
Lazy-CSeq: A Context-Bounded Model Checking Tool
for Multi-Threaded C-Programs

Omar Inverso∗, Truc L. Nguyen ∗, Bernd Fischer†, Salvatore La Torre‡ and Gennaro Parlato∗
∗Electronics and Computer Science, University of Southampton, UK

{oi2c11,tnl2g10,gennaro}@ecs.soton.ac.uk
†Division of Computer Science, Stellenbosch University, South Africa

bfischer@cs.sun.ac.za
‡Dipartimento di Informatica, Università degli Studi di Salerno, Italy

slatorre@unisa.it

Abstract— Lazy-CSeq is a context-bounded verification tool for
sequentially consistent C programs using POSIX threads. It first
translates a multi-threaded C program into a bounded nondeter-
ministic sequential C program that preserves bounded reachability
for all round-robin schedules up to a given number of rounds. It
then reuses existing high-performance bounded model checkers as
sequential verification backends. Lazy-CSeq handles the full C lan-
guage and the main parts of the POSIX thread API, such as dynamic
thread creation and deletion, and synchronization via thread join,
locks, and condition variables. It supports assertion checking and
deadlock detection, and returns counterexamples in case of errors.
Lazy-CSeq outperforms other concurrency verification tools and has
won the concurrency category of the last two SV-COMP verification
competitions.

I. INTRODUCTION

Bounded model checking (BMC) tools have successfully been

used to analyze sequential software and to discover subtle errors

in applications [1]. However, attempts to apply them naively to

multi-threaded programs (e.g., [2]) face problems as the number

of possible interleavings grows exponentially with the number

of threads and statements, and a large number of specialized

approaches based on partial order [3], [4], [5], [6], [7] or context-

bounded analysis (CBA) [8], [9], [10], [11] methods have been de-

veloped. CBA methods limit the number of context switches they

explore, which is empirically justified by work that has shown

that errors manifest themselves within few context switches [12],

and so fit well into the general BMC framework.

Lazy-CSeq is a context-bounded model checking tool for the

verification of concurrent C programs. It is based on the technique

of sequentialization [13], [8], [9], which translates a concurrent

program into a non-deterministic sequential program that (under

certain assumptions) behaves equivalently, so that the different

concurrent schedules do not need to be explicitly handled during

verification. The obtained sequential program can then be verified

using different off-the-shelf sequential verification tools.

Lazy-CSeq is implemented as a source-to-source translation in

the CSeq framework [14]. In contrast to the original CSeq tool

[15], [16] that is based on a Lal/Reps-style sequentialization [8],

Lazy-CSeq uses a different, lazy sequentialization [17], which

aggressively exploits the structure of bounded programs and

works well with BMC-based backends.

Lazy-CSeq’s early prototypes [18], [17] already performed very

well; in particular, they have won the concurrency category of the

last two TACAS software verification competitions (SV-COMP)

[19], [20]. Here we now describe how we have extended Lazy-

CSeq into a full-fledged verification tool for sequentially consis-

tent C programs using POSIX threads. Lazy-CSeq handles the full

C language and the main parts of the POSIX thread API, such

as dynamic thread creation and deletion, and synchronization via

thread join, locks, and condition variables, and checks both built-

in and user-defined assertions. We have extended Lazy-CSeq so

that it can now also detect deadlocks and return counterexamples

in case of any errors. We have further implemented a mechanism

that allows users to control the schedule exploration, which

can lead to better performance and can be used to implement

different context-bounded analysis strategies, including bounding

the number of context switches [11] and rounds [8].

With Lazy-CSeq we impact two different user groups within

the broader software engineering community. First, for software
developers (i.e., end-users), we provide a robust and well per-

forming verification tool for a notoriously difficult verification

problem. Second, for verification tool developers, we provide a

front-end processor for concurrency handling that can easily be

combined with different (sequential) verification tools.

The remainder of the paper is organized as follows. In the

following two sections, we summarize the underlying sequen-

tialization described in more detail in [17] and give a high-

level overview of the CSeq framework and the Lazy-CSeq tool.

In Section IV, we evaluate Lazy-CSeq on the SV-COMP 2015

benchmarks before we discuss related work in Section V, and

finally conclude in Section VI.

II. LAZY SEQUENTIALIZATION OF CONCURRENT PROGRAMS

Sequentialization is based on a translation of the input program

to a corresponding sequential program which is then analysed by

an off-the-shelf backend verification tool for sequential programs.

The key idea of such translations is to replace the control nonde-

terminism of the original program by data nondeterminism and to

capture thread invocations by function calls. Lazy sequentializa-

tion methods in addition preserve the sequential ordering of the

interleaved thread executions (preserving local invariants of the

original program) and use much less data nondeterminism than

other sequentializations, which can result in better performances

of the backend tools.

A. Lazy sequentialization schema

We assume that a concurrent program P consists of n + 1
functions f0, . . . , fn (where f0 denotes the main function)

and creates at most n threads respectively with start functions

f1, . . . , fn, respectively. Note that these assumptions can easily be

enforced by bounding the programs in BMC fashion and cloning

2015 30th IEEE/ACM International Conference on Automated Software Engineering

978-1-5090-0025-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ASE.2015.108

807

bool the[T]={1,0,0};
int cs,ct,pc[T],size[T]={5,8,8,2,2};
#define J(A,B) if(pc[ct]>A||A>=cs) goto _##B;
pthread_mutex_t m0,m1; int x=1;

void T0(void *arg) {
static int l;

_0:J(0,1) pthread_mutex_lock(&m0);
_1:J(1,2) pthread_mutex_lock(&m1);
_2:J(2,3) l=x;
_3:J(3,4) x=l+1;
_4:J(4,5) pthread_mutex_unlock(&m0);
_5:J(5,6) pthread_mutex_unlock(&m1);
_6: ;
}
void T1(void *arg) {
_7:J(7,8) pthread_mutex_lock(&m1);
_8:J(8,9) pthread_mutex_lock(&m0);
_9:J(9,10) x=3;
_10:J(10,11) pthread_mutex_unlock(&m1);
_11:J(11,12) pthread_mutex_unlock(&m0);
_12: ;
}
int main_thread() {

static pthread_t t0,t1;
_13:J(13,14) pthread_mutex_init(&m0,0);
_14:J(14,15) pthread_mutex_init(&m1,0);
_15:J(15,16) pthread_create(&t0,NULL,T0,0,1);
_16:J(16,17) pthread_create(&t1,NULL,T1,0,2);
_17: ;
}
int main() {
for(r=1; r<=K; r++) {
ct=0;
if(active[ct]) { // only active threads

cs=pc[ct]+nondet_uint(); // next context switch
assume(cs<=size[ct]); // appropriate value?
main_thread(); // thread simulation
pc[ct]=cs; // store context switch

}
.
ct=2;
if(active[ct]) {
.

}} }
Fig. 1. Example program with injected control code.

the start functions if necessary. Since each start function is thus

associated with at most one thread, we can identify threads and

(start) functions.

For round-robin executions, we fix an arbitrary schedule ρ
by permuting f0, . . . , fn; in each round we execute an arbitrary

number of statements from each function f0, . . . , fn. For any

fixed ρ our translation then guarantees that P fails an assertion in

K rounds if and only if the sequentialized program P seq
K fails the

same assertion. Note that the translation thus preserves not only

bounded reachability, but allows us to perform on the concurrent

program all analyses supported by the sequential backend tool.

P seq
K is composed of a new function main and a thread

simulation function f seq
i for each thread fi in P . Fig. 1 shows

(in black) a simple example program and (in gray) the extra code

fragments injected by Lazy-CSeq. The program consists of two

threads T0 and T1 that acquire two mutexes m0 and m1 in reverse

order and can thus deadlock. Note that the sequential verification

of P seq
K relies on stubs provided by Lazy-CSeq. P seq

K thus uses a

slightly modified version of the Pthreads API. For example, the

pthread_create stub takes an additional argument for the

(statically known) id of the calling thread; see [17] for details.

The new main of P seq
K is a driver that calls, in the order

given by ρ, the functions f seq
i for K complete rounds. For each

thread it maintains the label at which the context switch was

simulated in the previous round and where the computation must

thus resume in the current round. Moreover, before each call to

f seq
i , the label at which the control will context-switch out is

nondeterministically guessed.

Each f seq
i is essentially fi with few lines of injected control

code and with labels to denote the relevant context-switch points

in the original code. When executed, each f seq
i jumps (in multiple

hops) to the saved position in the code and then restarts its

execution until the label of the next context switch is reached.

This is achieved by the J-macro. Context-switching at branching

statements requires some extra care; see [17] for details. We

also make the local variables persistent (i.e., static) such that

we do not need to re-compute them when resuming suspended

executions.

We make use of some additional data structures and variables

to control the context-switching in and out of threads as described

above. The data structures are parameterized over T ≤ n which

denotes the maximal number of threads activated in P executions.

We keep track of the active threads, the arguments passed in each

thread creation, the largest label used in each f seq
i , the current

label of each f seq
i , and the index of and the context-switch point

guessed for the currently executed thread.

Note that the control code we inject in the translation is

designed such that each f seq
i reads but does not write any of

the additional data structures. This data is updated only in the

main driver and in the portions of code simulating the API

functions concerning thread creation and termination. This has

the advantage of introducing fewer dependencies between the

injected code and the original code, which typically leads to a

better performance of the backend tool (e.g., for BMC backends

this results in smaller formulas).

B. Deadlock check

Compared to the prototype described in [17], the Lazy-CSeq

tool now uses an improved modeling and coverage of the Pthreads

library, especially for mutexes. For example, it can now detect

whether a mutex is used again after being destroyed. However,

the main improvement in this respect is that Lazy-CSeq can now

also check for deadlocks in the original concurrent program.

A deadlock is characterized by a subset of the threads (i) that

are all blocked after trying to acquire a mutex that is held by

another thread, and where (ii) the dependency chain between the

waiting threads is cyclic. For example, for the program in Fig. 1

such a cycle (and thus a deadlock) occurs if T0 acquires m0,

then the context switches and T1 successfully acquires m1 but

gets subsequently blocked when it tries to acquire m0, and the

context switches back to T0, which gets blocked when it tries to

acquire m1. Thus, there is a cyclic chain of length 2 where T0
is the first thread and holds mutex m0 (and is waiting for mutex

m1), and T1 is the second thread and holds mutex m1 (and is

waiting for mutex m0). Note that there may be other threads that

are blocked by trying to acquire any of the mutexes held by any of

the the threads in the chain, but are not required for the deadlock

and thus do not need to be recorded in the chain.

Lazy-CSeq thus searches for deadlock conditions by non-

deterministically guessing the chain on-the-fly while simulating

the threads. This chain is modelled by an array of thread identi-

fiers together with a single mutex identifier. The first position in

the array contains the id of the thread that starts the cycle. Each

subsequent position i+ 1 in the array contains the id of a thread

that waits on a mutex held by the thread whose id is stored in the

previous position i. The additional single mutex identifier denotes

808

the mutex on which the second thread in the array is blocked;

this is stored when the second thread is entered into the chain.

When a thread successfully acquires a mutex and the chain is still

empty we non-deterministically decide to store its id in the first

element of the array (thereby starting to search for a cycle) and

continue with its simulation. When the mutex is already held by

another thread, the simulation of the requesting thread is blocked;

moreover, if the mutex is held by the thread stored at the end of

the array we non-deterministically insert the id of the requesting

thread at the current position in the array. We then test for a cycle

over the waiting threads by checking whether the id of the last

inserted thread is the same as the one stored in the first position

of the array. When we release any mutex we also check that the

first thread in the array does not release the mutex on which the

second thread in the array is blocked and on which the deadlock

eventually hinges. This ensures that the waiting threads cannot

make progress before the simulation detects the cycle and thus

correctness of the simulation.

III. ARCHITECTURE, IMPLEMENTATION, AND AVAILABILITY

A. The CSeq framework

Lazy-CSeq is developed within the CSeq framework [14]. The

framework builds on ideas from the original CSeq tool [16]

but has been improved and fully re-engineered. It now provides

support for quickly developing new sequentialization-based ver-

ification tools. To date, it has also been used to implement the

MU-CSeq [21], [22], [23] and UL-CSeq [24] tools.

The framework comprises several modules that are either

translators that implement source-to-source transformations of C

programs, or wrappers that work on generic strings and are used

for general-purpose tasks that do not produce source code. Each

tool within CSeq is identified by a configuration that corresponds

to a sequence of translators followed by a sequence of wrappers.

Fig. 2 sketches the configuration for Lazy-CSeq.

A verification tool takes as input the file containing the source

code of the concurrent C program to analyze and the list of verifi-

cation parameters. For Lazy-CSeq, the verification parameters are

the number of rounds, the unwinding depth and the acronym of the

backend tool. The input parameters are passed to the appropriate

modules, additionally the first module takes as input also the input

source file and then the output of each module is fetched as input

to the following module. The output of the last module in the

sequence is the analysis outcome.

The first translator is always a merger: the input source code

is merged with external sources pulled in by the #include
directives. The last translator is typically an instrumenter, which

instruments the output according to the backend tool (as explained

below). The purpose of the wrappers is to interact with the

backend tool and interpret its answer at the end of the analysis, in

particular, we have a cex module that is responsible for tracking

back the counter-example generated by the backend tool on the

input source code, and thus output the counter-example.

Translators run in two steps: (1) the input code is parsed in

order to build the abstract syntax tree (AST), the symbol table,

and other data structures; (2) the AST is recursively traversed

and un-parsed back into a string that corresponds to the output

C code. This mechanism is built on top of pycparser, a

parser for C99 that uses PLY, an implementation of Lex-Yacc,

and it is implemented by conveniently overriding pycparser’s

AST-based pretty-printer, so that the output code is transformed

while visiting the AST. In particular, the transformation is made

on-the-fly by directly changing the output generated by AST

subtree visits rather than altering the structure of the AST itself.

Other source-to-source translation tools [25] use instead rewrite

rules. String-based source transformations are in contrast more

intuitive and require a less steep learning curve, and combined

with Python’s flexibility it is relatively easy to implement complex

code transformations quickly. String-based rewriting is also used

in the ROSE framework [26].

The CSeq framework also provides a line-mapping functional-

ity that is independent from the specific translation performed and

is a useful support for the counterexample generation. The idea is

to keep track of the location in the source code where each line

of the output was translated from. During the generation of the

output, translators automatically create maps from output to input,

in a similar way to how the C Preprocessor (CPP) uses line control

information when merging multiple source files, to keep track of

which lines comes from which source file. However, rather than

inserting explicit #line directives in the source code (like CPP

does) the information is stored as a table which maps output lines

back to input lines (note that each input line may generate several

output lines, for instance after unfolding a loop). At the end of

the last translation, it is possible to track line numbers back to

the output of the first module. For the first module (merger),

since there might be multiple input files (due to the #include
directives), we map output line numbers to pairs of the form

(linenumber, filename).

Instrumenting the code for a specific backend is in itself

a quite simple standalone transformation undertaken by the

instrumentation module. It consists in replacing the primitives

for handling non-determinism (that are backend-independent and

potentially injected at any point by any module) with backend-

specific statements. This involves three kinds of statements: (1)

variable assignment statements to nondeterministic values using

nondet_int, nondet_long, etc., (2) restrictions of non-

determinism using assume, (3) explicit condition checks using

assert. This requires a simple renaming of the function calls, or

inserting ad-hoc functions definition, depending on whether or not

the desired verification backend natively models all of the above.

The size of a backend integration is therefore usually less than

10 lines; however, the CBMC default backend exploits CBMC’s

bitvectors to optimize the representation of the program counters

and is thus more complicated.

B. The Lazy-CSeq tool

The Lazy-CSeq tool is a CSeq configuration of eighteen

modules, that can be conceptually grouped into the following

categories (see Fig. 2):

1) the source merging module;

2) eight simple transformation modules to rewrite the input

program in steps with a progressively simplified syntax, so

to simplify the complex transformations occurring later in

the sequence;

3) four translators for program flattening to produce a bounded

program (see [17]);

4) two modules implementing the sequentialization algorithm

that produces a backend-independent sequentialized file

(see [17]);

5) standard program instrumentation to instrument the sequen-

tialized file for a specific backend;

809

Fig. 2. Configuration sequence of Lazy-CSeq. Double framed boxes denote modules composed of multiple submodules.

6) two wrappers for backend invocation and user report gen-

eration or counterexample translation.

Compared to the features of the prototype described in [17],

Lazy-CSeq’s new features are deadlock checking (see Section 2),

counter-example generation, and scheduling selection. We briefly

describe the latter two here.

The counterexample generation feature of Lazy-CSeq tackles

one of the main usability limitations of sequentialization-based

tools, namely that when an error is found the error trace is too

hard to follow as the counterexample produced by the backend

actually refers to the sequentialized file. Lazy-CSeq instead

generates counterexamples that refer to the actual input code.

The main task here consists in translating the backend’s coun-

terexample by tracing back line numbers to their corresponding

input coordinates, and then showing the amended states in the

same order. For this we use the line-mapping feature provided by

CSeq framework. We also insert additional concurrency-specific

details, to show schedules, thread creations, lock operations and

the like.

Counterexample generation in Lazy-CSeq is currently sup-

ported only for the default backend. However, we stress that the

line-mapping facility provided by the framework CSeq is general,

backend-independent and translation-independent, and thus can

be used for any backend.

For an n-thread program, our prototype from [17] fixes a

schedule ρ of the threads (this corresponds to the order in which

the threads get created) and explores all computations up to

a number of rounds r specified as input parameter, where in

each round threads are scheduled according to ρ. In the Lazy-

CSeq tool we now allow to specify some schedule restrictions

for each round. Namely, we can choose for each round if all

threads can be scheduled (denoted with +), or only a thread

from a set of threads can be scheduled (we list the threads with

numbers separated by commas). To separate rounds we use “:”.

For example, for two rounds, “+:+” denotes the scheduling from

[17], for “1,2:+” only the first and second thread (in order of

creation) can be scheduled at the first round, filtering out any other

possible choice (note that the main thread is always in first set),

“1:3:2” indicates an explicit schedule. Note that even when the

schedule is fixed context-switch points can still happen at any

time. Scheduling selection can be useful to guide the analysis

when some specific facts on scheduling are known, or on complex

problems where even analyzing a single round would require too

many resources. In fact the translation is tailored to the specific

sub-set of possible schedules, and the trimmed-down main driver

results in smaller verification conditions.

C. Usage.

Lazy-CSeq can be invoked with the command cseq.py -i
input.c to analyze the input file input.c and check for

reachable error states determined by an ERROR label, an assertion

failure, or incorrect use of locks, using the default analysis

parameters and the default backend. Deadlock checking is off

by default and can be enabled with --deadlock.

The analysis parameters are the loop unwinding depth and the

number of rounds. Their default value is 1 for both and can

be changed with --unwind k and --rounds k, respectively.

The default backend is CBMC and it can be changed using

--backend b where b is one of the following:

• bounded model-checkers: blitz [27], cbmc [28], esbmc
[2], llbmc [29]

• abstraction-based tools: cpachecker [30], satabs [31]

• symbolic testing tools: klee [32]

Support for bounded model-checking is mature, while abstraction-

based and testing backends are only supported experimentally at

this stage.

The option --rounds uses standard round-robin schedules

as in [17]. This can be replaced with restricted schedules using

--schedule r1:. . .:rn, which gives schedule restrictions for

n rounds, as described above.

Counterexample generation is disabled by default but can be

enabled when using the default backend with --cex. Alterna-

tively, --linemap will show a table of the line maps across all

source transformation steps, one row for each output line, one

column for each transformation.

D. Availability and Installation.

Lazy-CSeq is available as open source software under BSD li-

cense. Our tool can be downloaded from http://users.ecs.soton.ac.

uk/gp4/cseq/files/lazy-cseq-1.0.tar.gz. More information is avail-

able in the README file in the installation package at the URL

above. The project’s homepage is http://users.ecs.soton.ac.uk/gp4/

cseq/. A demo video of the tool is available at http://users.ecs.

soton.ac.uk/gp4/cseq/files/lazy-cseq-1.0-demo.mov.

IV. EXPERIMENTAL RESULTS

We have compared Lazy-CSeq-1.0 using CBMC (v5.1) as

a backend against CBMC (v5.1) itself and CSeq-0.5. CBMC

uses partial orders to symbolically model concurrency [7], while

CSeq [16] is based on an eager sequentialization implementing a

variant of LR [8] and uses CBMC (v5.1) as sequential backend.

We have used the set of benchmarks from the Concurrency

category of the Software Verification Competition (SV-COMP’15)

held at TACAS [20]. These are widespread benchmarks, and

many state-of-the-art analysis tools have been trained on them

810

1 10 100

1

10

100

Lazy-CSeq-1.0

C
B

M
C

-5
.1

pthread (17)

pthread-atomic (2)

pthread-ext (8)

pthread-lit (3)

pthread-wmm (753)

Fig. 3. Lazy-CSeq-1.0 versus CBMC-5.1.

(i.e., CBMC); in addition, they offer a good coverage of the core

features of the C programming language as well as of the basic

concurrency mechanisms.

Since we use a BMC tool as a backend, and BMC can in

general not prove correctness, but can only certify that an error

is not reachable within the given bounds, we thus conducted the

experiments only on the 783 unsafe files of the 993 files in the

whole benchmark set, with a total of approx. 240K lines of code.

We have performed the experiments on an otherwise idle

machine with a Xeon W3520 2.6GHz processor and 12GB of

memory, running a Linux operating system with 64-bit kernel

3.0.6. We set a 10GB memory limit and a 750s timeout for

the analysis of each subject. For each tool and file, we set the

parameters to the minimum value needed to expose the error.

The experiments for CBMC and CSeq-0.5 are summarized by

the scatter plots (with logarithmic axes) shown in Figure 3 and

Figure 4, respectively. All tools report the correct answers. Both

CBMC and CSeq time out on 6 files. Furthermore, CSeq rejects 5

files and returns “unknown” on 10 files (due to translation errors

and bugs in the tool). The experiments clearly show that Lazy-

CSeq outperforms both CBMC and CSeq, except on a handful of

small files in which CBMC is faster. Overall, Lazy-CSeq is about

6x and 20x faster than CSeq and CBMC, respectively.

V. RELATED WORK

In addition to the already cited work there is further related

research that we briefly discuss here. Sequentialization was orig-

inally developed for two threads and two context switches by

Qadeer and Wu [13], but was subsequently generalized by Lal and

Reps to a fixed number of threads and a parameterized number of

round-robin scheduling [8]. Later, LaTorre/Madhusadan/Parlato

extended this work to track only reachable configurations [9].

Further extensions allowed modelling of unbounded, dynamic

thread creation [33], [34], [35], [36], and dynamically linked data

structures allocated on the heap [37]. Poirot [38] also verifies

concurrent C programs via sequentialization, but it first translates

them into Boogie and then implements the sequentialization

transformation at the Boogie level, and can thus not be used

as a generic concurrency preprocessor. Moreover Poirot uses a

1 10 100

1

10

100

Lazy-CSeq-1.0

C
S

eq
-0

.5

pthread (11)

pthread-atomic (2)

pthread-ext (2)

pthread-wmm (753)

Fig. 4. Lazy-CSeq-1.0 versus CSeq-0.5.

different, Windows-based concurrency library, not immediately

comparable to the POSIX thread API. Rek [39] implements

sequentialization for C via code-to-code transformation, but it is

targeted at real-time systems and hard-codes a specific scheduling

policy.

VI. CONCLUSIONS

Sequentialization is becoming a prominent approach to find

bugs in concurrent programs. It ensures fast prototyping of

analysis tools by reusing existing sequential program tools. Our

Lazy-CSeq tool is quite robust and competitive with state-of-the-

art tools as shown by the experiments. It also allows for analysis

with different specifications (reachability, deadlock check) and

different technologies (depending on the choice of the backend).

When used with CBMC as backend, our tool also generates

counterexamples for the input program; we are not aware of

other tools based on sequentializations that support this. Another

interesting feature is the possibility of refining the scheduling of

threads by entering a scheduling expression as a parameter that

can be useful to guide the analysis when some specific facts on

scheduling are known or just to restrict the search.

As future directions, we plan to extend the CSeq framework

with more sequentialization algorithms, support for other classes

of concurrent programs (embedded programs, distributed pro-

grams) and counterexample generation modules for other back-

ends.

Acknowledgements. This work was partially supported by EPSRC

EP/M008991/1, INDAM-GNCS 2014 and MIUR-FARB 2012-2014

grants.

REFERENCES

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model Checking
without BDDs,” in TACAS, LNCS 1579, 1999, pp. 193–207.

[2] L. C. Cordeiro and B. Fischer, “Verifying multi-threaded software using
SMT-based context-bounded model checking,” in ICSE, 2011, pp. 331–340.

[3] I. Rabinovitz and O. Grumberg, “Bounded Model Checking of Concurrent
Programs,” in CAV, LNCS 3576, 2005, pp. 82–97.

[4] M. K. Ganai and A. Gupta, “Efficient Modeling of Concurrent Systems in
BMC,” in SPIN, LNCS 5156 , 2008, pp. 114–133.

[5] N. Sinha and C. Wang, “On Interference Abstractions,” in POPL, 2011, pp.
423–434.

811

[6] ——, “Staged Concurrent Program Analysis,” in SIGSOFT FSE, 2010, pp.
47–56.

[7] J. Alglave, D. Kroening, and M. Tautschnig, “Partial Orders for Efficient
Bounded Model Checking of Concurrent Software,” in CAV, LNCS 8044,
2013, pp. 141–157.

[8] A. Lal and T. W. Reps, “Reducing Concurrent Analysis Under a Context
Bound to Sequential Analysis,” Formal Methods in System Design, vol. 35,
no. 1, pp. 73–97, 2009.

[9] S. La Torre, P. Madhusudan, and G. Parlato, “Reducing Context-Bounded
Concurrent Reachability to Sequential Reachability,” in CAV, LNCS 5643,
2009, pp. 477–492.

[10] S. La Torre, P. Madhusudan, and G. Parlato, “Analyzing recursive programs
using a fixed-point calculus,” in PLDI, 2009, pp. 211–222.

[11] S. Qadeer and J. Rehof, “Context-Bounded Model Checking of Concurrent
Software,” in TACAS, LNCS 3440, pp. 93–107.

[12] M. Musuvathi and S. Qadeer, “Iterative Context Bounding for Systematic
Testing of Multithreaded Programs,” in PLDI, 2007, pp. 446–455.

[13] S. Qadeer and D. Wu, “KISS: Keep It Simple and Sequential,” in PLDI,
2004, pp. 14–24.

[14] CSeq framework, http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html.
[15] B. Fischer, O. Inverso, and G. Parlato. CSeq: A Sequentialization Tool for

C (Competition contribution). TACAS, LNCS 7795, pp. 616–618, 2013.
[16] B. Fischer, O. Inverso, and G. Parlato, “CSeq: A Concurrency Pre-processor

for Sequential C Verification Tools,” in ASE, 2013, pp. 710–713.
[17] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato, “Bounded

model checking of multi-threaded C programs via lazy sequentialization,”
in CAV, LNCS 8559, pp. 585–602.

[18] ——, “Lazy-CSeq: A Lazy Sequentialization Tool for C - (Competition
contribution),” in TACAS, LNCS, 8413, 2014, pp. 398–401.

[19] D. Beyer, “Status report on software verification - (Competition summary
SV-COMP 2014),” in TACAS, LNCS 8413, 2014, pp. 373–388.

[20] ——, “Software verification and verifiable witnesses - (Report on SV-COMP
2015),” in TACAS, LNCS 9035, pp. 401–416.

[21] E. Tomasco, O. Inverso, B. Fischer, S. La Torre, and G. Parlato, “Verifying
concurrent programs by memory unwinding,” in TACAS, LNCS 9035, 2015,
pp. 551–565.

[22] ——, “MU-CSeq: Sequentialization of C Programs by Shared Memory
Unwindings - (Competition contribution),” in TACAS, 2014, pp. 402–404.

[23] ——, “MU-CSeq 0.3: Sequentialization by Read-Implicit and Coarse-
Grained Memory Unwindings - (Competition contribution),” in TACAS,
2015, pp. 436–438.

[24] T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato, “Unbounded Lazy-
CSeq: A lazy sequentialization tool for C programs with unbounded context
switches - (Competition contribution),” in TACAS, LNCS 9035, 2015, pp.
461–463.

[25] I. D. Baxter, C. W. Pidgeon, and M. Mehlich, “Dms R©: Program transforma-
tions for practical scalable software evolution,” in ICSE, 2004, pp. 625–634.

[26] D. J. Quinlan, M. Schordan, B. Philip, and M. Kowarschik, “The specifica-
tion of source-to-source transformations for the compile-time optimization
of parallel object-oriented scientific applications,” in LCPC, LNCS 2624,
2001, pp. 383–394.

[27] C. Y. Cho, V. D’Silva, and D. Song, “BLITZ: Compositional Bounded Model
Checking for Real-world Programs,” in ASE, 2013, pp. 136–146.

[28] E. M. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C
Programs,” in TACAS, LNCS 2988, 2004, pp. 168–176.

[29] S. Falke, F. Merz, and C. Sinz, “The Bounded Model Checker LLBMC,” in
ASE, 2013, pp. 706–709.

[30] D. Beyer and M. E. Keremoglu, “Cpachecker: A tool for configurable
software verification,” in CAV, LNCS 6806, 2011, pp. 184–190.

[31] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “SATABS: sat-
based predicate abstraction for ANSI-C,” in TACAS, LNCS 3440, 2005, pp.
570–574.

[32] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs,” in OSDI,
2008, pp. 209–224.

[33] M. Emmi, S. Qadeer, and Z. Rakamaric, “Delay-bounded Scheduling,” in
POPL, 2011, pp. 411–422.

[34] S. La Torre, P. Madhusudan, and G. Parlato, “Model-Checking Parameter-
ized Concurrent Programs Using Linear Interfaces,” in CAV, LNCS 6174,
2010, pp. 629–644.

[35] A. Bouajjani, M. Emmi, and G. Parlato, “On Sequentializing Concurrent
Programs,” in SAS, LNCS 6887, 2011, pp. 129–145.

[36] S. La Torre, P. Madhusudan, and G. Parlato, “Sequentializing Parameterized
Programs,” in FIT, EPTCS 87, 2012, pp. 34–47.

[37] M. F. Atig, A. Bouajjani, and S. Qadeer, “Context-bounded analysis for
concurrent programs with dynamic creation of threads,” Logical Methods in
Computer Science, vol. 7, no. 4, 2011.

[38] S. Qadeer, “Poirot - A Concurrency Sleuth,” in ICFEM, LNCS 6991, 2011,
p. 15.

[39] S. Chaki, A. Gurfinkel, and O. Strichman, “Time-bounded Analysis of Real-
time Systems,” in FMCAD, 2011, pp. 72–80.

812

