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Abstract-In this paper, we describe a component-based 
infrastructure for Web-based data analysis applications that 
reduces the need for custom integration Programming. Our 
vision is that, to construct an application, scientists will give 
a specification of three kinds of components: the desired 
data source, a data analysis filter, and a visualization device. 
From this specification, our infrastructure will automatically 

generate the desired application. To support this vision, the 
infrastructure contains an intelligent component integration 
system (iCIS) that automates component retrieval, 
adaptation, and integration. Within iCIS, component 
knowledge is represented using formal mathematical 
specifications, to provide a common framework for 
reasoning about problem decomposition, component 
retrieval and adapter generation. Our current focus is on 
integration of data analysis filters with online data archives 
described using XML-based languages. We also discuss 
how iCIS is integrated with a 3-tier clientherver application 
architecture to support in a heterogeneous and distributed 
computing environment 

. 
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1. INTRODUCTION 

Data analysis and visualization are major activities required 
for the support of NASA science missions. Numerous 
software toolkits and libraries are available to support the 
construction of custom data analysis and visualization 
applications. However, due to differences in data formats 
and system implementation styles, using these systems often 
requires space scientists to perform extensive custom 
programming that is time-consuming, expensive and not 
reusable between missions. In addition, current approaches 
to developing scientific software do not scale well. 
Scientific software is commonly developed from prototype 
systems and is evolved through experimentation. As the 
software is expanded and generalized, it becomes difficult to 
modify and maintain due to this ad-hoc development style. 
Because scientific problems are becoming larger and more 
complex, these software engineering issues are unavoidable. 

To circumvent these problems, our approach is based on 
component-based software development (CBSD) [Jell 
19981, a rapidly emerging trend in industrial software 
engineering. CBSD is based on the concept of building 
software systems by selecting, adapting and integrating a set 
of pre-engineered and pre-tested reusable software 
components. CBSD has the potential to: (1) reduce cost and 
development by allowing systems to be built from reusable 
components, (2) enhance software reliability as components 
undergo evaluation during each use, (3) improve 
maintainability and extensibility by allowing plug-and-play 
component replacement , and (4) enhance the quality of 
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enterprise applications by allowing application-domain 
experts to develop components [Pour 1999al. Of these 
factors, increased reliability is the primary benefit from the 
perspective of scientific applications [Dubois 19991. In 
addition, CBSD simplifies component integration and 
addresses the scalability and maintainability problems of the 
current development process used to construct scientific 
applications. 

To support the use of CBSD for web-based data analysis 
applications, we are integrating application generation 
technology into a middleware infrastructure. Domain 
specific application generation tools can then be developed 
using this infrastructure to support application specification 
and integration. Using one of these tools, scientists will 
provide a specification of three kinds of components: (1) the 
desired data source, ( 2 )  a data analysis filter, and (3) a 
visualization device. From this information, the application 
generator will automatically generate the desired 
application. 

To provide this automated capability, the infrastructure 
contains an intelligent component integration system (iCIS) 
that automates component retrieval, adaptation, and 
integration using automated reasoning. It takes the user's 
request, locates the corresponding components in a 
heterogeneous and distributed environment, and uses 
knowledge about the components to automatically generate 
any adapters required for component integration. Thus, the 
need for time-consuming and expensive custom 
programming will be reduced. 

For example, a space scientist may request the image of a 
certen astronomical object over a specified time period, 
without having to specify the specific instrument or data 
archive where the data is to be retrieved from. The scientist 
could then request that these images be sent through an 
analysis filter that highlights certain frequencies and displays 
the results as a Mpeg movie. In this case, iCIS will locate 
the appropriate filter, generate an adapter to allow the filter 
to use the image archive data format and generate an adapter 
to feed the highlighted images into the Mpeg generation 
program. 

In the next section, we describe the formal framework for 
component-based software development that is the 
foundation for the intelligent component integration system. 
We then describe how iCIS is integrated with a 3-tier 
clientkener architecture to support scalability and 
concurrent generation of multiple applications in a 
heterogeneous and distributed computing environment. The 
next section discusses our current work integration of data 
analysis filters with data archives described by XML 
metadata. 

2.  COMPONENT INTEGRATION FRAMEWORK 

The fact that components have well defined interfaces and 
behaviors can be leveraged to provide tools to automate 
some software development tasks. By specifying component 
interfaces and behaviors in machine-readable form, we can 
create algorithms that compare two components by 
calculating the difference between their interfaces and 
behavior. In our specific approach, we model component 
specifications using mathematical logic and base our 
algorithms on automated logical inference. Within XIS, 
component knowledge is represented using formal 
mathematical specifications, specifically, higher-order 
parameterized theories. This provides a common framework 
to reason about problem decomposition, component retrieval 
and adapter generation. 

Component Retrieval and Adaptation 

For each component there is a specification that describes its 
interface and behavior. The interface specification describes 
the types and methods provided by the component. The 
behavioral specification describes the legal inputs to the 
component and the desired relationship between the inputs, 
outputs and abstract state of the component. These 
specifications are used to retrieve components and to 
determine the type of adapters that must be generated for 
integration. This is done using specification matching, 
where automated reasoning is used to compare component 
specifications. We currently have prototype 
implementations of component retrieval and matching that 
have performed very well in several empirical studies 
[Fischer 1998a,1998a, Penix 1999a1. 

The results of specification retrieval and matching are used 
to guide the selection of adapters that are used to integrate 
components. The system contains specifications of standard 
adaptation strategies that are used in the system. A strategy 
determines which adapter to generate and provides 
heuristics describing how to specialize it to the application 
being generated. Adapters are associated with each of the 
matching relationships that could exist between user request 
and library components. These adapters can be mapped 
into JavaBeans components using event-based component 
integration [Penix 1999bl. 

Synthesis Framework 

The component retrieval and adaptation approach outlined 
above supports a bottom-up development style. This 
technique is successful when the problem specification and 
the component descriptions are conceptually close. In large- 
scale applications, there tends to be a larger gap between 
specification and components which must be bridged by a 
complementary top-down method. Deductive program 
synthesis [Manna 1992, Smith 19901 is such a method. At its 
core, it is based on the formal equivalence between proofs 
and programs, the so-called Curry-Howard isomoIphism 
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[Howard 19801. Thus, the technique fits well into our into problems that closer match library functionality. The 
specification-based framework. component specifications generated during top-down 

synthesis are used to retrieve and adapt analysis components 
Deductive synthesis starts with a specification of a program from libraries. 
to be synthesized. This specification is gradually refined by 
applying inference d e s .  The inference rules represent the 
relationship between domain-specific specification 
constructs and the behavior of library components. 
Therefore, the rulespide the system toward a reformulation 
of the problem in terms of integrated components. In the 
higher-order setting, program fragments to be synthesized 
are represented by higher-order meta-variables which are 
instantiated as the inference rules are applied. The result a 
flexible method for synthesizing programs that are 
guaranteed correct with respect to their specifications. 

Adapter 
Data 

Analysis 
Filter 

Data 
Source 

- 

The full potential of the top-down and bottom-up 
approaches can be achieved by integrating deductive 
retrieval and deductive synthesis. The main problem is that 
each technique is suited to its own particular logic. Synthesis 
works best in a very expressive higher-order framework 
whereas retrieval works well in a first-order framework 
more amenable to automation. We have developed an 
integration algorithm [Fischer 1999bl which provides a 
bridge between these two logics. As input, the algorithm 
takes the intemal state of the synthesis proof and identifies 
opportunities to reuse library code. In the higher-order 
setting, these opportunities correspond to the introduction of 
new, higher-order meta-variables (i.e., new program 
fragments) into the proof state. Each meta-variable is then 
linked to a retrieval query which is automatically extracted 
from the proof state. These queries are submitted to the 
retrieval system and the retrieved components are plugged 
back into the proof state, by instantiating the meta-variables 

Data 
Visualization 

Device 

Intelligent Component Integration System 

An overview of the information flow in the iCIS architecture 
is shown in Figure 1. The input to the system is a user 
request that describes a data source, a data analysis task and 
a data visualization component. There may also be 
additional information in the request that describes the 
intended data flow in the application indicating, for 
example, which data fields should map to data analysis 
parameters. The data source components are described by 
metadata that are used to locate the appropriate data set from 
a collection of registered data archives. Top-down synthesis 
is applied to decompose complex data analysis operations 

Figure 2: High-level Architecture of an Integrated Data Analysis System 
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Figure 1: Information Flow in the Intelligent Component Integration System (iCIS) 
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Once the data and components are located, the metadata and 
component specifications are used to compare formats and 
calculate the difference that must be overcome for 
integration. This difference is converted into a specification 
that is used to select the type of adapter that will be created 
for integration and specialize it to the specific components 
being integrated [Penix 19971. The adapters are stored as 
incomplete source code templates (Java Classes) and 
specialized by adding information (such as data type and 
function names) from the interface. The specialized adapters 
are compiled into executable form and instantiated into 
JavaBeans components [Penix 1999bl. Signaling the 
adapters to execute starts the data analysis application. 
Figure 2 shows the high-level architecture of an application 
generated by iCIS. The large arrows between the 
components represent the adapters that are automatically 
generated by the system. 

Example 

To illustrate how iCIS works, we will use and example from 
NASA’s Vulcan Project, which is attempting to detect large 
planets in other solar systems. Their method for locating 
planets is to attempt to detect a periodic fluctuation in the 
intensity of a star that might indicate a large planet passing 
across it’s disk. To perform this analysis, they track a 
collection of stars as they move across the sky each night. 
For each star, a sub-image is cut from the star field and then 
the sequence of these sub-images is realigned to correct for 

nightly drift. Image realignment is performed using 
statistical data analysis techniques. 

To support Vulcan image extraction and realignment using 
E I S ,  the format of the image data and the interface and 
behavior of the data analysis components must be specified. 
Inference rules must also be specified to capture the 
relationship between the abstract domain and the data 
analysis components. We can then retrieve, evaluate and 
integrate components to assemble the application. 

The input to the analysis is a set of files that describe an area 
of the sky of a specified time window. Vulcan used the 
Flexible Image Transport System (FITS) as the data format 
to store telescope observations. FITS files contain a header 
which includes metadata such as bitdpixel, number of 
dimensions, time of imaging,. object observed and telescope 
used. Indexing based on the FITS header metadata is used to 
catalogue and retrieve the data files and to determine data 
file format. 

Given a sequence of sky images, the goal of data analysis is 
to construct a set of realigned image stacks for a specified 
set of stars. This type of analysis is supported by a 
statistical analysis software library. The functionality of the 
library components is specified in terms of a formal model 
of the statistical analysis domain. However, to support 
component retrieval and integration, there must be a 
mapping from the abstract application domain (star images 
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and sky images) to the statistical domain of the component 
library. For example, it is necessary to realize that a star 
image is a 2 dimensional image with light intensity 
corresponding to a Gausian distribution in both dimentions. 
This information is represented in the form of rewrite rules 
over an algebraic specification language. For example, the 
following is a segment of the abstract domain specification 
for the star image domain: 

type coord = (intjnt); 
type image[X] = seq[seq[X]] 
op reow : image[X] -> seq[X] 
op subimage : image, coord, coord -> image; 
type star-image = { I:image[int] I gausian(1)); 
type sky-image = image[int]; 
type star-name = string; 
op star-location : sky-image, star-name -> star-image; 
op inscope : star-name, sky-image -> bool; 
op align : star-image -> (float,float); 

Based on these abstract types and operators, we can 
construct a formal specification of the Vulcan data analysis 
problem in terms of a domain, range, precondition and a 
post condition: 

Domain: seq[star-name] x seq[sky-image]; 
Range: seq[float,float]; 
h e :  s in starlist, I in skyimages => inscope(x,I); 
Post: map(align, map(extract(starlist),skyimages)); 

This type of specification can be automatically extracted 
from more intuitive graphical representations, such as block 
diagrams or constraint graphs. In this case, the specification 
could be visualized similar to: 

We are currently working on developing a graphical 
representation of the star image domain. 

(starlist,skyimages) -> extract -> align 

The formalized problem specification can be decomposed 
using top-down synthesis by applying rules that describe 
how functions (such as extract and align) can be applied to 
sequences of data. The result are specifications describing 
components required to perform the extract and align 
functions for star images. For example, it is inferred that 
align must consider a Gausian distribution based on the type 
restriction specified for star images. 

After the appropriate components are retrieved, adapters are 
generated to handle conversion from FITS to image 
sequences as well as data buffering between components. 
The buffers are inferred from the mismatch between the 
operator types in the graphical specification which are 
compensated for by the map operators in the formal 
postcondition. The adapter to perform the conversion from 
FITS is selected from a small collection of adapters that map 
from FITS tables into data sequences and streams. We 
anticipate that several such adapter templates will be 
required to support each data format standard. 

3. %TIER APPLICATION ARCHITECTURE 

Three groups of components are identified in Web-based 
enterprise applications: (1) presentation, (2) application 
logic, and (3) data. The most commonly used architectures 
for Web-based applications are 2-tier and 3-tier 
architectures. 
In 2-tier architectures, data components run on the server 
side (tier 2), and both presentation and application logic 
components run on the client side (tier 1) .  2-tier 
architectures have been shown to have several drawbacks 
affecting their scalability, maintainability and performance. 
For example, integrating application and presentation logic 
lowers maintainability because evolution of one aspect 
cannot be performed independent of the other. In addition, a 
user of a 2-tier system can access only one data source at a 
time; access to other data sources must be done via 
gateways, raising serious performance issues for enterprise 
systems. Finally, 2-tier applications have limited scalability 
due to lock contention. Lock resolution is independent of 
server speed, so installing more powerful DBMS servers 
does not provide significantly greater performance. 
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Figure 3: 3-Tier Web-Based Data Analysis and Visualization 

In 3-tier clientherver architectures, each component group 
(i.e. presentation, application logic, and data components) 
forms a distinct unit. Presentation components operate in tier 
1, application logic components in tier 2, and data 
components in tier 3. Presentation components manage the 
interaction between users and the software system, and make 
requests for application services by calling application logic 
components in the middle tier. Application logic 
components manage the clients' requests for connections to 
the data components in tier 3. The client may request 
connections to multiple heterogeneous servers including 
back-end servers, DBMS servers, legacy applications 
through the use of their native interface, such as SQL for 
relational databases. The middle tier also resolves many 
difficult infrastructure issues such as naming, location, 
security and authentication, allowing application developers 
to focus on putting their domain expertise into the 
application logic. 

3-tier architectures allow application components to run on 
middle-tier servers, independent of presentation interface 
and database implementation. As a result, they provide 
developers with more choices for enhancement of 
application scalability, performance, reliability, and security 
[Pour 1999b-d, Orfali 19981. Additionally, 3-tier 
architectures have the following major benefits: 

System administrators can replicate application 
components and run them on different machines 
simultaneously. This will enhance the software 
availability, scalability, and performance. 
Application logic components can share database 
connections. This will improve software performance 
by lowering the number of total sessions that a database 
server must support. 

They provide access to other sources through native 
protocols & application interfaces rather than data 
gateways. This improves performance and allows users 
to control the data access. 
They allow developers to make the most of reusable 
application logic components, improving the software 
development and maintenance process [Pour 1999dl. 

To support scalability and concurrent generation of multiple 
data analysis applications in a heterogeneous and distributed 
computing environment, iCIS is being integrated with a 3- 
tier clienthemer architecture as shown in Figure 3. Web 
browsers and data visualization components operate in tier 
1, the proposed iCIS and application servers in tier 2, and 
DBMS servers, spacecraft, legacy applications, and libraries 
of data analysis filters in tier 3. 

After evaluating the major industry-supported component 
models, chose to use JavaBeans for client-side component 
development and Enterprise JavaBeans (EJB) [Thomas 
19981 for server-side component development in this 
project. The Java-based component model is the best 
candidate for Web-based enterprise application development 
for several reasons including the portability and security 
features of Java [Pour 2000a,b,1999b,1998]. The EJB 
specification defines an application programming interface 
(MI) that allows application developers to create, deploy, 
and manage cross-platform component-based enterprise 
applications easily. EJB also provides efficient data access 
across heterogeneous servers and allows scalability, 
reliability, load balancing, and atomic transactions. In 
addition, we have determined that the JavaBeans event 
model to be well suited for supporting adapter generation 
within iCIS [Penix 1999al. 
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4. DATA ARCHIVE INTEGRATION 

To integrate data analysis filters with various data archives, 
we propose to use technologies based on the extensible 
Markup Language (XML) [Bosak 19991. XML is a new 
standard developed by the World Wide Web Consortium 
(W3C) for describing and exchanging structured data and 
metadata on the Web [Chang 1998, Maruyama 19991. A 
large number of commercial and non-commercial tools are 
being developed to support the development of XML-based 
applications. These include many Java/XML software 
packages that can be used to integrate XML support into the 
Java-based component framework [Pour 1999bl. 

There are several existing efforts to use XML for storage 
and retrieval of space science data. We plan to use the 
results of two of these projects. The SSDOO's 
Astronomical Data Center (ADC) (http://adc.gsfc.nasa.gov) 
is currently developing XML-based data representations to 
support the storage and retrieval of data and metadata in 
astronomical catalogues [Shaya 1998,19991. They are also 
developing an XML toolbox for importation, enhancement, 
and distribution of data and metadata documents written in 
XML. There is also an ongoing international effort to 
develop the Astronomical Markup Language (AML) for 
similar purposes [McGrath 19991. 

By using XML, these efforts can leverage off the existing 
commercial tool support for creating and manipulating 
XML-based data representations. However, these projects 
do not address specific issues of integrating data with 
existing data analysis components or tools. Our proposed 
effort will build upon these projects by using XML-based 
descriptions of table formats (part of the metadata) to 
automatically generate adapter components that extract data 
from tables. We will also investigate the use of XML 
metadata to specify "data source components." 

Our initial target data analysis application is from the 
Vulcan project at Ames, which is actively searching for 
planets orbiting distant stars. To support this effort, they 
must currently develop and maintain software to perform 
data file input/output, subsetting and reformatting, in 
addition to data analysis algorithms. Vulcan currently uses 
the Flexible Image Transport System (FITS) [NOST 19991 
for data archival. In the proposed system, the FITS data will 
be retrieved from a remote site, and an adapter will be 
generated to read the FITS data, perform subsetting and 
reformatting, and direct the data to the analysis components. 
AML is currently undergoing revisions to unify the metadata 
format with the header file format from FITS, making this 
work relevant to supporting Vulcan. 

In the Astronomical Markup Language (AML), metadata is 
used to describe the format of table data in the same file or 
in an external file. There is currently an international effort 
to unify the table metadata format in AML with the header 
format in FITS which will allow us to use AML to describe 

the data formats used in the Vulcan project. To support 
adapter generation, the metadata describing the data format 
will be read in using XML/Java tools. Then, this 
information will be used in combination with user specified 
data field selections to specialize an adapter template that 
will read the table and extract the desired fields. The 
interface specification of the data analysis component will 
be used to determine how to package the selected data for 
analysis. 

Our initial source of data analysis components data analysis 
components will be from an ongoing collaboration between 
NASA Ames and U.C. Berkeley [Buntine 19991. This is an 
effort to develop techniques to automatically generate 
probabilistic data analysis components from Bayesian 
network specifications, with the initial application also being 
the Vulcan project. The generated algorithms will form the 
initial component set to be integrated into the proposed 
infrastructure. 

5. CONCLUSION 

We have outlined the architecture of an intelligent 
component integration system that supports the component- 
based development of scientific data analysis applications. 
Our system operates on the middle tier of a three-tier web- 
based architecture and thus isolates data source, analysis, 
and visualization from each other. It takes as input high- 
level specification of a data analysis problem (i.e., meta- 
level descriptions of data contents, analysis filters, and 
visualization methods) and identifies appropriate data 
sources and analysis and visualization components. From 
these, it then synthesizes the application. The system relies 
on formal specifications to describe as the components, 
wrappers, and architectures and uses automated reasoning 
techniques to retrieve, adapt, and integrate components 
intelligently. 

We have already implemented some of the computationally 
more intensive kernel reasoning components. Experiments 
with them have demonstrated that careful implementations 
can mitigate the inherent computational complexity of the 
specification-based component operations as retrieval and 
adaptation, which are required for component-based 
software development. We are currently working on 
integrating these reasoning components into an iCIS 
prototype which will cover the full functionality described in 
the paper. 
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