
CVExplorer: Identifying Candidate Developers by Mining
and Exploring Their Open Source Contributions

Gillian J. Greene and Bernd Fischer
CAIR, CSIR Meraka, Computer Science Division, University of Stellenbosch, South Africa

ggreene@cs.sun.ac.za, bfischer@cs.sun.ac.za

ABSTRACT
Open source code contributions contain a large amount of
technical skill information about developers, which can help
to identify suitable candidates for a particular development
job and therefore impact the success of a development team.
We develop CVExplorer as a tool to extract, visualize, and
explore relevant technical skills data from GitHub, such as
languages and libraries used. It allows non-technical users
to filter and identify developers according to technical skills
demonstrated across all of their open source contributions,
in order to support more accurate candidate identification.
We demonstrate the usefulness of CVExplorer by using it to
recommend candidates for open positions in two companies.
A video demonstration of the tool is available at https://
youtu.be/xRxK-wa7PME

CCS Concepts
•Software and its engineering → Open source model;
Programming teams;

Keywords
Identifying candidate developers, Developer skills identifica-
tion, Mining software repositories

1. INTRODUCTION
Poor hiring decisions are a well-known risk factor to the

success of a software project [25]. DeMarco and Lister ob-
serve that work quality is more dependent on the involved
team member than on how the work is done [12]. In indus-
tries such as Software Engineering with many open positions
and not as many qualified candidates, identifying (or sourc-
ing) candidates with the right combination of skills is crucial
to the success of a software project because these candidates
may not actively be applying for jobs themselves [22]. De-
velopers’ open source contributions have been suggested as a
mechanism to determine suitability for a particular job [21,
19]. Open-source contributions allow us to infer information

Figure 1: Skills (purple), filetypes (orange), and de-
velopers (green) making changes to Python files (se-
lected, red) for Cape Town developers on GitHub.

about the developer’s interests (e.g., what they program in
their free time) and technical skill sets (e.g., programming
languages they are using) which can both be used to improve
the quality of candidate sourcing. There are even claims that
“GitHub is a developer’s new CV” [13, 26].

CVExplorer (available at http://recruit.conceptcloud.org)
presents technical skills extracted from GitHub data in an
intuitive, interactive tag cloud interface. Our approach is
novel in that it allows users to explore skill sets of a large
number of developers simultaneously and narrow the devel-
oper pool to only those possessing relevant skills. However,
our interface can also function as a skill aggregator: once a
candidate has been identified, the individual candidate’s full
set of skills are displayed, which can be used to personalize
contact with the candidate.

Business-oriented social networks such as LinkedIn [5],
where profiles are self-authored, are commonly used for on-
line recruitment. However, individuals may exaggerate their
skill-set or, conversely, omit some skills in a self-authored
CV. Therefore, diversifying the candidate search to developer-
oriented sites, such as GitHub is beneficial to the recruit-
ment process. Additionally, as noted by Capiluppi et al.
[11], a skills-based identification could provide equal oppor-
tunities to skilled developers with no formal qualifications.

There are already sites (such as Coderwall [1], Master-
branch [6], Open Hub [7], Stack Overflow Careers [8] or Tal-
entBin [9]) which aggregate developers’ skills across a site
or on various platforms, but these typically assist in evalu-
ating individual candidates that have already been sourced
through other means or have actively applied for a position.
Therefore, CVExplorer serves a different purpose to profile
aggregation which only allows evaluation of the skills of one

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...$15.00

http://dx.doi.org/10.1145/2970276.2970285

804

developer at a time and does not allow multiple developers
to be filtered to those that have suitable skill sets.

CVExplorer supports identification of suitable technical
candidates from a large pool of developers as opposed to
aggregation of individual developers’ skills across platforms.
We mine and aggregate technical skills across all of a devel-
oper’s commits and present these in an interactive tag cloud
(see Figure 1) to facilitate skills browsing and identification
of suitable developers. Users can filter the developer pool by
selecting a combination of tags comprising relevant skills.

GitHub contributions are already compared to a tradi-
tional CV as serving a summary of the developer’s skills and
therefore, we stick to the terminology of a “CV”. Note that
this CV is not in the traditional form of activities in chrono-
logical order, but is similar to a portfolio of the developers’
skills. However, code contributions constitute the actual
portfolio and so we extract the portfolio’s meta-information.

To determine the effectiveness of CVExplorer we used it
to recommend candidates for positions at two companies;
we received positive feedback on the candidates’ suitability
for interviews.

Figure 2: GitHub profile example showing project
contributions (top) and commit activity (bottom)

2. APPROACH

2.1 Evaluating Skills via GitHub’s Interface
A developer’s GitHub profile (Figure 2) indicates the num-

ber of followers they have, their repositories and public activ-
ity (e.g., following another developer or starring a project).
GitHub provides an activity chart indicating how many com-
mits a user has been making over the previous year. This
information is prominent on a user’s profile but information
about the content of the changes a developer has made is
significantly more difficult to obtain. GitHub profiles link all

projects that the user has contributed to or forked but do
not directly provide additional information about the con-
tribution. In this format the profile can only be considered
as a signal [21] for the developer’s interests or expertise.
Inexperienced GitHub users might not be aware that the
information on the user’s profile needs to be verified by ex-
amining the user’s commits to identify their contributions.

There are a number of issues that make it difficult to use
GitHub profiles directly to assess a developer’s skills. In or-
der to get an accurate representation of a developer’s skills
via the GitHub interface, a user needs to select all projects
that the developer has contributed to and verify the contri-
butions. Programming languages for all projects then need
to be manually aggregated to get an overview of the devel-
oper’s skills set. However, even a developer contributing to
a Ruby project may not have changed any Ruby code in
his contributions and so the developer’s skills need to be
manually verified on an individual commit level.

On GitHub it is also non-trivial to find developers using
a particular programming language. GitHub provides an
advanced search feature that allows users to find developers
that use a particular programming language, however this
does not indicate how much experience a developer has in a
language and what other languages they are experienced in.

2.2 Mining Developer Contributions
We mined developer profiles according to the location pro-

vided on their GitHub profiles so that we could aggregate the
profiles of developers in a specific area where there is an open
position. We used the GitHub API [4] (more specifically the
Eclipse EGit GitHub reader [3]) in order to obtain the most
up-to-date information for 1000 developers in a specific lo-
cation and to extract a list of each developer’s repositories.
We extracted the first 1000 developers that were available
from the API (which limits search results to 1000 responses).
We then automatically cloned all repositories to which those
1000 developers contributed and identified those developers’
individual commits. We extracted from each commit, the
commit message and the changed files directly from the Git
repositories using the Eclipse JGit library [2].

The author’s commit name which identifies them in the
commit logs, is not necessarily their GitHub username. We
therefore automatically match the commit name to either
the user’s GitHub username or the name listed on their pro-
file, so that if the author does not use their GitHub username
in the commit logs we could still identify their commits.

For each repository we also extracted the programming
language as it was listed on GitHub (using the GitHub API)
and the project’s ReadMe file. ReadMe files contain details
about the project such as the type of technologies it makes
use of, installation instructions and the project’s dependen-
cies. Therefore, the ReadMe file can provide an overview of
the project and indicate what skills a developer contributing
to the project is likely to possess.

We associated a project (and its extracted information) to
a developer only if the developer had made more than five
commits to the project, in order to ensure that the developer
was not only a one-off contributor.

2.3 Aggregating Developer Contributions
We aggregate all of a developer’s commits to all of their

repositories on GitHub and identify in particular the file
types that a developer has changed. We also process the

805

(a)

(b)

Figure 3: (a) Developers changing Java projects
sized according to the number of commits (b) De-
velopers changing .java files in Java projects

ReadMe files of all a developer’s repositories in order to ex-
tract skills that a contributor to the project is likely to posses
(e.g., experience with a web framework or database).

We constructed a white list of skills (available at http:
//conceptcloud.org/hiring from github) from the Wikipedia
[10] lists of Programming Languages, Web Frameworks, Plat-
form Independent GUI Libraries, Ajax Frameworks, and
Object-Relational Mapping Frameworks as well as the ACM
Classification specifications. This white list allows us to ex-
tract as skills both the technologies used as well as high level
phrases such as “Machine Learning” from the ReadMe files
of projects that a developer has contributed to. We run
each project’s ReadMe file through the white list in order to
generate a bag of words containing the extracted skills that
appear on our white list for each project.

We also ran the commit message through our skills white
list in order to remove words not directly referencing a tech-
nology or concept (e.g.,“added”). We removed punctuation
and spaces when matching skills on our white list to text
in the ReadMe files in order to ensure that we pick up all
possible matches. For phrases in the white list containing
multiple words, we also matched the text in the ReadMe file
against all separate words in the phrase to account for cases
when the phrase did not appear in the ReadMe file in full.
We then aggregated the identified skills for each commit and
presented the information in a browsable format.

Note that we include the changed file types for each com-
mit because these provide a stronger indication for a de-
veloper’s experience in a particular programming language
than considering only the language of the project the devel-
oper has been contributing to, because the developer might
only have been making changes to documentation. Hence,

Figure 4: Largest tags from commits in which .java

files have been changed in Java projects.

the user can verify, for example, that a developer has been
changing Java files before the developer is considered to have
Java as a skill. Figure 3(a) shows the tag cloud of developers
working on Java projects (where the language on GitHub is
indicated as Java); however, when we add the tag for .java
files in Figure 3(b) we see that the number of developers
is reduced significantly, indicating that not all developers
that have contributed to a Java project have actually always
been changing .java files (see for example evanx or stiggle-
PogletX, whose tags disappear or become much smaller).

2.4 Presenting Developer Contributions in a
Browsable Format

We visualize developers’ contributions and skills in an in-
teractive tag cloud. Tag clouds [20] are a simple visualization
method for textual data where the importance of each tag
(typically its frequency) is reflected in its size. When users
do not yet know what information they are looking for (e.g.,
when they are looking for job candidates with an unknown
combination of skills) or have no previous knowledge of the
information they are browsing, the user’s task becomes one
of exploratory search [27]. Tag clouds support exploratory
search tasks and have been found to be effective when the
information discovery task is wide [23].

Tags in our tag clouds are colored according to the type
of information that they represent. Figure 4 shows a tag
cloud of the largest tags from our sample of developers in
Cape Town that have changed .java files in Java projects.
The developer tags are green. We see that some skills asso-
ciated with changes to Java files are “Android”, “Maven” or
“Apache”. We also see that developers changing .java files
have also changed HTML, Gradle and XML files. Selecting
tag “Android” in the cloud would further restrict the cloud
to showing only developers that have changed Java files in a
project that mentions Android in its ReadMe file, and other
skills exhibited in the changes to these projects. While both
the extracted words from the commit messages and from
the ReadMe files are presented as skills, these are indicated
as separate categories of information in the browser so that
users have the option of restricting their selections to only
skills present in the ReadMe file or the commit message.

Skills tags are sized according to the number of commits in
which the developer has exhibited the skill (such as chang-
ing a .java file) as opposed to the number of files they
have changed in one particular commit, e.g., if a developer
changes multiple .java files in one commit .java is still only

806

associated to the commit once. Therefore, a larger sized tag
indicates that a skill is consistently exhibited over many com-
mits as opposed to a skill that is exhibited many times in
a single commit, which could be caused be a task such as
refactoring where many files are touched in a single com-
mit. Note that a skill exhibited in 100 commits to the same
project will be sized the same as a skill tag that is exhibited
in individual commits across 100 projects. However, since
the project name is present as a tag in the cloud as well, it is
easy to identify whether the developer has exhibited a skill
in multiple projects (multiple project tags, cf. Figure 5(c)
where project tags for the selected developer are indicated
in pink) or only one (a single project tag).

Particular web frameworks are associated with a group of
file types (e.g., Ruby on Rails with .erb, .rb, .html and
.css) therefore, multiple file types can be selected in the tag
cloud to reveal developers that use a particular framework.

Figure 5 shows how CVExplorer can be used to identify
and evaluate a Java developer. In Figure 5(a) we select the

(a)

(b)

(c)

Figure 5: Top 100 tags from developers, skills, files
and projects associated with a) changing .java files,
b) developer selection editing .java files, and c) de-
veloper only selection.

tag for Java file types (.java indicated in red) to identify
which developers have been changing Java files. From this
tag cloud we see the developers working on Java files sized
according to the number of commits in which they have
changed Java files. We then add the tag for a specific de-
veloper in 5(b) to see what other skills are associated with
his changes to.java files. We now also see in which projects
he has changed Java files (indicated in pink). We can see
that this developer uses Java in more than one project and
that most of these projects are listed on GitHub as Java
projects (Java Repository language tag indicated in light
blue) but that a small number of these changes are made in
a project which is listed as a JavaScript project on GitHub
(JavaScript language tag indicated in light blue). In Figure
5(c), we remove the tag for .java to show all tags associ-
ated with the developer and see what other programming
languages he has experience in: we see that this developer
is working on projects that are in other languages (Ruby,
Python etc.) and also changing other filetypes which indi-
cate that he is programming in a variety of languages (not
just Java). Selecting a further tag for a particular skill (such
as Ruby) indicates in which projects the developer has ex-
hibited the skill. Note that tags can also be de-selected in a
different order in which they were selected, which supports
exploration of the underlying data.

Since tags for multiple developers are present in the tag
cloud (unless an individual developer is selected) the tags are
sized according to their occurrence in the full list of commits
for all the developers. However, when an individual devel-
oper is selected the list of commits is refined to only com-
mits from that developer and so the tags will be sized only
according to the number of commits in which the selected
developer has exhibited the skill. Therefore, when no devel-
oper tags are selected the tag sizes provide an indication of
what skills are common in the full set of developers in that
particular location. However, when an individual developer
is selected the tag sizes will indicate in which languages the
selected developer has worked the most.

3. IMPLEMENTATION
CVExplorer has been built using our ConceptCloud Browser

Framework which provides a generic framework for browsing
semi-structured data [17, 16] (available at www.conceptcloud.
org). ConceptCloud has previously been used to examine
the history of software projects in either Git or SVN reposi-
tories. Here we use the framework to build CVExplorer that
displays information from multiple repositories and to in-
clude technical skills and programming languages extracted
directly from GitHub. We process the developer’s commits
over multiple repositories off-line and load this into CVEx-
plorer to be visualized as cloning multiple repositories can
be too time consuming to do on-line (e.g. our Cape Town
tag cloud took roughly six hours to compute).

Figure 6 shows the process of constructing a tag cloud
from extracted GitHub information. Navigation in the tag
cloud is achieved through an underlying concept lattice [14],
which provides structure for the data. An intermediate step
in the construction of a concept lattice is the construction of
a formal context table. In order to construct a context table
we need to make a distinction between attributes and ob-
jects in the data, where the choice of object will determine
which attributes are feasible. We extract information from
the ReadMe, GitHub programming language and check-in

807

Concept	La+ce	

Check-Ins	

README	

Programming		
Language	

Formal	Context	 Tag	Cloud	

Tag	Selec)on	Naviga&on	

Tag	Cloud		
Genera.on	

Figure 6: Context table and concept lattice construction from GitHub ReadMe and check-ins. Navigation is
driven by tag selections which update the focus in the lattice generating a new tag cloud.

information (changed file types and commit messages) to
construct the formal context. As objects (rows) in the con-
text we use the project’s name followed by the number of
the check-in, such as “projectX-1”. We then associate all
skills derived from the project and commit messages as well
as changed files from the check-in with the object in the con-
text table; these form attributes (columns) in the table. We
therefore examine the information at an individual commit
level, so that we can use as attributes all files types changed
in a particular commit. Whenever a particular commit to a
project is associated with a skill, changed file or developer
we indicate this with an X in the context table. A concept
lattice can then be generated automatically from the context
table. For the lattice construction, we use a method based
on the Colibri Java library [15] which constructs concepts
on the fly, so that we never need to compute the full lattice
and are able to render an initial tag cloud quickly.

Our navigation maintains a lattice element called the fo-
cus concept, which is an individual element (concept) in the
concept lattice. Each tag cloud is generated directly from
this concept. The focus is recalculated after each new tag
selection, which causes the tag cloud to be updated. Our
approach is designed to support exploratory search of the
dataset, and while concept lattices support navigation well,
a large Hasse diagram of a lattice is difficult to visualize and
interpret and so we therefore make use of a tag cloud inter-
face to present the information intuitively. For more details
about the underlying technology see our previous work [16].

4. PRELIMINARY EVALUATION
We preliminarily evaluate CVExplorer by using it to rec-

ommend candidates for two companies and requesting feed-
back on whether the candidates are suitable to interview.
We are currently in the process of conducting a long-term
case study in which we provide a national recruitment team
with access to CVExplorer and document the number of
suitable developers that are found using the tool.

4.1 Recommendation of Developers for an
Open Position

We have obtained a generic job description for a Software
Developer from a large South African company in the fi-
nancial sector (Company A) and from a smaller company
working on social development applications (Company B).

We used keywords from their job description in order to
match open source developers to these particular positions.
We recommended 33 candidates to company A and eleven
to company B. We then asked for feedback on the recom-
mendations as to whether the companies would interview
the candidates or not, which was provided in free text by
the companies. The companies were able to evaluate the
candidates using both their GitHub and LinkedIn profiles.

4.1.1 Suitability of Candidates for Company A
We initially identified twelve candidates for mobile de-

velopment positions at Company A. One of the candidates
that we identified was already in the interview process and
had been sourced through other means. All candidates were
marked as “typically people we would look to recruit” and
“great matches” by a member of the recruitment team. We
were then asked by the company to recommend candidates
for a further position in a different location (Johannesburg)
in South Africa. We recommended a further 21 candidates
that had experience in Java, Python, C# or Ruby. The can-
didates were again marked as suitable to interview, with the
C# candidates in particular indicated as exactly they type
of developers they were trying to find. The recruitment team
are currently in different stages of the recruitment process
with all of the recommended candidates.

4.1.2 Suitability of Candidates for Company B
We identified five candidates for a front-end development

position, of which two were deemed suitable to interview,
one was deemed unsuitable due to factors other than tech-
nical skills and the LinkedIn profiles of the other two candi-
dates provided too little information to judge their suitabil-
ity. We also identified six candidates for an Android devel-
opment position, out of which two were deemed suitable to
interview and the other four were inconclusive because of a
lack of information provided on their LinkedIn profiles.

4.1.3 Summary
We were able to identify candidates for open positions

at two companies and received positive reports from the
recruitment representatives of both companies. Successful
identification of candidates relied only on selecting a combi-
nation of tags that were mentioned in the job specification.
In some cases not all tags could be selected at the same time
as no single user had all the listed skills but various com-

808

binations could be tried to find users that closely matched
the job specification. This scenario indicates the value of an
exploratory search approach which includes human involve-
ment so that the search terms can potentially be altered to
gather meaningful results. If the list of developers was ex-
tracted in report form according to specified tags then the
user would not be able to alter the selected skills in order to
return the best available selection of developers.

5. RELATED WORK
Hauff and Gousios [18] propose an approach to match job

advertisements to developers based on the information avail-
able on their GitHub profiles. They use the DBPedia Ontol-
ogy in order to extract relevant information from job adver-
tisements and from ReadMes of the user’s GitHub projects
in order to match users to jobs. This work is aimed at de-
velopers actively applying for their own jobs as opposed to
recruiters targeting developers. We also process ReadMe
files in order to extract skills for developers. However, we
do not make use of the DBPedia Ontology so that we can
obtain the skills in the lowest granularity possible.

Singer et al. [24] investigate the use of profile aggregators
(e.g., Masterbranch [6] and Coderwall [1]) in the assessment
of developers’ skills by developers and recruiters. However,
while Coderwall and Masterbranch aggregate skills for indi-
vidual developers, it is unclear how they support the identifi-
cation of relevant developers from a large pool of candidates.

6. CONCLUSIONS AND FUTURE WORK
We have mined developers’ skill sets from GitHub data to

allow the filtering of a large pool of developers by relevant
skills in our CVExplorer tool. Our approach supports re-
cruiters in identifying relevant candidates using the GitHub
dataset which can result in more accurate identification of
developers. We used CVExplorer to recommend candidates
for open positions at two companies, where one of the com-
panies requested recommendations for a further position.

The identification of candidates using GitHub data is based
on their portfolio meta-data as opposed to a self-authored
CV which may be inaccurate or fail to list skills in sufficient
detail. Since GitHub profiles are generated from the user’s
activity they always contain up-to-date information about
the developer’s exhibited skills. More accurate identification
of passive candidates can increase the quality of hiring deci-
sions which can therefore decrease the risk that poor hiring
decisions pose to the success of a software project [25].

We see several avenues for future work. Firstly, we plan to
extend this approach by including additional data in order
to provide a more unified view of a developer. Information
about a developer’s other activities on GitHub, such as pull
request comments and merges etc. could potentially also be
used as indication of wider skills. Secondly, we aim to better
identify the locations of developers and to pre-process the
free-text locations in order to obtain a more reliable devel-
oper to location matching. We could use the timezone pro-
vided in the developer’s commit logs to verify their location.
We are also interested in the potential of library extraction
directly from a developer’s code on GitHub repositories to
gain a more accurate depiction of their technical activities.

We are currently conducting a long-term case study in
which we have provided a national recruitment team with
CVExplorer and are evaluating its usefulness by tracking the

number of developers that are sourced using CVExplorer.
We also plan to evaluate the accuracy of our skills extraction
step, by comparing our extracted skills to those that can be
manually identified from a developer’s GitHub profile.

7. REFERENCES
[1] Coderwall. https://coderwall.com/.

[2] Eclipse jgit. http://www.eclipse.org/jgit/.

[3] Egit github. https://github.com/eclipse/egit-github/.

[4] Github api. https://developer.github.com/v3/.

[5] Linkedin. http://www.linkedin.com/.

[6] Masterbranch. https://www.masterbranch.com/.

[7] Open hub. https://www.openhub.net/.

[8] Stackoverflow careers.
http://careers.stackoverflow.com.

[9] Talentbin. https://www.talentbin.com/.

[10] Wikipedia. http://wikipedia.org.

[11] A. Capiluppi, A. Serebrenik, and L. Singer. Assessing
technical candidates on the social web. Software,
IEEE, Jan 2013.

[12] T. DeMarco and T. Lister. Peopleware: Productive
Projects and Teams. Pearson Education, 2013.

[13] D. Doubrovkine. Github is your new resume.
http://code.dblock.org/2011/07/14/
github-is-your-new-resume.html.

[14] B. Ganter and R. Wille. Formal concept analysis -
mathematical foundations. Springer, 1999.

[15] D. N. Götzmann. Colibri/java.
http://code.google.com/p/colibri-java/, 2007.

[16] G. Greene and B. Fischer. Interactive tag cloud
visualization of software version control repositories.
In VISSOFT, pages 56–65, Sept 2015.

[17] G. J. Greene and B. Fischer. Conceptcloud: A
tagcloud browser for software archives. FSE, 2014.

[18] C. Hauff and G. Gousios. Matching github developer
profiles to job advertisements. In MSR, 2015.

[19] A. W. Kosner. Software engineers are in demand, and
github is how you find them. http://www.forbes.com
/sites/anthonykosner/2012/10/20/software-engineers
-are-in-demand-and-github-is-how- you-find-them/.

[20] S. Lohmann, J. Ziegler, and L. Tetzlaff. Comparison of
tag cloud layouts: Task-related performance and visual
exploration. In INTERACT (1), pages 392–404, 2009.

[21] J. Marlow and L. Dabbish. Activity traces and signals
in software developer recruitment and hiring. In
CSCW ’13, pages 145–156. ACM, 2013.

[22] P. McCuller. How to Recruit and Hire Great Software
Engineers: Building a Crack Development Team.
Apress, Berkely, CA, USA, 1st edition, 2012.

[23] J. Sinclair and M. Cardew-Hall. The folksonomy tag
cloud: when is it useful? JIS, 34(1):15–29, 2008.

[24] L. Singer et al. Mutual assessment in the social
programmer ecosystem: An empirical investigation of
developer profile aggregators. CSCW ’13.

[25] I. Sommerville. Software Engineering. Pearson
Education, 2016.

[26] B. Weiss. Github is your resume now.
http://anti-pattern.com/github-is-your-resume-now.

[27] R. W. White and R. A. Roth. Exploratory search:
Beyond the query-response paradigm. Lectures on
Information Concepts, Retrieval, and Services, 2009.

809

