. This will improve software performance
by lowering the number of total sessions that a database
server must support.

They provide access to other sources through native
protocols & application interfaces rather than data
gateways. This improves performance and allows users
to control the data access.
They allow developers to make the most of reusable
application logic components, improving the software
development and maintenance process [Pour 1999dl.

To support scalability and concurrent generation of multiple
data analysis applications in a heterogeneous and distributed
computing environment, iCIS is being integrated with a 3-
tier clienthemer architecture as shown in Figure 3. Web
browsers and data visualization components operate in tier
1, the proposed iCIS and application servers in tier 2, and
DBMS servers, spacecraft, legacy applications, and libraries
of data analysis filters in tier 3.

After evaluating the major industry-supported component
models, chose to use JavaBeans for client-side component
development and Enterprise JavaBeans (EJB) [Thomas
19981 for server-side component development in this
project. The Java-based component model is the best
candidate for Web-based enterprise application development
for several reasons including the portability and security
features of Java [Pour 2000a,b,1999b,1998]. The EJB
specification defines an application programming interface
(MI) that allows application developers to create, deploy,
and manage cross-platform component-based enterprise
applications easily. EJB also provides efficient data access
across heterogeneous servers and allows scalability,
reliability, load balancing, and atomic transactions. In
addition, we have determined that the JavaBeans event
model to be well suited for supporting adapter generation
within iCIS [Penix 1999al.

470

4. DATA ARCHIVE INTEGRATION

To integrate data analysis filters with various data archives,
we propose to use technologies based on the extensible
Markup Language (XML) [Bosak 19991. XML is a new
standard developed by the World Wide Web Consortium
(W3C) for describing and exchanging structured data and
metadata on the Web [Chang 1998, Maruyama 19991. A
large number of commercial and non-commercial tools are
being developed to support the development of XML-based
applications. These include many Java/XML software
packages that can be used to integrate XML support into the
Java-based component framework [Pour 1999bl.

There are several existing efforts to use XML for storage
and retrieval of space science data. We plan to use the
results of two of these projects. The SSDOO's
Astronomical Data Center (ADC) (http://adc.gsfc.nasa.gov)
is currently developing XML-based data representations to
support the storage and retrieval of data and metadata in
astronomical catalogues [Shaya 1998,19991. They are also
developing an XML toolbox for importation, enhancement,
and distribution of data and metadata documents written in
XML. There is also an ongoing international effort to
develop the Astronomical Markup Language (AML) for
similar purposes [McGrath 19991.

By using XML, these efforts can leverage off the existing
commercial tool support for creating and manipulating
XML-based data representations. However, these projects
do not address specific issues of integrating data with
existing data analysis components or tools. Our proposed
effort will build upon these projects by using XML-based
descriptions of table formats (part of the metadata) to
automatically generate adapter components that extract data
from tables. We will also investigate the use of XML
metadata to specify "data source components."

Our initial target data analysis application is from the
Vulcan project at Ames, which is actively searching for
planets orbiting distant stars. To support this effort, they
must currently develop and maintain software to perform
data file input/output, subsetting and reformatting, in
addition to data analysis algorithms. Vulcan currently uses
the Flexible Image Transport System (FITS) [NOST 19991
for data archival. In the proposed system, the FITS data will
be retrieved from a remote site, and an adapter will be
generated to read the FITS data, perform subsetting and
reformatting, and direct the data to the analysis components.
AML is currently undergoing revisions to unify the metadata
format with the header file format from FITS, making this
work relevant to supporting Vulcan.

In the Astronomical Markup Language (AML), metadata is
used to describe the format of table data in the same file or
in an external file. There is currently an international effort
to unify the table metadata format in AML with the header
format in FITS which will allow us to use AML to describe

the data formats used in the Vulcan project. To support
adapter generation, the metadata describing the data format
will be read in using XML/Java tools. Then, this
information will be used in combination with user specified
data field selections to specialize an adapter template that
will read the table and extract the desired fields. The
interface specification of the data analysis component will
be used to determine how to package the selected data for
analysis.

Our initial source of data analysis components data analysis
components will be from an ongoing collaboration between
NASA Ames and U.C. Berkeley [Buntine 19991. This is an
effort to develop techniques to automatically generate
probabilistic data analysis components from Bayesian
network specifications, with the initial application also being
the Vulcan project. The generated algorithms will form the
initial component set to be integrated into the proposed
infrastructure.

5. CONCLUSION

We have outlined the architecture of an intelligent
component integration system that supports the component-
based development of scientific data analysis applications.
Our system operates on the middle tier of a three-tier web-
based architecture and thus isolates data source, analysis,
and visualization from each other. It takes as input high-
level specification of a data analysis problem (i.e., meta-
level descriptions of data contents, analysis filters, and
visualization methods) and identifies appropriate data
sources and analysis and visualization components. From
these, it then synthesizes the application. The system relies
on formal specifications to describe as the components,
wrappers, and architectures and uses automated reasoning
techniques to retrieve, adapt, and integrate components
intelligently.

We have already implemented some of the computationally
more intensive kernel reasoning components. Experiments
with them have demonstrated that careful implementations
can mitigate the inherent computational complexity of the
specification-based component operations as retrieval and
adaptation, which are required for component-based
software development. We are currently working on
integrating these reasoning components into an iCIS
prototype which will cover the full functionality described in
the paper.

REFERENCES

[Bosak 19991 Bosak, J. and Bray, T., " X M L and the Second-
Generation Web", Scieiitijic American, May 1999.

[Buntine 19991 W. Buntine, B. Fischer, T. Pressburger:
Towards Automated Synthesis of Data Mining Programs.
Proceedings of the. ACM International Conference on
Knowledge Discovery & Data Mining, August 1999.

47 1

http://adc.gsfc.nasa.gov

[Chang 19981 Chang, D. and Harkey, D., Client/Server Data
Access with Java aizdXML, Wiley, 1998.

[Dubois 19991 Dubois, P.F., “Scientific Components Are
Coming”, IEEE Computer, March 1999.

[Fischer 1999al Fischer, B., Lowry, M. and Penix, J.,
“Intelligent Component Retrieval via Automated Reasoning”,
AAAI Workshop on Intelligent Software Engineering, July
1999.

[Fischer 1999bl B. Fischer, J. Whittle: An Integration of
Deductive Retrieval into Deductive Synthesis. Proceedings
of the 14* International Conference on Automated Software
Engineering (ASE-99, October 1999.

pischer 1998al B. Fischer, J. Schumann, G. Snelting:
Deduction-Based Software Component Retrieval. In Autonmted
Deduction - A basis for applications, Volume ZII: Applications,
Kluwer 1998.

[Fischer 1998bl B. Fischer: Specification-Based Browsing
of Software Component Libraries. Proceedings of the 13“’
Intemational Conference on Automated Sofhvare
Engineering, October 1998.

[Howard 19801 Howard, W., “The formulas-as-types notion
of construction”, in J.P.Seldin and J.R. Hindley (eds.) To
H.B. Curry:Essays on Combinatory Logic, Lambda-Calculus
and Formalism, pp. 479-490, Academic Press, 1980.

[Jell 19981 Jell T., Component-Based Sofhvare Engiiieering,
Cambridge University Press, 1998.

[McGrath 19991 McGrath, R., Futrelle, J., Plante, R. and
Guillaume, D., ”Digital Library Technology for Locating
and Accessing Scientific Data”, The Fourth ACM
Conference on Digital Libraries, August 1999.

[Manna 19921 Manna, Z. and Waldinger, R., “Fundamentals
of Deductive Program Synthesis”, IEEE Transactions on
Software Engineering, 18(8):674.

[Maruyama 19991 Maruyama H., Tamura K. and Uramoto
N., XML and Java: Developing Web Applications, Addison-
Wesley, 1999.

[NOST 19991 NASNScience Office of Standards and
Technology, Definition of the Flexible Image Transport
System (FITS), NOST 100-2.0, NASA Goddard Space
Flight Center, Greenbelt, Maryland, March 1999.

[Orfali 19981 Orfali, B. and Harkey, D., Client/Server
Programming with Java and CORBA, Wiley, 1998.

[Penix 1999al Penix, J. and Alexander, P., “Efficient
Specification-Based Component Retrieval”, Automated
Software Engineering Journal, (6) pp. 139-170, April 1999.

[Penix 1999bl Penix, J., “Deductive Synthesis of Event-
Based Software Architectures”, Proceedings of the 14th
International Coilference on Automated Sofhvare
Engineering, October 1999.

[Penix 19971 Penix, J. and Alexander, P., “Toward

Automated Component Adaptation,” Proceedings of the
Ninth International Coilference on So f iare Engineering
and Knowledge Engineering (SEKE), June 1997.

[Pour 2000al Pour, G., “Component Technologies:
Expanding the Possibilities for Web-Based Enterprise
Application Development, “Chapter in, Internet
Technologies and Applications: Advanced Research,
Theory, and Practice, To appear, 2000.

[Pour 2000bl Pour, G., “EJB Server Component Model
Revolutionizing Distributed Enterprise Software
Development” Sof iare Development Magazine, To appear,
Jan. 2000.

[Pour 1999al Pour, G., “Java-Based Component Model for
Enterprise Application Development,” 30‘” International
Conference on Technology of Object-Oriented Languages
and Systems (TOOLS USA), IEEE CS Press, Aug. 1999.

[Pour 1999133 Pour, G., “Enterprise JavaBeans, JavaBeans
and XML Expanding Possibilities for Web-Based Enterprise
Application Development,” 31”‘ International Conference
on Technology of Object-Oriented Lnnguages and Systems,
IEEE CS Press, China, Sept. 1999.

[Pour 1999~1 Pour, G. and Vadlakonda, V., “Web-Based
Manufacturing Applications: Implementing Statistical
Process Control with JavaBeans,” International Corlference
on Internet and Multimedia Systems and Applications
(IMSA’99), Grand Bahamas, Oct. 1999.

[Pour 1999dl Pour, G. and Xu, J., “JavaBeans, Java, Java
Servlets, and CORBA Revolutionizing Web-Based
Enterprise Application Development,” World Coilference of
the WWW, Internet, and Intranet (WebNet), Oct. 1999.

[Pour 19981 Pour, G., “Developing Web-Based Enterprise
Applications with Java, JavaBeans, and CORBA,” World
Coizference of the WUIW, Internet, and Intranet (WebNet),
AACE, Orlando, FL, Nov. 1998.

[Shaya 19991 Shaya, E., “XML at ADC: Steps to a Next-
Generation Data Archive”, NSSDC News Letter,
htt~:l/nssdc.esfc.nasa.8ov/nssdc ncn.s/. Vol 15, No. 1,
March-June 1999.

[Shaya 19981 Shaya E., Blackwell, J., Gass, J., Weiland, J.,
Cheung, C. and White, R., “Formatting Journal Tables in
XML at the ADC”, Astronomical Data Analysis Software
and Systems VZZI, November 1998.

[Smith 19901 Smith, D.R., KIDS: A semi-automatic
program development system”, IEEE Transactions on
Software Engineering, 16(9): 1024-1043, 1990.

[Thomas 19981 Thomas, A., “Enterprise JavaBeans
Technology: Server Component Model for Java Platform,”

John Penix received a BS in Electrical Engineering and a
PhD in Computer Engineering from the University of
Cincinnati. He is currently a member of the Automated

472

Software Engineering Group at NASA Ames Research
Center and a part-time faculty member at San Jose State
University. His research interests are component-based
program synthesis and automated program abstraction and
verification.

Bernd Fischer received an MS in Computer Science with
distinction from TU Braunschweig, Germany, where he is a
PhD Candidate in Computer Science. He is currently a
member of the Automated Software Engineering Group at
NASA Ames Research Center. His research interests lie in
the area of deductive component retrieval and automated
program transformation and synthesis.

Jon Whittle received a BA in Mathematics from St. Peter’s
College, Oxford and PhD in Computer Science from the
University of Edinburgh. He is currently a member of the
Automated Software Engineering Group at NASA h e s
Research Center. He research interests are in the area of
formal approaches to program and design synthesis, and
empirical evaluation of software engineering tools.

Gilda Pour holds a BS in Electrical Engineering and an MS
in Electrical and Computer Engineering from Florida State
University, a Doctor of Engineering from the University of
Florida and a PhD in Computer Science from the University
of Massachusetts. She is currently on the faculty of
Computer, Information and Systems Engineering at San Jose
State University. Prior to joining SJSU, she was a Senior
Software Engineer at Hewlett-Packard R&D Laboratories.
Her research interests lie in the areas of component-based
software engineering and web-based enterprise application
development.

Jeff Van Baalen received a BS and MS from the University
of Wyoming and a PhD in Computer Science from the
Massachusetts Institute of Technology. He is currently an
Associate Professor of Computer Science at the University
of Wyoming and a part-time member of the Automated
Software Engineering Group at NASA Ames Research
Center. His research is in the area of deductive program
synthesis, automated theorem proving and problem
reformulation.

473

