
A Verification-Driven Approach to Traceability and Documentation for
Auto-Generated Mathematical Software

Ewen Denney

SGT / NASA Ames

Moffett Field, CA 94035

Ewen.W.Denney@nasa.gov

Bernd Fischer

School of Electronics and Computer Science

University of Southampton, England

B.Fischer@ecs.soton.ac.uk

Abstract—Automated code generators are increasingly used
in safety-critical applications, but since they are typically
not qualified, the generated code must still be fully tested,
reviewed, and certified. For mathematical and engineering
software this requires reviewers to trace subtle details of
textbook formulas and algorithms to the code, and to match
requirements (e.g., physical units or coordinate frames) not
represented explicitly in models or code. We support these
tasks by using the AutoCert verification system to identify and
verify mathematical concepts in the code, recovering verified
traceability links between concepts, code, and verification
conditions. We then exploit these links to construct a natural
language report that provides a high-level structured argument
explaining where the code uses specified assumptions and why
and how it complies with the requirements. We have applied
our approach to generate review documents for several sub-
systems of NASA’s Project Constellation.

I. INTRODUCTION

Model-based development and automated code generation

are increasingly used for actual production code, in particu-

lar in mathematical and engineering domains. For example,

NASA’s Project Constellation uses Real-Time Workshop for

its Guidance, Navigation, and Control (GN&C) systems.

However, since code generators are typically not qualified

[10], there is no guarantee that their output is correct, and

the generated code must thus still be fully tested, reviewed

and certified. This requires reviewers to match subtle details

of textbook formulas and algorithms to the code, which is

often difficult to understand. Moreover, common modeling

languages do not allow important domain requirements to

be represented explicitly (e.g., coordinate frames); conse-

quently, the generated code is not traced back to them.

The central problem is to disentangle the complexity of

the generated code, in order to build up a comprehensible

explanation in terms of high-level domain concepts. This in

turn requires comprehensive traceability links that associate

the code not only with the model and verification artifacts,

but also with abstract concepts and requirements such as

coordinate frames. The challenge is to recover these trace-

ability links: we cannot assume that the code generator will

provide them nor can we rely on the correctness of any links

that are provided. In fact, we need explicit assurance that

the traceability links are correct, because any documentation

Figure 1. Tracing between artifacts

derived from them could be misleading otherwise.

Here we describe a verification-driven approach to trace-

ability and documentation. Its central insight is that we

can combine methods from program understanding and pro-

gram verification to recover verified traceability links from

which we can construct natural language documentation

that explains why and how automatically generated code

complies with specified requirements. The documentation

lists the external assumptions on the code (e.g., the physical

units and constraints on input signals), the dependencies

between variables, and the algorithms, data structures, and

conventions (e.g., quaternion handedness) used by the gen-

erator to implement the model. It also shows how assump-

tions and requirements are related through the code, in

particular, the complete chain of reasoning which allows

the requirements to be concluded from the assumptions,

which assumptions are used to show a specific requirement,

and which assumptions remain unused. The documentation

is hyper-linked to both the program and the verification

conditions, and so gives traceability between verification

artifacts, documentation, and code (see Figure 1).

The approach described here is based on the AUTOCERT

code analysis tool [2], which takes a set of requirements,

and formally verifies that the code satisfies them. AUTO-

CERT can verify execution-safety requirements (e.g., array

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.71

548

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.71

562

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.71

562

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.71

560

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.71

560

bounds), as well as domain-specific requirements such as

frame safety. Our approach is generator-independent, and

we have used it with several different in-house and com-

mercial code generators, including Real-Time Workshop. In

particular, we have applied our tool to several subsystems

of the GN&C software currently under development for the

Constellation program, and used it to generate review reports

for domain-specific requirements such as the consistent use

of Euler angle sequences and coordinate frames.

II. SOFTWARE CERTIFICATION USING AUTOCERT

AUTOCERT certifies every generated program individu-

ally, rather than the generator itself: given a set of for-

mal assumptions (e.g., constraints on input signals) and

requirements (e.g., constraints on output signals), it formally

verifies that the generated code complies with the specified

requirements. AUTOCERT follows the Hoare logic approach

to verification; hence, it needs annotations, i.e., logical

assertions of program properties, at key locations in the

code. These annotations are constructed automatically by a

post-generation inference phase that exploits the idiomatic

nature of auto-generated code and is driven by a generator-

and domain-specific set of idioms. The inference algorithm

builds an abstracted control-flow graph (CFG), collapsing

the code idioms into single nodes. It then traverses the

CFG from use nodes (where a requirement must be shown)

backwards to all corresponding definitions (where the rele-

vant properties are ultimately established) and annotates the

statements along the paths as required [2]. A verification

condition generator (VCG) processes the annotated code,

feeding a set of verification conditions (VCs) into an auto-

mated theorem prover (ATP); their proofs guarantee that the

code satisfies the requirements.

AUTOCERT is implemented as a generator-independent

plug-in: since it only analyzes the code and not the model

or the generation process, the generator is treated as a

black box. The inference is customized via a set of high-

level annotation schemas [4], which use patterns to describe

code idioms and actions to construct the annotations needed

to certify a matching code fragment. The schemas remain

untrusted, since the assurance does not rely on their correct-

ness, but follows from the proofs of the corresponding VCs.

The schemas also contain textual descriptions which can be

parametrized by the variables in the pattern, and slots for

recording other information associated with the code, such

as the mathematical conventions it uses.

An annotation schema compiler [4] takes a set of schemas,

and compiles them down into customized annotation and

documentation templates, and concept relations drawn from

a domain ontology. The annotation templates are then used

to produce the annotated program, while the other elements

are used during the document generation process. Hence,

schemas are central to achieving our goal of a unified

approach to verification, documentation, and tracing.

Figure 2. Levels of domain abstraction

III. VERIFIED TRACEABILITY LINK RECOVERY

Link Categories. Traceability links associate different en-

tities from different development phases with each other. In

model-based development, they are generally equated with

links between the individual elements of the model (e.g.,

Simulink boxes) and their representation in the generated

code. Most commercial code generators add them directly

to the generated code (e.g., as comments or embedded hy-

perlinks), and academic research has worked on maintaining

and recovering these links after model or code changes [1].

However, this view is too restrictive for our purposes.

First, the certification process is driven by a set of mission-

specific requirements, and the documents must be struc-

tured according to these; consequently, the traceability links

must go back to these requirements as well. Second, the

documents need to explain the code in terms of high-

level domain concepts not explicitly represented by model

elements. Figure 2 shows some concepts of the GN&C

domain at different levels of abstraction. At the lowest

level, at which a code review is actually carried out, is

the code itself along with primitive arithmetic operators. At

the next level are mathematical operations, such as matrix

multiplication and transpose, and physical values of a given

unit, corresponding to the low-level datatypes. These, in

turn, are used to represent navigational information in terms

of quaternions, directional cosine matrices (DCMs), Euler

angles, etc., in various coordinate systems. This is the level

at which we explain the verification. At the highest level

of abstraction are the GN&C principles, themselves, but

explanation at this level is currently beyond our scope. Third,

the documents also need to explain the internal structure of

the code; in particular, we need to recover links reflecting the

chains of implications from the properties of one variable to

the properties of one or more dependent variables in order

to show how a requirement ultimately follows through the

code from the assumptions. We thus distinguish several link

categories, depending on the entities related to each other.

549563563561561

Requirement-to-concept links relate the individual require-

ments to the concepts in the upper tiers of the domain

abstractions (see Figure 2). They represent the set of data

structures, conventions, and operations used to implement a

given requirement, which is the most important information

from an understanding point of view. Requirement-to-code
links trace individual requirements back to the lines of code

implementing them. They can be used to show that the im-

plementation does not contain any superfluous functionality.

Requirement-to-assumption links make explicit on which

of the specified assumptions the validity of a requirement

rest. This is the most important information from a certifi-

cation point of view. Similarly, requirement-to-axiom links

relate requirements to the specific domain theory axioms that

are used by the ATP to prove the associated VCs. Note that

most ATPs treat assumptions and axioms interchangeably,

but because they play different roles in the certification,

we need two different link categories: the assumptions are

specific to the code, and need to be established by other

system components, while the axioms represent the logical

formulation of domain concepts and are “hardened” over

time and are thus more trusted. Requirement-to-VC links

primarily serve book-keeping (rather than understanding)

purposes and show which requirements are “at risk” if VCs

have not been proven yet. They are also used to compute

the links in the two categories above, since the VCs give

access to the proofs.

Code-to-code links reflect the internal conceptual structure

of the code, not its syntax: two code locations are linked if

they are directly connected by an edge in the abstracted

CFG built by the annotation inference. Simple code-to-VC
links are provided by most formal verification tools but links

based on a categorization of the VCs according to their

purpose (e.g., establishing a definition or showing the safety

of a use location) allow a more fine-grained linking. These

links can also pinpoint the location of faults, if a VC fails.

Link Recovery via Annotation Inference. The core trace-

ability links required to generate meaningful documentation

are code-to-code and requirement-to-concept links. The for-

mer are recovered by AUTOCERT’s annotation inference,

as side effect of the CFG traversal. Recovery of the latter

is based on the fact that matching a schema against the

code is actually performing program understanding, and that

the schema itself thus already reflects all domain concepts

that can be extracted from the matched code fragment—

in effect, the schema already tells us everything we need

to know about the code. Since the match is verified if

all associated VCs are proven, the requirement-to-concept

traceability links are verified as well.

Consider for example the DCM-NED-to-Nav schema

shown in Figure 3, which looks for a sequence of assign-

ments with values corresponding to the DCM’s entries. If it

is matched against some code, and all VCs are proven, then

schema(dcm_ned_nav=[’a DCM from NED to Nav’]
, frame
, def(V)
, ((V[0] :=x0) :: (x0 ~= cos(H −A);

(V[1] :=x1) :: (x1 ~= -sin(H −A);
(V[2] :=x2) :: (x2 ~= 0);
(V[3] :=x3) :: (x3 ~= sin(H −A);
(V[4] :=x4) :: (x4 ~= cos(H −A);
(V[5] :=x5) :: (x5 ~= 0);
(V[6] :=x6) :: (x6 ~= 0);
(V[7] :=x7) :: (x7 ~= 0);
(V[8] :=x8) :: (x8 ~= 1)

) ← &(post frame(V, dcm(ned, nav)),
pre ∃ ψ, φ · unit(ψ, heading) ∧ unit(φ, azimuth)

∧ x0=cos(ψ − φ) ∧ x1= -sin(ψ − φ) ∧ x2=0
∧ x3=sin(ψ − φ) ∧ x4=cos(ψ − φ) ∧ x5=0
∧ x6=0 ∧ x7=0 ∧ x8=1),

, [dcmrep=vec(9)]
).

Figure 3. Annotation schema

we know for certain that the code is related to the DCM from

NED to Nav concept and, in particular, represents a DCM as

a 9-vector, as stated by the schema’s concept list. Hence, we

have recovered two verified code-to-concept links, and since

we know the requirement currently being certified, also two

requirement-to-concept links.

Link Recovery via Verification. The VCG is primarily

responsible for the code-to-VC links. It adds the relevant

source code locations to the generated VCs; however, these

need to be maintained by subsequent processing steps,

e.g., simplification. Here, we use our previous work on

semantic labeling [3] to achieve the VC categorization

and fine-grained linking. The requirement-to-assumption and

requirement-to-axiom links are extracted from the proofs of

the VCs. This is in principle a simple task, but it requires the

ATP to provide an explicit proof output. We currently only

analyze proofs in the standard TPTP proof notation [11].

IV. GENERATING REVIEW DOCUMENTS

Document Structure. The generated documents are in-

tended as structured reading guides for the code and the

verification artifacts, showing why and how the code com-

plies with the specified requirements. The introduction con-

tains a natural language representation of the formalized

requirements and certification assumptions; see Figure 4

for an example. This allows the reviewers to check that

their formalization has not (inadvertently) introduced any

conceptual mismatches. It also contains the requirement-to-

assumption links recovered by the proof analysis, and calls

out assumptions that are not necessary.

Each requirement section starts with a summary of the

the relevant variables and the high-level conventions and

operations used by the code, and concludes with a series of

subsections that explain why and how each of the variables

550564564562562

Figure 4. List of requirements and assumptions

contributes to the requirement. The subsections can contain

explanations of fragments of code, and can refer to the

explanations for other variables, which are cross-linked.

The document’s overall structure thus reflects the way the

annotation inference has analyzed the program, starting with

the variables occurring in the original requirements.

Whenever AUTOCERT has carried out some analysis

using the prover (e.g., that a code fragment establishes some

property), the document provides links to the corresponding

VCs. A semantic labeling of the VCs [3] allows us to

associate only the small number of VCs with the code

fragment that actually contribute to demonstrating how a

given requirement holds for the fragment. This provides a

“natural” high-level grouping mechanism for the VCs, which

helps reviewers to focus their attention on the artifacts and

locations that are relevant for each requirement.

Explaining Inferred Operations and Conventions. As

a result of its analysis, AUTOCERT effectively “reverse

engineers” the code, and, based on the information specified

in the schemas, identifies both the high-level mathematical

structures that are used by the operations relevant to the

current requirement, e.g., DCMs and quaternions, and the

lower-level data structures used to represent these, e.g.,

matrices and vectors, including any underlying conventions

that manifest themselves in the lower-level data structures

(e.g., quaternion handedness). This analysis also identifies

cases where several lower-level data structures are used

to represent a high-level concept, such as three 3-vectors

representing a DCM.

The report contains a concise summary of this informa-

tion, going from the abstract mathematical structures to the

the concrete operations; see Figure 5 for an example. In

each category, the entries are grouped by sub-categories, so

that for example all extracted information concerning the

representation of DCMs is together. This sub-categorization

is derived from an underlying concept ontology and the

concept lists of the applied schemas. It highlights poten-

Figure 5. Operations and conventions

Figure 6. Correctness justification

tial problems caused by different representations used in

different parts of the model or by different operations

(e.g., the representation of DCMs as 9-vectors and three

3-vectors), and directs the reviewers’ attention to this for

further inspection and clarification.

Explaining Correctness. The backbone of the document is

a chain of implications from the properties of one variable

to the properties of one or more dependent variables, cor-

responding to the recovered code-to-code links. The chain

starts at those key variables which appear in the requirement,

and continues to variables in the assumptions or input

signals. Figure 6 shows one step in this chain.

At this step in the justification, we need to show that

the variable T_NED_to_body1 is a DCM from NED to

the Body frame. First, we show that the information which

has been inferred at this point in the code does indeed give

the variable the required properties, themselves expressed

as a post-condition. Two VCs establish this (cf. “safety

of this use”). Second, the location where the variable is

defined is given, and the correctness of that definition is

established, i.e., that it does define the relevant form of

DCM, which gives rise to three VCs. Third, we observe

551565565563563

that this definition—a matrix multiplication—depends, in

turn, on properties of other variables, i.e., the multiplicands,

with which the explanation continues later in the document.

Fourth, we show that the properties of the definition are

sufficient to imply the properties of the use, and that these

properties are preserved along the path connecting the two

locations; however, in this example, the path is straightfor-

ward and does not induce any further VCs.

Summarizing Proofs. Proofs found by ATPs are typically

very big, even for simple conjectures. It is thus necessary to

summarize the pertinent information, instead of verbalizing

the proofs themselves, as for example done in [5]. First,

we group axioms into theories and, in some cases, only list

the theory instead of the individual axioms. For example

all arithmetic reasoning is hidden under a single entry.

More relevant axioms representing frame reasoning are listed

individually. Since the axiom names are internal and convey

no meaning to a reviewer, we associate explanatory texts

with the categories. Second, we combine information from

entire VC sets, again using recovered traceability links to

identify conceptually related VCs.

V. CONCLUSION

Program comprehension and program verification are

fundamentally related activities, because they both need

to understand concepts that are distributed throughout the

code. Early program comprehension techniques such as

plans [8] or focusing [9] are similar to weak forms of our

schemas. Techniques based on approximations to structural

and behavioral patterns have also been used by Antkiewicz

et al. [1] to reverse engineer framework-specific models from

framework code. Similarly to our work these techniques also

use patterns to reverse engineer “logical structure”, but they

do not verify the selected fragments. The Whyline tool [6],

which uses techniques from program analysis to answer user

queries about program behavior, is closer to our approach in

that verification techniques are used to provide explanations

in terms of concepts from a domain. However, none of the

existing approaches can provide verified traceability links

between domain concepts, requirements, code fragments,

and verification artifacts, or can construct a high-level natu-

ral language explanation for why the specified requirements

follow from the assumptions and a background domain

theory. AUTOCERT’s documentation feature is aimed at

facilitating code reviews for auto-generated code, thus in-

creasing trust in otherwise opaque code generators without

excessive manual V&V effort, and better enabling the use

of automated code generation in safety-critical contexts.

We are currently working to automate linking of inferred

concepts to a mission ontology database, which has been

mandated by NASA’s Constellation program. The idea is that

by automatically annotating the code with inferred concepts,

engineers are relieved of this documentation chore. We also

plan to provide links to mission requirements documents and

other relevant project documentation. Further scaling will

require better hierarchy and abstraction mechanisms, and

more top-level summaries. Listing formulas and equations

that are used in the code would also be helpful for reviews,

since ultimately these need to be scrutinized by domain

experts. More ambitiously, we seek to further raise the

level of abstraction at which the code is explained to the

algorithmic level. The ideas of Koellman and Goedicke [7]

on recognizing algorithms might prove useful there.

REFERENCES

[1] M. Antkiewicz, T. Tonelli Bartolomei, and K. Czarnecki.
Automatic extraction of framework-specific models from
framework-based application code. In ASE’07, pp. 214–223.
ACM, 2007.

[2] E. Denney and B. Fischer. A generic annotation inference al-
gorithm for the safety certification of automatically generated
code. In GPCE’06, pp. 121–130. ACM, 2006.

[3] E. Denney and B. Fischer. Explaining verification conditions.
In AMAST’08, LNCS 5140, pp. 145–159. Springer, 2008.

[4] E. Denney and B. Fischer. Generating customized verifiers
for automatically generated code. In GPCE’08, pp. 77–87.
ACM, 2008.

[5] X. Huang. Proverb: A system explaining machine-found
proofs. In A. Ram and K. Eiselt, editors, Proc. 16th Annual
Conf. Cognitive Science Society, pp. 427–432. Lawrence
Erlbaum Associates, 1994.

[6] A. Ko. Debugging by asking questions about program output.
In ICSE’06, pp. 989–992. ACM, 2006.

[7] C. Koellmann and M. Goedicke. A specification language for
static analysis of student exercises. In ASE’08, pp. 355–358.
IEEE, 2008.

[8] S. Letovsky and E. Soloway. Delocalized plans and program
comprehension. IEEE Software, 3(3):41–49, 1986.

[9] J. Q. Ning, A. Engberts, and W. V. Kozaczynski. Automated
support for legacy code understanding. CACM, 37(5):50–57,
1994.

[10] RTCA Special Committee 167. Software considerations
in airborne systems and equipment certification. Technical
report, RTCA, 1992.

[11] Sutcliffe, G. and C. Suttner, TPTP home page,
www.tptp.org.

552566566564564

