
Explaining Verification Conditions

Ewen Denney1 and Bernd Fischer2

1 USRA/RIACS, NASA Ames Research Center, Moffett Field, CA 94035, USA
Ewen.W.Denney@nasa.gov

2 DSSE Group, School of Electronics and Computer Science, University of Southampton, UK
B.Fischer@ecs.soton.ac.uk

Abstract. Hoare-style program verification relies on the construction and dis-
charge of verification conditions (VCs) but offers no support to trace, analyze,
and understand the VCs themselves. We describe a systematic extension of the
Hoare rules by labels so that the calculus itself can be used to build up explana-
tions of the VCs. The labels are maintained through the different processing steps
and rendered as natural language explanations. The generated explanations are
based only on an analysis of the labels rather than directly on the logical mean-
ing of the underlying VCs or their proofs. The explanations can be customized
to capture different aspects of the VCs; here, we focus on labelings that explain
their structure and purpose.

1 Introduction

Program verification is easy when automated tools do all the work: a verification condi-
tion generator (VCG) takes a program that is “marked-up” with logical annotations (i.e.,
pre-/post-conditions and invariants) and produces a number of verification conditions
(VCs) that are simplified, completed by a domain theory, and finally discharged by an
automated theorem prover (ATP). In practice, however, many things can, and typically
do, go wrong: the program may be incorrect or unsafe, the annotations may be incorrect
or incomplete, the simplifier may be too weak, the domain theory may be incomplete,
or the ATP may run out of resources. In each of these cases, users are typically con-
fronted only with failed VCs (i.e., the failure to prove them automatically) but receive
no additional information about the causes of the failure. They must thus analyze the
VCs, interpret their constituent parts, and relate them through the applied Hoare rules
and simplifications to the corresponding source code fragments. Even if all VCs can be
proven automatically, there is often still a need to understand their intent, for example
if the formal verification is being used to support a code review. Unfortunately, VCs are
a detailed, low-level representation of both the underlying information and the process
used to derive it, so understanding them is often difficult.

Here we describe an technique that helps users to trace and understand VCs. Our
idea is to systematically extend the Hoare rules by “semantic mark-up” so that we can
use the calculus itself to build up explanations of the VCs. This mark-up takes the form
of structured labels that are attached to the meta-variables used in the Hoare rules (or to
the annotations in the program), so that the VCG produces labeled versions of the VCs.
The labels are maintained through the different processing steps, and are then extracted
from the final VCs and rendered as natural language explanations.

J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, pp. 145–159, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

146 E. Denney and B. Fischer

Most verification systems based on Hoare logic offer some basic tracing support by
emitting the current line number whenever a VC is constructed. However, these line
numbers on their own are insufficient to understand a VC since they do not provide any
information as to which other parts of the program have contributed to the VC, how it
has been constructed, or what its purpose is, and are thus insufficient as a basis for infor-
mative explanations. Some systems produce short captions for each VC (e.g., JACK [1]
or Perfect Developer [2]). Other techniques focus on a detailed linking between source
locations and VCs to support program debugging [11,12]. Our approach, in contrast,
serves as a customizable basis to explain different aspects of VCs. Here, we focus on
explaining the structure and purpose of VCs, helping users to understand what a VC
means and how it contributes to the overall certification of a program.

In our approach we only explain what has been explicitly declared to be significant
using labels. The generated explanations are based on an analysis of the labels and not
of the structure or logical meaning of the underlying VCs. For example, we do not try
to infer that two formulas are the base and step case of an induction and hence would
not generate an explanation to that end unless the formulas are specifically marked up
with this information. Finally, we restrict ourselves to explaining the construction of
VCs (which is the essence of the Hoare approach) rather than their proof. Hence, we
maintain, and can also introduce, labels during simplification, but strip them off before
proving the VCs. Techniques for explaining proofs (e.g., [9]) provide no additional in-
sight, and are in fact less useful for our purposes since the key information is expressed
in the annotations and VCs.

We developed our technique as part of an autocode certification system [4,6], and
we will use the safety verification of automatically generated code as an application
example. Here, human-readable explanations of the VCs are particularly important to
gain confidence into the generated code. However, our technique is not tied to either
code generation or safety certification and can be used in any Hoare-style verification
context. We first briefly describe the core calculus, and then its labeled extension. We
also describe several refinements to the labels, which give rise to richer explanations.
Some of these refinements are specific to our application domain (i.e., safety verifica-
tion) while others are specific to our verification method (i.e., automated annotation).

2 Logical Background

Hoare Logic and Program Verification.We follow the usual Hoare-style program ver-
ification approach: first, a VCG applies the rules of the underlying Hoare calculus to the
annotated program to produce a number of VCs, then an ATP discharges the VCs. This
splits the decidable construction of the VCs from their undecidable discharge, but in
return the VCs become removed from the program context, which exacerbates the un-
derstanding problem.

Here, we restrict our attention to an imperative core language which is sufficient for
the programs generated by NASA’s certifiable code generators, AUTOBAYES [10] and
AUTOFILTER [15], and by Real-Time Workshop (RTW), a commercial code generator
for Matlab. Extensions to other language constructs are straightforward, as long as the
appropriate (unlabeled) Hoare rules have been formulated.

Explaining Verification Conditions 147

(assign)
Q[e/x, INIT/xinit] ∧ safeinit(e) {x := e} Q

(update)
Q[upd(x, e1, e2)/x, upd(xinit, e1, INIT)/xinit]
∧ safeinit(e1) ∧ safeinit(e2)

!
{x[e1] := e2} Q

(if)
P1 {c1} Q P2 {c2} Q

(b ⇒ P1) ∧ (¬b ⇒ P2) ∧ safeinit(b) {if b then c1 else c2} Q

(while)
P {c} I I ∧ b ⇒ P I ∧ ¬b ⇒ Q

I ∧ safeinit(b) {while b inv I do c} Q

(for)
P {c} I [i + 1/i] I [INIT/iinit] ∧ e1 ≤ i ≤ e2 ⇒ P I [e2 + 1/i, INIT/iinit] ⇒ Q

e1 ≤ e2 ∧ I [e1/i] ∧ safeinit(e1) ∧ safeinit(e2) {for i := e1 to e2 inv I do c} Q

(skip)
Q {skip} Q

(comp)
P {c1} R R {c2} Q

P {c1 ; c2} Q
(assert)

P ′ ⇒ P P {c} Q′ Q′ ⇒ Q

P ′ {pre P ′ c post Q′} Q

Fig. 1. Core Hoare rules for initialization safety

Source-Level Safety Certification. Safety certification demonstrates that the execution
of a program does not violate certain conditions, which are formalized as a safety prop-
erty. A safety policy is a set of Hoare rules designed to show that safe programs satisfy
the safety property of interest [3]. Here, the important aspect of safety certification is
that the formulas in the rules have more internal structure. This can be exploited by our
approach to produce more detailed explanations.

Figure 1 shows the initialization safety policy, which we will use as our main ex-
ample here; we omit the rules for functions and procedures. The rules use the usual
Hoare triples P {c} Q, i.e., if the condition P holds and the command c terminates,
then Q holds afterwards. For example, the assert rule says that we must first prove that
the asserted postcondition Q′ implies the arbitrary incoming postcondition Q. We then
compute the P as weakest precondition (WPC) of c for Q′ and show that the asserted
precondition P ′ implies P . The asserted precondition P ′ is then passed on as WPC;
note that P is only WPC of the “plain” statement c, but not of the annotated statement.

Initialization safety ensures that each variable or individual array element has been
explicitly assigned a value before it is used. It uses a “shadow” environment where each
shadow variable xinit contains the value INIT after the corresponding variable x has been
assigned a value; shadow arrays capture the status of the individual array elements. All
statements accessing lvars affect the value of a shadow variable, and each correspond-
ing rule (the assign-, update-, and for rules) is responsible for updating the shadow
environment accordingly. The rules also add the appropriate safety predicates safeinit(e)
for all immediate subexpressions e of the statements. Since an expression is defined
to be safe if all corresponding shadow variables have the value INIT, safeinit(x[i]) for
example translates to iinit = INIT ∧ xinit[i] = INIT. Safety certification then computes the
WPC for the safety requirements on the output variables. The WPC contains all applied
safety predicates and safety substitutions. If the program is safe then the WPC will fol-
low from the assumptions, and all VCs will be provable. Rules for other policies can be
given by modifying the shadow variables and safety predicate.

148 E. Denney and B. Fischer

Annotation Construction. Hoare-style program verification requires logical annota-
tions, in particular loop invariants. In our application, we use the code generator to pro-
vide them together with the code [4,6]. The generator first produces core annotations
that focus on on locally relevant aspects, without describing all the global information
that may later be necessary for the proofs. A propagation step then pushes the core an-
notations along the edges of the control flow graph. This ensures that all loops have
the required invariant; typically, however, they consist mainly of assertions propagated
from elsewhere in the program. Figure 2 shows an example code fragment with anno-
tations. The VCG then processes the code after propagation.

Human-readable explanations provide insight into the VCs. For us, this is particu-
larly important because the underlying annotations have been derived automatically:
the explanations help us to gain confidence into the (large and complex) generator and
the certifier, and thus into the generated code. However, our approach is not tied to code
generation; we only use the generator as a convenient source of the annotations that
allow the construction of the VCs and thus the Hoare-style proofs.

3 Explaining the Purpose and Structure of VCs

After simplification, the VCs usually have a form that is reminiscent of Horn clauses
(i.e., H1 ∧ . . .∧Hn ⇒ C). Here, the unique conclusion C of the VC can be considered
its purpose. However, for a meaningful explanation of the structure, we need a more de-
tailed characterization of the sub-formulas. This information cannot be recovered from
the VCs or the code but must be specified explicitly. The key insight of our approach
is that the different sub-formulas stem from specific positions in the Hoare rules, and
that the VCG can thus add the appropriate labels to the VCs. Here we first show gener-
ated example explanations, and then explain the underlying machinery. Section 4 shows
more refined explanations for our running example.

3.1 Simple Structural Explanations

Figure 2 shows a fragment of a Kalman filter algorithm with Bierman updates that
has been generated by AUTOFILTER from a simplified model of the Crew Exploration
Vehicle (CEV) dynamics; the entire program comprises about 800 lines of code. The
program initializes some of the vectors and matrices (such as h and r) with model-
specific values before they are used and potentially updated in the main while-loop.
It also uses two additional matrices u and d that are repeatedly zeroed out and then
partially recomputed before they are used in each iteration of the main loop (lines 728–
731). We will focus on these nested for-loops.

For initialization safety the annotations need to formalize that each of the vectors and
matrices is fully initialized after the respective code blocks. For the loops initializing
u and d, invariants formalizing their partial initialization are required to prove that the
postcondition holds. However, since these loops precede the use of vectors and matri-
ces initialized outside the main loop, the invariants become cluttered with propagated
annotations that are required to discharge the safety conditions from the later uses.

Explaining Verification Conditions 149

5

183

525

683

728

729

730
731

· · ·
const M=6, N=12;
· · ·
<init h>
post ∀ 0≤ i<M,0≤j <N · hinit[i, j]= INIT
· · ·
<init r>
post ∀ 0≤ i, j <M · rinit[i, j]= INIT

· · ·
while t<Tmax

inv ∀ 0≤ i<M, 0≤j<N · hinit[i, j]= INIT ∧. . .∧ ∀ 0≤ i, j <M · rinit[i, j]= INIT ∧. . . do
· · ·
for k:=0 to N-1

inv ∀ 0≤ i<M,0≤j <N · hinit[i, j]= INIT ∧. . .∧ ∀ 0≤ i, j <M · rinit[i, j]= INIT ∧. . .
∧ ∀ 0≤ i, j <N · i < k ⇒ uinit[i, j]= INIT ∧ dinit[i, j]= INIT do

for l:=0 to N-1
inv ∀ 0≤ i<M,0≤j <N · hinit[i, j]= INIT ∧. . .∧ ∀ 0≤ i, j <M · rinit[i, j]= INIT ∧. . .
∧ ∀ 0≤ i, j <N · (i < k ∨ i = k ∧ j < l) ⇒ uinit[i, j]= INIT ∧ dinit[i, j]= INIT do
u[k,l]:=0;
d[k,l]:=0;

post ∀ 0≤ i<M, 0≤j<N · hinit[i, j]= INIT ∧. . .∧ ∀ 0≤ i, j <M · rinit[i, j]= INIT ∧. . .
∧ ∀ 0≤ i, j <N · i ≤ k ⇒ uinit[i, j]= INIT ∧ dinit[i, j]= INIT

post ∀ 0≤ i<M,0≤j<N · hinit[i, j]= INIT ∧. . .∧ ∀ 0≤ i, j <M · rinit[i, j]= INIT ∧. . .
∧ ∀ 0≤ i, j <N · uinit[i, j]= INIT ∧ dinit[i, j]= INIT

· · ·
<use u, d>
· · ·
<use h,..., r>
· · ·

end;

Fig. 2. Example code fragment and annotations generated by AutoFilter

The certification of the program generates 71 VCs; 12 of these are related to the loop
at lines 728–731. This shows that location information alone is insufficient as a basis
for explaining VCs. Here, we focus on one VC

0≤k≤11 ∧ 0≤ l≤11 ∧ ∀ 0≤ i,j <12 · hinit[i,j]= INIT

∧ . . . ∧
∀ 0≤ i<6, 0≤j<12 · rinit[i,j]= INIT∧
∀ 0≤ i,j <12 · i < k ⇒ dinit[i,j]= INIT ∧ ∀ 0≤ i,j <12 · i=k ∧ j < l ⇒ dinit[i,j]= INIT ∧
∀ 0≤ i,j <12 · i < k ⇒ uinit[i,j]= INIT ∧ ∀ 0≤ i,j <12 · i=k ∧ j < l ⇒ uinit[i,j]= INIT

⇒ ∀ 0≤ i,j <12 · (i = k ∧ j ≤ l ∧ j �= l) ⇒ uinit[i,j]= INIT

that emerges from showing that the invariant is preserved through one iteration of the in-
ner loop. The full VC is substantially larger (approx. 180 lines) and contains many irrel-
evant hypotheses, which make it hard for a human to grasp. In fact, the sheer amount of
irrelevant information is often the biggest hurdle to understand automatically generated
VCs. However, if we (manually) interpret the formula, we can see that the hypotheses
are either constraints that originate from the loop bounds (0≤k, l≤11), post-conditions
that have originally been established before the loop and then been propagated into the
invariant (e.g., ∀ 0 ≤ i,j < 12 · hinit[i,j] = INIT), or the actual “local” invariant as hy-
potheses. The conclusion comprises parts of the invariant (where l has been replaced

150 E. Denney and B. Fischer

by l + 1), but due to simplification this is difficult to see. In addition, all constants have
been replaced by their values. This post hoc analysis of the VC, however, is not possible
automatically. Simplification can change the VC structure arbitrarily, and even without
simplification two subformulas can look the same but have different meaning (cf. the
different occurrences of the loop invariant in the while rule.) In our approach, the VC is
marked up with labels that represent this information in order to generate the explana-
tion shown below; multiple annotations at the same source line are marked with #-signs.
Note that the generated explanation also spells out the verification context, which is the
VCs “secondary” purpose.

The purpose of this VC is to show that the loop invariant at line 729 (#1) under the substitu-
tions originating in line 5 and line 730 is still true after each iteration to line 731; it is also
used to show the preservation of the loop invariants at line 728, which in turn is used to show
the preservation of the loop invariants at line 683. Hence, given

- the loop bounds at line 728 under the substitution originating in line 5,
- the invariant at line 729 (#1) under the substitution originating in line 5,
- the invariant at line 729 (#2) under the substitution originating in line 5,

. . .
- the invariant at line 729 (#15) under the substitution originating in line 5,
- the loop bounds at line 729 under the substitution originating in line 5,

show that the loop invariant at line 729 (#1) under the substitutions originating in line 5 and
line 730 is still true after each iteration to line 731.

3.2 Mark-Up Structure

Concepts. The basic information for explanation generation is a set of underlying con-
cepts, which depends of course on the particular aspect of the VCs to be explained.
In the case of the structural explanations, most concepts characterize a proposition ei-
ther as hypotheses or conclusions, reflecting their eventual position in the VC. Other
concepts capture information about origin and secondary purpose of the propositions.

Hypotheses consist of assertions and control flow predicates. Assertions refer to sub-
formulas that occur as annotations in the program, either originally or after propagation.
They include asserted pre- and post-conditions (labels ass pre and ass post), function
pre- and post-conditions (ass fpre and ass fpost), and loop invariants. Since the loop
rules use the loop invariant as hypothesis in two different positions and instantiations,
we distinguish ass inv and ass inv exit (Figure 3). Control flow predicates refer to sub-
formulas that reflect the program’s control flow. For both if -statements and while-loops,
the control flow predicates occur in positive and negated forms, giving four different
concepts: if tt, if ff, while tt, and while ff. For for-loops, the control flow predicate does
not directly occur in the program but is derived from the given loop bounds.

Conclusions capture the primary purpose of a VC, which includes establishing (i.e.,
showing to hold at the given location) the different types of assertions. As in the case
of the hypotheses, invariants are used in two different forms, the entry form (or base
case) est inv and the step form est inv iter. Note that an assertion can be used both as
hypothesis and as conclusion, even in the same VC. The explanations distinguish these
two bits of information from the same source. For safety verification, we additionally
have the safety conditions safety that have to be demonstrated.

Qualifiers further characterize both hypotheses and conclusions by recording the ori-
gin of a sub-formula. The different substitution concepts reflect the substitutions of the

Explaining Verification Conditions 151

underlying Hoare calculus. The concepts sub and upd capture the origin and effect of
assignments and array updates on the form of the resulting VCs; for the shadow envi-
ronment (Section 2), we additionally get safety substitutions sub safety and upd safety.

Contributors capture the secondary purpose of a VC; this arises when a recursive
call to the VCG produces VCs that are conceptually connected to the purpose of the
larger structure. In general, contributors arise for nested program structures which result
in “nested” VCs (e.g., loops within loops). For example, all VCs emerging from the
premise P {c} I of the while rule (cf. Figure 1) contribute to showing the preservation
of the invariant I over the loop body c, independent of their primary purpose, and are
thus labeled with pres inv.

Label Structure and Labeled Terms. We use labeled terms �t �l, where each term t
can be adorned with a label l, or, by abuse of notation, a list of labels. Labels have the
form c(o, n). Here c is one of the concepts introduced above; it describes the role the
labeled term plays and thus determines how it is rendered. The location o records where
it originated; it refers either to an individual position or to a range. We use file names
and line numbers for locations. n is a list of labels that contains further qualifying
information. Initially, n is empty; after normalization, it holds labels that have been
“bubbled-up” from subterms. In our running example, the loop bounds are originally
represented as �0 ≤ k ≤ �11�sub(5,〈〉)�bounds(728,〈〉), i.e., with the label on the upper bound
reflecting the source of the substitution, and the label on the sub-formula reflecting its
role. After simplification, the sub-label is nested inside the bounds-label, reflecting the
original nesting in the term: �0 ≤ k ≤ 11�bounds(728,〈sub(5,〈〉)〉).

3.3 Modified Hoare Rules

In general, it is not sufficient to just output explanations as the VCs are constructed.
Instead, the VCG must add the right labels at the right positions; it must also pass mark-
up back through the program by attaching it to the WPC, so that information from one
point in the program can be used at any other point. Modified Hoare rules concisely
capture the semantic mark-up (i.e., label types and positions) required for any given
explanation aspect. Labels are added in three places: to the “incoming” postcondition of
a recursive VCG call in the premise of an inference rule, to the WPC, or to a generated
VC. Figure 3 shows the core rules of the initialization safety policy marked-up for
explaining the structural aspect of VCs. The rules derive the usual triples, P {c} Q, but
now all elements can be labeled. For clarity, we omit the location information in the rule
formulation but assume that the VCG obtains it from the statements and annotations and
appropriately incorporates it into the labels.

The assign and update rules only require mark-up in the WPC. The safety predi-
cate can be a complex sub-formula, depending on the property to be certified and the
structure of the expression(s), but the mark-up is not dependent on the specific safety
property—all we need to know for an explanation is that this is in fact the safety pred-
icate. The substitutions need mark-up to record their type and the origin of the substi-
tuted expressions. By labeling only the expressions and not the variables we can use the
normal substitution mechanisms.

152 E. Denney and B. Fischer

(assign)
Q[�e�sub/x, �INIT�sub safety/xinit] ∧ �safeinit(e)

�safety {x := e} Q

(update)
Q[�upd(x, e1, e2)�upd/x, �upd(xinit, e1, INIT)�upd safety/xinit]∧
�safeinit(e1)�safety ∧ �safeinit(e2)�safety

!
{x[e1] := e2} Q

(if)
P1 {c1} Q P2 {c2} Q

(�b�if tt ⇒ P1) ∧ (�¬b�if ff ⇒ P2) ∧ �safeinit(b)
�safety {if b then c1 else c2} Q

(while)
�
P {c} �I�est inv iter�pres inv

��I�ass inv ∧ �b�while tt ⇒ P
�pres inv

�I�ass inv exit ∧ �¬b�while ff ⇒ Q

�I�est inv ∧ �safeinit(b)
�safety {while b inv I do c} Q

(for)

�
P {c} �I [i + 1/i]�est inv iter�pres inv

��I�ass inv ∧ �e1 ≤ i ≤ e2
�bounds ⇒ P

�pres inv

�I [e2 + 1/i, INIT/iinit]�ass inv exit ⇒ Q
e1 ≤ e2 ∧ �I [e1/i]�est inv∧
�safeinit(e1)�safety ∧ �safeinit(e2)�safety

!
{for i := e1 to e2 inv I do c} Q

(assert)
�P ′�ass pre ⇒ P P {c} �Q′�est post �Q′�ass post ⇒ Q

�P ′�est pre {pre P ′ c post Q′} Q

Fig. 3. Hoare rules for initialization safety with semantic markup

While labeling the if rule is straightforward, the loop rules are more complicated;
we focus on the while rule but the for rule has a similar structure. The WPC com-
prises the safety predicate, which is labeled as before, and the invariant, which has to
be established for loop entry and is thus labeled with est inv. In the premise, individual
sub-formulas of both the exit-condition I ∧ ¬b ⇒ Q and the step-condition I ∧ b ⇒ P
are labeled appropriately; in addition, the entire step-condition is labeled with its sec-
ondary purpose, namely to contribute to showing the preservation of the invariant. In
the triple P {c} I , the incoming postcondition I must be labeled with its purpose (i.e.,
re-establish the invariant after one loop iteration) for the recursive call; moreover, all
emerging VCs must be marked up with the secondary purpose pres inv. We indicate
this by labeling the entire triple. Note how the same formula I is used in four differ-
ent roles and consequently labeled in four different ways. This contextual knowledge is
only available at the point of rule application and can not be easily recovered by a post
hoc analysis of the generated VCs.

Finally, the assert rule is straightforward to mark up. The asserted pre- and post-
conditions are labeled according to their use either as hypotheses (in the VCs) or as
conclusions (in the WPC and recursion).

3.4 Labeled Rewriting

The VCs (whether labeled or unlabeled) become quite complex and need to be simpli-
fied aggressively before they can be proven by an ATP. Unfortunately, unlabeled simpli-
fication rules cannot be reused “as is” for the labeled case because (i) the

Explaining Verification Conditions 153

labeling changes the term structure and thus the applicability of the rules and (ii) the
labels need careful handling—on the one hand, they cannot simply be distributed over
all operators because this can destroy their proper scope, while on the other, they can-
not just be pushed to the top of the VC because this would result in redundant and
imprecise explanations. The purpose of the labeled simplification rules is thus (i) to
remove redundant labels, (ii) to minimize the scope of the remaining labels, and (iii)
to keep enough labels to explain any unexpected failures, based on the assumption that
the majority of the VCs can be rewritten to true.

The rules themselves fall into five different groups. The first group contains rules
such as �true�l → true or P ⇒ P ′ → true if | P | = | P ′ | that remove labels from
trivially true (sub-) formulas because these require no explanations;1 The next group
consists of rules such as �false�l ∨ P → P that selectively remove trivially false labeled
sub-formulas. The remaining context then provides the information for the explana-
tions. However, the labels obviously need to be retained if the underlying unlabeled
rule version rewrite the entire formula into false, since there is no remaining context
to explain the failure, e.g., �false�l ∧ P → �false�l. The rules �P ∧ Q�l → �P�l ∧ �Q�l

and P ⇒ �Q ⇒ R�l → P ∧ �Q�l ⇒ �R�l comprise the fourth group; they distribute
labels over conjunction and (nested) implication, respectively, so that the label scopes
are minimized in the final simplified VCs. The last group encodes knowledge about
how the labels will be interpreted in the underlying domain. For example, the rule
sel(�upd(x, i1, t)�l, i2) → �i1 = i2

�l ? �t�l : sel(x, i2) specifies the effect of selecting into
an updated array: in order to explain the resulting term we need to know that the dis-
appearing upd-functor is conceptually reflected in the guard and the success-branch of
the conditional, but not in the failure-branch, and that the label must thus be attached to
these two only. This group also contains an unnesting rule ��t�m�n → �t�n⊗m that “bub-
bles” nested labels to the top term, and so enables other labeled and unlabeled rules to
apply, but keeps the nesting structure on the labels itself. This ensures that qualifiers
remain nested properly, and apply to the originally qualified term.

3.5 Rendering

The final stage is generation of the actual explanations, i.e., turning the (labeled) VCs
into human-readable text, is called rendering. The underlying structure and actual tex-
tual representation of the explanations can be specified as a grammar (omitted here),
where the right-hand side of each rule is an explanation template that is similar to a
format string in C. These templates allow an easy customization and fine-grained con-
trol of the textual explanations. The renderer contains code to interpret the templates
as well as some glue code (e.g., sorting label lists by line numbers) that is spliced
in to support the text generation. It also provides default templates for concepts that
are useful for different explanation aspects, for example substitutions and the sim- and
nested-labels. Rendering comprises four steps: (i) VC normalization, using the labeled
rewrite system; (ii) label extraction, using the unnesting rule; (iii) label normalization,

1 We use an auxiliary function | · | to remove labels from terms and the label composition
operator ⊗ to append a list of inner labels to the list of labels nested in the outer label, i.e.,
c(o, l) ⊗ m = c(o, l • m), where • is list concatenation.

154 E. Denney and B. Fischer

to fit the labels to the explanation templates; (iv) text generation, using the explanation
templates. The third step flattens nested qualifiers, so that for example the label sub(p,
sub(q, sub(r))) is rewritten into the list 〈sub(p), sub(q), sub(r)〉. It also merges back
together conclusions from the same line which have been split over different literals
during the first step.

3.6 Putting It All Together

Our example VC emerges from the first hypothesis (i.e., I ∧ e1 ≤ i ≤ e2 ⇒ P) of the
for rule. P is computed as the WPC of the two assignments in lines 730 and 731 with
respect to the appropriately labeled step form of the invariant at line 729:

�(∀ 0≤ i,j <N · i = k ∧ j ≤ l + 1 ⇒ (�upd(uinit, [k, l], INIT)�upd safety(728))[i,j]= INIT)
∧ . . . �est inv iter(729–731)

Here, the update rule added the upd safety-label, while the substitution of N by 12 will
eventually introduce a sub-label. Since all this happens as part of handling the enclosing
for- and while-loops, P will be wrapped into two corresponding pres inv-labels.

Simplification splits the implication into several independent VCs, including the ex-
ample, and “bubbles” all labels to the top. The renderer then strips away the enclosing
contributors (i.e., the pres inv-labels) and uses the user-defined templates to convert
them into the text shown in Section 3.1. It will then search the remaining label list for
the unique conclusion (here est inv iter) to produce a caption from the corresponding
template and the contributor text, before it renders the assumptions.

3.7 Local Assumptions and Simultaneous Conclusions

All VCs generated in the example above have a unique conclusion that denotes their
primary purpose. However, for VCs that contain existential quantifiers (introduced by
the annotations or by the rule for procedure calls), this is not necessarily the case any
longer. Hence, we must explicitly represent and render multiple conclusions that have
to be satisfied simultaneously for an existentially quantified witness, and conclusions
from local assumptions. Consider, for example, the following VC, that arises in certify-
ing frame safety (i.e., consistent use of coordinate frames [14]) in navigation software
generated by Real-Time Workshop from a Simulink model:

. . . ∧ lo(T)=0 ∧ hi(T)=8 ∧ T [0]+T [4]+T [8] > 0 ∧ frame(T, dcm(eci, ned))
⇒ ∀q0 : real, v : vec · ∃d : DCM·

tr(d)=T [0]+T [4]+T [8] ∧ tr(d) > 0 ∧ rep dcm(d, T [5], T [7], T [2], T [6], T [1], T [3])
∧(∃q : quat · eq dcm quat(d, q) ∧ rep quat(q, q0, v[0], v[1], v[2])

⇒ frame(vupd(upd(M, 0, q0), 1, 3, v), quat(eci, ned)))

The purpose of this VC is to show the correctness of a procedure call. Hence, we need to
show for each argument (i.e., q0 and v) the existence of a direction cosine matrix d such
that the function’s three preconditions are satisfied and that the function postcondition
implies the required postcondition. Our system explains this as follows:

Explaining Verification Conditions 155

. . . Hence, given
- the precondition at line 794 (#1),
- the condition at line 798 under the substitution originating in line 794,

show that there exists a DCM that will simultaneously
- establish the function precondition for the call at line 799 (#1),
- establish the function precondition for the call at line 799 (#2),
- establish the function precondition for the call at line 799 (#3) under the substitution

originating in line 794,
- establish the postcondition at line 815 (#1) assuming the function postcondition for the

call at line 799 (#1).

Note that the structure of the explanation reflects the VC’s logical structure, and shows
which goals have to be established simultaneously, and that the function postcondition
can only be used as assumption to establish the call-time postcondition, but of course
not the function’s preconditions. These labels do not give a detailed explanation of the
VC’s individual parts (e.g., the function postcondition); for that, we would need to mark
up the annotations with additional policy-specific details (see Section 4.3).

We only need to introduce two additional conclusion labels local and sim to repre-
sent local assumptions and simultaneous conclusions, as outlined above. In addition,
we need simplification rules that introduce these labels to properly maintain the VC
structure in the explanations, e.g., ∃x : t · �P�l ⇒ �Q�m → �∃x : t · P ⇒ Q�local(〈l, m〉).

4 Refined Explanations

Even though the explanations constructed so far relate primarily to the structure of the
VCs, they already provide some “semantic flavor”, since they distinguish the multiple
roles a single annotation can take. However, for structurally complex programs, the
labels do not yet convey enough information to allow users to understand the VCs in
detail. For example, a double-nested for-loop can produce a variety of VCs that will all
refer to “the invariant”, without further explaining whether it is the invariant of the inner
or the outer loop, leaving the user to trace through the exact program locations to resolve
this ambiguity. We can produce refined explanations that verbalize such conceptual
distinctions by introducing additional qualification labels that are wrapped inside the
existing structural labels. We chose this solution over extending the structural labels
because it allows us to handle orthogonal aspects independently, and makes it easier to
treat the extensions uniformly in different contexts.

4.1 Adding Index Information to Loop Explanations

Explanations of VCs emerging from for-loops are easier to understand if they are tied
closer to the program by adding more detailed information about the index variables and
bounds; our running example then becomes (cf. Section 3.1; emphasis added manually):

The purpose of this VC is to show that the loop invariant at line 729 (#1) under the substitu-
tions originating in line 5 and line 730 is still true after each iteration to line 731 (i.e., in the
form with l+1 replacing l); it is also used to show the preservation of the loop invariants at
line 728, which in turn . . .

Note that the way the qualifier is rendered depends on the particular loop concept that it
qualifies, to properly reflect the different substitutions that are applied to the invariant in

156 E. Denney and B. Fischer

the different cases (see Figure 3); for example, in the step case (i.e., for the est inv iter-
label), the variable is used, while in the base case, the lower bound is used; the qualifier
is ignored when the invariant is used as asserted hypothesis (i.e., for the ass inv-label).

The information required for all different cases (i.e., variable name, lower and upper
bounds) is almost impossible to recreate with a post hoc analysis of the formula. The
VCG can easily extract this from the index of the for-loop itself and add it as qualifier
to the different labels used in the for-rule, changing for example the label added to the
invariant in the base case to est inv(〈i := e1 to e2〉) (cf. Figure 3). Since the labeled sim-
plification rules ensure that the qualifiers are never moved outside their base label, the
explanation templates for the qualifiers simply need to take the base label as an addi-
tional argument to produce the right text, for examplerender(est inv iter, i:=e1 toe2)
= “in the form with ” • i • “+1 replacing ” • i.

4.2 Adding Relative Positions to Loop Explanations

VCs emerging from nested loops refer to the underlying loops via their absolute source
locations but since these are often very close to each other, they can easily be confused.
We can thus further improve the explanations by adding information about the relative
loop ordering, distinguishing, for example, the inner from the outer invariant. In con-
junction with the the syntactic index information described above, our running example
then becomes (emphasis added manually):

The purpose of this VC is to show that the loop invariant at line 729 (#1) (i.e., the inner
invariant) under the substitutions originating in line 5 and line 730 is still true after each
iteration to line 731 (i.e., in the form with l+1 replacing l); it is also used to show the
preservation of the loop invariants at line 728, which in turn . . .

Since the VCG has no built-in notion of “outer” and “inner” loops, it cannot add the
respective qualifiers automatically. Instead, the annotations in the program must be la-
beled accordingly, either by the programmer, or, in our case, the annotation generator.
No further changes are required to the machinery: the VCG simply processes the la-
beled annotations, and the outer- and inner-qualifiers are rendered by parameterized
templates as before.

4.3 Adding Domain-Specific Semantic Explanations

We can construct semantically “richer” explanations if we further expand the idea out-
lined in the previous section, and add more semantic labels to the annotations, which
represent domain-specific interpretations of the labeled sub-formulae. For example, in
initialization safety the VCs usually contain sub-formulae of the form ∀0 ≤ i, j <
N · Ainit[i, j] = INIT, which expresses the fact that the array A is fully initialized (e.g,
most postconditions in Figure 2). By labeling this formula, or more precisely, the anno-
tation from which it is taken, we can produce an appropriate explanation without any
need to analyze the formula structure: 2

2 Note that the formulae expressing the domain-specific concepts can become arbitrarily com-
plex, and make any post hoc analysis practically infeasible. For example, to express the row-
major, partial initialization of an array up to position (k, l), we would already need to identify
a formula equivalent to ∀0 ≤ i, j < N · (i < k ∨ i = k ∧ j < l) ⇒ Ainit[i, j] = INIT.

Explaining Verification Conditions 157

. . . Hence, given
- the loop bounds at line 728 under the substitution originating in line 5,
- the invariant at line 729 (#1) (i.e., the array h is fully initialized, which is established at

line 183) under the substitution originating in line 5,
. . .

- the invariant at line 729 (#11) (i.e., the array r is fully initialized, which is established
at line 525) under the substitution originating in line 5,
. . .

- the invariant at line 729 (#15) under the substitution originating in line 5,
- the loop bounds at line 729 under the substitution originating in line 5,

show that the loop invariant at line 729 (#1) under the substitutions originating in line 5 and
line 730 is still true after each iteration to line 731 (i.e., the array u is initialized up to position
(k,l).

For this extension, we need two different qualifiers, init(a, o) which states that the array
a is fully initialized after line o, and init upto(a, k, l) which states that a is initialized in
a row-major fashion up to position (k, l). Again, the annotation generator can add these
labels to the annotations in the program.

We can use the domain-specific information to give a semantic explanation of the
hierarchical relations between the VCs which complements the purely structural view
provided by the pres inv labels. We thus generalize the assert rule to use the domain-
specific labels as contributors:

(label)
�P ′�ass pre(l) ⇒ �P�contrib(l) �

P {c} �Q′�est post(l)�contrib(l) �Q′�ass post(l) ⇒ Q

�P ′�est pre(l) {pre P ′ c post �Q′�l} Q

The label rule “plucks” the label off the post-condition and passes it into the appro-
priate positions. The labels need to be modified to take the domain-specific labels as
an additional argument. For example, ass post(init(183, h)) refers to the postcondition
asserted after the statements that initialize the array h. In addition, we also introduce a
new contribution label (e.g., contrib(init(183, h)), similar to the invariant preservation in
the structural concept hierarchy. This is added to the WPC that is recursively computed
for the annotated statement, and to all VCs emerging during that process (e.g., if the
initialization uses a nested loop and thus generates multiple VCs). These more refined
labels let the renderer determine whether a VC actually establishes the asserted post-
condition of a domain-specific block, or whether it is just an individual contributor to
this.

5 Related Work

Most VCGs link VCs to source locations, i.e., the actual position in the code where the
respective rule was applied and hence where the VC originated. Usually, the systems
only deal with line numbers but Fraer [11] describes a system that supports a “deep
linking” to detailed term positions. JACK [1] and Perfect Developer [2] classify the VCs
on the top-level and produce short captions like “precondition satisfied”, “return value
satisfies specification”, etc. In general, however, none of these approaches maintain
more non-local information (e.g., substitution applications) or secondary purpose.

Our work grew out of the earlier work by Denney and Venkatesan [8] which used
information from a particular subset of VCs (in the current terminology: where the

158 E. Denney and B. Fischer

purpose is to establish a safety condition) in order to give a textual account for why the
code is safe. It soon became clear, however, that a full understanding of the certification
process requires the VCs themselves to be explained (as does any debugging of failed
VCs). The current work extends the explanations to arbitrarily constructed formulas,
that is, VCs where the labels on constituent parts come from different sources. This
allows formulas to be interpreted in different ways.

Leino et al. [12] use explanations for traces to safety conditions. This is sufficient for
debugging programs, which is their main motivation. Like our work, Leino’s approach
is based on extending an underlying logic with labels to represent explanatory semantic
information. Both approaches use essentially the same types of structural labels, and
Leino’s use of two different polarities (lblpos and lblneg) corresponds to our distinc-
tion between asserting and establishing an annotation. However, their system does not
represent the origin of substitutions nor the secondary purpose of the VCs. Similarly,
it does not incorporate refined explanations with additional information. Moreover, the
approaches differ in how these labels are used by the verification architectures. Leino’s
system introduces the labels by first desugaring the language into a lower-level form.
Labels are treated as uninterpreted predicate symbols and labeled formulas are there-
fore just ordinary formulas. This labeled language is then processed by a standard VCG
which is “label-blind”. In contrast, we do not have a desugaring stage, and mainly use
the VCG to insert the labels, which allows us to take advantage of domain-specific la-
bels. While our simplifier needs to be label-aware, we strip labels off the final VCs after
the explanation has been constructed, and thus do not place special requirements on the
ATP like they do. This allows us to use off-the-shelf high-performance ATPs.

6 Conclusions and Future Work

The explanation mechanism which we have described here has been successfully im-
plemented and incorporated into our certification browser [5,7]. This tool is used to
navigate the artifacts produced during certifiable code generation, and it uses the system
described in this paper to successfully explain all the VCs produced by AUTOFILTER,
AUTOBAYES, and Real-Time Workshop for a range of safety policies. Complexity of
VCs is largely independent of the size of the program, but we have applied our tool up
to the subsystem level (around 1000 lines of code), where the largest VCs are typically
around 200 lines of formula.

In addition to its use in debugging, the explainer can also be used as a means of gain-
ing assurance that the verification is itself trustworthy. This complements our previous
work on proof checking [13]: there a machine checks one formal artifact (the proof),
here we support human checking of another (the VCs). With this role in mind, we are
currently extending the tool to be useful for code reviews.

Much more work can be done to improve and extend the actual explanations them-
selves. Our approach can, for example, also be used to explain the provenance of a
VC (i.e., the tools and people involved in its construction) or to link it together with
supporting information such as code reviews, test suites, or off-line proofs. More gen-
erally, we would like to allow explanations to be based on entirely different explanation
structures or ontologies.

Explaining Verification Conditions 159

Finally, there are also interesting theoretical issues. The renderer relies on the exis-
tence of an Explanation Normal Form, which states intuitively that each VC is labeled
with a unique conclusion. This is essentially a rudimentary soundness result, which can
be shown in two steps, first by induction over the marked-up Hoare rules in Figure 3
and then by induction over the labeled rewrite rules. We are currently developing a the-
oretical basis for the explanation of VCs that is generic in the aspect that is explained,
with appropriate notions of soundness and completeness.

Acknowledgments. This material is based upon work supported by NASA under
awards NCC2-1426 and NNA07BB97C.

References

1. Barthe, G., et al.: JACK – a tool for validation of security and behaviour of Java applications.
In: Formal Methods for Components and Objects. LNCS, vol. 4709, pp. 152–174. Springer,
Heidelberg (2007)

2. Crocker, D.: Perfect Developer: a tool for object-oriented formal specification and refine-
ment. In: Tool Exhibition Notes, FM 2003, pp. 37–41 (2003)

3. Denney, E., Fischer, B.: Correctness of source-level safety policies. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 894–913. Springer, Heidelberg (2003)

4. Denney, E., Fischer, B.: Certifiable program generation. In: Glück, R., Lowry, M. (eds.)
GPCE 2005. LNCS, vol. 3676, pp. 17–28. Springer, Heidelberg (2005)

5. Denney, E., Fischer, B.: A program certification assistant based on fully automated theo-
rem provers. In: Proc. Intl. Workshop on User Interfaces for Theorem Provers (UITP 2005),
Edinburgh, pp. 98–116 (2005)

6. Denney, E., Fischer, B.: A generic annotation inference algorithm for the safety certification
of automatically generated code. In: GPCE 2006, pp. 121–130. ACM Press, New York (2006)

7. Denney, E., Trac, S.: A software safety certification tool for automatically generated guid-
ance, navigation and control code. In: IEEE Aerospace Conference Electronic Proceedings,
IEEE, Big Sky (2008)

8. Denney, E., Venkatesan, R.P.: A generic software safety document generator. In: Basin, D.,
Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 102–116. Springer, Hei-
delberg (2004)

9. Fiedler, A.: Natural language proof explanation. In: Hutter, D., Stephan, W. (eds.) Mechaniz-
ing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 342–363. Springer, Heidelberg
(2005)

10. Fischer, B., Schumann, J.: AutoBayes: A system for generating data analysis programs from
statistical models. J. Functional Programming 13(3), 483–508 (2003)

11. Fraer, R.: Tracing the origins of verification conditions. In: Nivat, M., Wirsing, M. (eds.)
AMAST 1996. LNCS, vol. 1101, pp. 241–255. Springer, Heidelberg (1996)

12. Leino, K.R.M., Millstein, T., Saxe, J.B.: Generating error traces from verification-condition
counterexamples. Science of Computer Programming 55(1–3), 209–226 (2005)

13. Sutcliffe, G., Denney, E., Fischer, B.: Practical proof checking for program certification.
In: Proc. CADE-20 Workshop on Empirically Successful Classical Automated Reasoning
(ESCAR 2005), Tallinn (July 2005)

14. Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 2nd edn. Space Technol-
ogy Library. Microcosm Press and Kluwer Academic Publishers (2001)

15. Whittle, J., Schumann, J.: Automating the implementation of Kalman filter algorithms. ACM
Trans. Mathematical Software 30(4), 434–453 (2004)

	Introduction
	Logical Background
	Explaining the Purpose and Structure of VCs
	Simple Structural Explanations
	Mark-Up Structure
	Modified Hoare Rules
	Labeled Rewriting
	Rendering
	Putting It All Together
	Local Assumptions and Simultaneous Conclusions

	Refined Explanations
	Adding Index Information to Loop Explanations
	Adding Relative Positions to Loop Explanations
	Adding Domain-Specific Semantic Explanations

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

