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Abstract 

Deduction-based software component retrieval uses pre- 
and postconditions as indexes and search keys and an auto- 
mated theorem prover (ATP) to check whether a component 
matches. This idea is very simple but the vast number of 
arising proof tasks makes a practical implementation very 
hard. We thus pass the components through a chain offilters 
of increasing deductive power. In this chain, rejection fil- 
ters based on signature matching and model checking tech- 
niques are used to rule out non-matches as early as possible 
and toprevent the subsequent ATP from “drowning.” Hence, 
intermediate results of reasonable precision are available at 
(almost) any time of the retrieval process. The final ATP step 
then works as a conJirmationfilter to lift the precision of the 
answer set. We implemented a chain which runs fully auto- 
matically and uses MACE for  model checking and the auto- 
mated prover SETHEO as confirmation filter We evaluated 
the system over a medium-sized collection of components. 
The results encourage our approach. 

1. Introduction 

Reuse of approved software components has been iden- 
tified as one of the key factors for successful software en- 
gineering projects. Although the reuse process also cov- 
ers many non-technical aspects [33], retrieving appropriate 
software components from a reuse library is a central task. 
This is best captured by the First Golden Rule fo r  SofhYare 

*This work is supported by the DFG within the Schwerpunkt “Deduk- 
tion” (grant Snl1/2-3), the habilitation grant Schu908-1/5, and the Son- 
derforschungsbereich SFB 342, Subproject A5 (PARIS: Parallelizatton of 
Inference Systems). Part of the work was done while visiting the ICs1 
Berkeley. 

Reuse: “You must find it before you can reuse it!” ’ 
Most earlier software component retrieval (SCR) meth- 

ods (e.g., 1191) grew out of classical information retrieval 
for unstructured texts. However, since software compo- 
nents are highly structured, more specialized approaches 
may lead to better results. In this paper we will concentrate 
on a deduction-based approach where we use pre- and post- 
conditions as the components’ indexes and as search keys. 
A component matches a search key if the involved pre- and 
postconditions satisfy a well-defined logical relation, e.g., 
if the component has a weaker precondition and a stronger 
postcondition than the search key. From this matching rela- 
tion a proof task is constructed and an ATP is used to estab- 
lish (or disprove) the match. 

This approach has been proposed before (e.g., [28, 201) 
but without convincing success because essential user re- 
quirements have been neglected. In this paper we fol- 
low a more user-oriented approach and describe steps for 
making deduction-based SCR practical. We concentrate on 
deduction-based SCR because it is the key technique which 
underlies more ambitious logic-based software engineer- 
ing approaches, e.g., program synthesis [ 171 or component 
adaptation [25].  For a discussion of benefits and the inte- 
gration into software engineering processes we refer to [9]. 

In the next two sections we outline the user requirements 
for a practical reuse tool and present our system architec- 
ture, featuring the filter pipeline and a graphical user inter- 
face. Then, we discuss the construction of proof tasks out 
of the given VDM-SL specifications. This is an important 
step as the different approaches model quite different reuse 
aspects. Sections 5 and 6 focus on the two major compo- 
nents of the filter pipeline, namely rejection of non-matches 
with model-checking techniques and the final confirmation 
filter with SETHEO. We have evaluated our approach over 

‘This rule has been attributed to Will Tracz. 
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a database of 55 list specifications. We present and assess 
the results of these first experiments in Section 7. Finally, 
we compare our approach to the related work and conclude 
with current and future work on NORA/HAMMR*. 

2. The User’s Point of View 

Most earlier work focussed on the technical aspects of 
deduction-based SCR. The users had to write complete spec- 
ifications i n  the ATP input language and even had to sup- 
ply useful lemmata. The provers were: run in batch mode, 
checking the whole library biefore any results were pre- 
sented. ATP runtimes and prolblems of scaling-up were ig- 
nored. 

This view led to severe acceptance problems as the users 
are software engineers and no ATP experts.’ Their main re- 
quirements are that the tool is easy to use, fully automatized, 
fast and customizable, and hides all evidence of automated 
theorem proving. Hiding the ,\TP has some consequences. 
The input language must be a fully-flavored specification 
language and not pure first order logic (FOL). But then the 
automatic construction of the a.ctual proof tasks becomes it- 
self a major task. 

Short response times are also essential as the Fourth 
Reuse Truism demands that “you must find it faster than 
you can rebuild it!” [ 151. However, clue to the computa- 
tional complexity of ATP, truly interactive (“sub-second”) 
behavior is still far out of reach. Instead, anytime behav- 
ior is acceptable: intermediate results of sufficient precision 
must be available to the user at (almost:i any time during the 
retrieval process. Retrieval ma,y then be: guided further with 
feedback from the user who may for example strengthen the 
search key incrementally. 

Ideally, the tool doesn’t constrain user feedback to the 
queries but allows a customization of the complete retricval 
process. This includes the selection of  a.n appropriate match 
relation from a given list of choices as well as some tun- 
ing of the deductive mechanisin (e.g., time limits or model 
sizes). But it is important to ensure that the tool still runs 
fully automatically and produces useful results even without 
customization. 

In exchange for these constraints, dseduction-based SCR 
offers the unique feature that completen.ess and even sound- 
ness are not absolutely vital. Ihcomplete and unsound de- 
duction methods only reduce recull (“do we get all match- 
ing components?”) and precision (“do we get the right com- 
ponents?”). 

*NORA is no real acronym, HAMMR is ;I highly adaptive multi- 
method retrieval tool. 

31n a real-life setting, a reuse administrator is required who knows the 
applied deduction methods and who can “tune” libraries (e.g., by giving 
ATP settings and domain specific lemmata). 

5tdStrings:Capi 

Figure 1. Graphical user interface 

3. System Architecture 

In order to meet the user requirements we implemented 
NOKNHAMMR as a jilter pipeline through which the can- 
didates are fed. This pipeline typically starts with signa- 
ture matching $filters. They check whether candidate and 
query have “compatible” calling conventions (i.e., types or 
signatures). The notion of compatibility is specified by an 
equational theory E ;  the filter then applies E-matching or 
E-unification of the signature terms. Typical theories in- 
clude axioms to handle associativity and commutativity of 
parameter lists and records, currying (for functional lan- 
guages), pointer types and VAR-parameters (for imperative 
languages), and coercion rules (see [8] for a detailed discus- 
sion). 

Then, rejection $filters try to eliminate non-matches as 
fast as possible. This is a crucial step to prevent the ATP 
from “drowning” as there are many more non-matching 
than matching candidates. We currently apply model gener- 
ation techniques to check the validity of the tasks in suitable 
finite models. However, both precision and recall may de- 
crease because this approach is neither sound nor complete. 

Finally, conjirmationfilters check the validity of the re- 
maining proof tasks and thus lift the precision of the re- 
sult to 100%. Here, we apply SETHEO, a high-performance 
prover based on the Model Elimination calculus. Both filter 
classes will be described below in more detail. 

The graphical user interface (cf. Figure 1) reflects the 
idea of successive filtering. The pipeline may easily be cus- 
tomized through an icon pad; each filter icon also hides a 
specialized filter control window which allows some finc- 
tuning of the filters. Additional inspectors display interme- 
diate results and grant easy access to the components. They 
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also allow to save intermediate results in a file such that 
they may easily be used as libraries for subsequent retrieval 
runs. The objective of the CUI is precisely to hide all ev- 
idence of ATP usage. Hence, the knowledge necessary to 
use NORNHAMMR as a tool is restricted to VDM-SL [7] 
which we use as our input language and to the target lan- 
guage which is required for signature matching. 

4. Proof Tasks and Reuse 

The overall structure of the generated proof tasks de- 
pends on the definition of the match relation which is used 
in a deduction-based SCR tool. Thus it ultimately depends 
on the kind of reuse which the tool aims at. 

Most often, deduction-based SCR is configured to en- 
sure plug-in compatibility of the retrieved components: c 
matches if it has a weaker precondition and a stronger post- 
condition than the search key q. This is usually (cf. e.g., 
[34]) formalized as (pre, s pre,) A (post, =+ p ~ s t , ) ~ .  
However, this is not adequate for partial functions. If q is a 
partial function (e.g. tail) and c its total completion (e.g., 
c(ni1) returns nil) then we want c to match q even if its 
“completed” result does not fit the original specification. 
It is thus necessary to restrict the implication between the 
postconditions on the domain given by pre,. We thus work 
with proof tasks of the form 

(pre, + pre,) A (prep Apost, + post,) (1)  

which are similar to [34]’s “guarded plug-in match” except 
for our use of the stronger (via the first implication) pre- 
condition from the query. Plug-in compatibility supports 
safe reuse. The retrieved components may be considered 
as black boxes and may be reused “as is”, without further 
proviso or modification of the component. 

Sometimes plug-in compatibility is not applicable be- 
cause the users don’t want to specify any precondition but 
are willing to accept whatever comes, as long as their post- 
conditions are met. In that case, (1) simplifies to 

( 2 )  

or conditional compatibility. However, reuse now becomes 
potentially unsafe because any client still has to satisfy the 
open obligation pre,. 

Sometimes (2) might be too strong, and retrieves 
n o  components, although the library contains “almost” 
matches, e.g., partial functions. To additionally retrieve 
such components, partial compatibility may be used: 

(3) 

pre, A post, + post, 

pre, A pre,  A post, + post, 

“Actually, the proof tasks are universally closed WK the formal input 
and output parameters of the component and the query and also contain 
equations relating the parameters. Likewise, the pre- and postconditions 
are of course logical functions of the respective parameters. However, to 
improve readability, we use these traditionally abbreviated formulations. 

Thus, a component is retrieved if it computes the correct 
results on the common domain. If, however, the domains of 
c and g are disjoint, pre, and pre, are never true at the same 
time and thus ( 3 )  will become vacuously true. But usually q 
and c then also work on different types and c should already 
be rejected by signature matching. If c has an empty domain 
or is not implementable (i.e., post, never becomes true), ( 3 )  
will again become vacuously true and c will be retrieved 
for any query. However, this should not happen in a well- 
designed library. 

Obviously, reuse based on partial compatibility is un- 
safe because the retrieved components are not guaranteed 
to work on the entire required domain. But they might be 
good starting points for desired more general implementa- 
tions. Hence, the components must be considered as “white 
boxes”-their code needs a closer inspection. 

As an example, let us consider the following VDM-SL 
specificati~ns:~ 
rorate(I : Lisr) I’ : List 
pre true pre true 
post ( I  = [] I‘ = [])A post V i  : Item. 

shufle(z : X )  z’ : X 

( E  # [I * (321,zt : x ’ Z = Z l A [ i ] A X 2  @ 

~ X I , Z ~  : X .  X’ = x ~ ” [ ~ ] ” z c z )  I’ = (t lI)”[hdl])  

Let us further assume that we use plug-in compatibility 
as match relation, rotate as candidate c and shufle as query 
q. Then several steps are necessary to construct a sorted 
FOL proof task. First, the formal parameters must be iden- 
tified, in this case 1 = z and I’ = z ’ . ~  Then, VDM’s under- 
lying three-valued logic LPF must be translated into FOL. 
This essentially requires the explicit insertion of additional 
preconditions into the proof task to prevent reasoning from 
undefined terms as well as a translation of the connectives 
which takes care of the missing law of the excluded middle 
[ 12,221. In our example, this results in the proof task 

Vl , I ‘ ,x ,z‘  : List. ( I  = z A I’ = z’ A true +true) 
A 
A 

( I  = z A I‘ = Z’ A ( I  = [] =+ I’ = [I) 
( I  # [I * ( I  # [I * I‘ = (tl Z)A[hdI])) * (vi : Item. (3z1,zz : X .  z = x ~ ” [ i ] ” z ~  

U 321,22 : X ‘ 2‘ = q ” [ i ] ^ z z ) ) )  

Finally, a simplification removes obviously true or false 
parts of the formula. 

5. Rejecting Non-Matches 

Detecting and rejecting non-matching components as 
fast and early as possible is probably the single most impor- 
tant step in making deduction-based SCR practical-there 

5Here, A means concatenation of lists, [I the empty list, [i] a singleton 

‘This identification is, however, not always a simple renaming substi- 
list with item i, and hd and tl the functions head and tail, respectively. 

tution as VDM-SL allows pattern matching and complex data types, 
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are simply many more non-matching 1.han matching com- 
ponents. Unfortunately, most ATPs are not suited for this 
task. They exhaustively search for a proof (or refutation) 
of a conjecture but are practically unablle to conclude that it 
is not valid (or contradictory). Therefore, other techniques 
have to be used to implement rejection filters. 

Generally, we may reject a component c if we find a 
“counterexample” for its associated prloof task 7, because 
it then cannot be valid. Model generators for FOL like 
Finder [31] or MACE [21] try to find such counterexam- 
ples (which are simply interpre:tations under which 7, eval- 
uates tofalse) by systematically checking all possible inter- 
pretations. This obviously terminates only if all involved 
domains are finite, as for example in finite group theory 
or hardware verification problems. On the other hand, the 
highly efficient implementation of most model generators 
(usually using BDD-based Da.vis-Putnam decision proce- 
dures) would make them ideal candidal.es for fast rejection 
filters. 

However, most domains in our application are not finite 
but unbounded, e.g., numbers or lists. If we want to use 
model generation techniques for our purpose, we must map 
these infinite domains onto finiite representations, either by 
abstraction or by approximation. 

5.1. Mapping by Abstraction 

One approach to establish this mapping uses techniques 
from abstract interpretation [6] where the infinite domain 
is partioned into a small finite number of sets which are 
called abstract domains. For leach function f an abstract 
counterpart f is constructed such that f and f commute 
with the abstraction function 12 between original and ab- 
stract domains, i.e., a ( f ( z ) )  = f (a ( : c ) ) .  E.g., we may 
partition the domain of integers into three abstract domains 
{0}, {z I z > 0} and {x I 5 < 0}, calleid Zero, pos and neg. 
Then, all operations for integer:s must be abstracted accord- 
ingly. For example, for the ~r~ultiplication x, we get the 
abstract multiplication % which actually mirrors the “sign 
rule”: negxpos = posxneg = neg. 

Abstract model checking [ IO]  then represents the ab- 
stract domains by single model elements and tries to find an 
abstract countermodel, using an axiomatization of the ab- 
stract functions and predicates with a standard FOL model 
generator. There is, however, a problem. While abstract 
interpretation may escape to a larger “a.bstract” domain of 
truth values in order to make the predicates commute with 
the abstraction function, standard FOL model generators re- 
quire the exact concrete domain1 of true and false and thus a 
consistent abstraction may become impossible. E.g., when 
we try to abstract the ordering on the numbers, less(zero, 
pos) is valid but we cannot assign a single truth value to 
less(pos, pos) because two arbitrary positive numbers may 

be ordered either way. 
So, while there are some predicates which allow exact 

abstractions, we have to approximate others. Since we want 
to use abstract model checking as a rejection filter, we have 
to make our choices such that the filter produces as few 
false counterexamples as possible: spurious matches are 
handled by the subsequent confirmation filter but improp- 
erly rejected components are lost forever. 

5.2. Mapping by Approximation 

The second approach to map an infinite domain onto a 
finite one is done by approximation. From the infinite do- 
main, we select a number of values which seem to be “cru- 
cial” for the module’s behavior. E.g., for lists, one usually 
picks the empty list [] and small lists with one or two el- 
ements (e.g., [a] ,  [a,  b] ) .  Then, we search for a model or 
counterexample. This approach mimicks the manual check- 
ing for matches: if one has to find a matching compo- 
nent, one first make checks with the empty list and one 
or two small lists. If this does not succeed, the compo- 
nent cannot be selected. Otherwise, additional checks have 
to be applied. This approach, however, is neither sound 
nor complete. There exist invalid formulas for which a 
model can be found in a finitely approximated domain (e.g., 
VX : Last . 3i : I tem . X = [ i ]”X) ,  and vice versa (e.g., 
3 X ,  Y,  Z : Last. X # Y A Y # Z A Z # X which has a 
model only in domains with at least three distinct elements). 

While the second case is not too harmful for our 
application-the performance of the filter just decreases 
(i.e., more proof tasks can pass), the first one is dangerous: 
proof tasks describing valid matches might be lost. The ex- 
periments which we describe in Section 7.3 are based on 
this approach. For our prototype implementation we use 
the model generator MACE [21]. 

6. SETHEO as Confirmation Filter 

For the final stage of our filter chain the high- 
performance theorem prover SETHEO is used. SETHEO is 
a complete and sound prover for unsorted first-order logic 
based on the Model Elimination calculus. It accepts formu- 
las in clausal normal form and tries to refute the formula by 
constructing a closed tableau (a tree of clauses). Complete- 
ness is accomplished by limiting the depth of the search 
space (e.g., with a bound on the size or depth of the tableau) 
and performing iterative deepening over this bound. In the 
context of this paper, SETHEO can be seen as a black box 
which returns “proof found” or “failed to find proof” af- 
ter the given time-limit. Hence, no further details about 
SETHEO are given in this paper. For a description of the 
system and its features see e.g. [16, 241. 
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With SETHEO’s soundness, we obtain a confirmation fil- 
ter which guarantees that proof tasks which pass it success- 
fully actually select matching components. Due to our hard 
time constraints, however, means must be taken not to de- 
crease the recall in an unacceptable way. In the following, 
we describe how SETHEO has to be adapted in order to be 
integrated into NORNHAMMR. We discuss important issues 
like handling of inductive problems, sorts and equality, and 
the selection of axioms and parameter settings. 

6.1. Inductive Problems 

Whenever recursive specifications are given or recur- 
sively defined data structures are used (e.g., lists) many of 
the proof tasks can be solved by induction only. SETHEO it- 
self cannot handle induction and our severe time-constraints 
don’t allow us to use an inductive theorem prover. There- 
fore, we approximate induction by splitting up the problem 
into several cases. For example, for a query and candidate 
with the signature 1 : List, and the corresponding proof 
task of the form Vl  : List . F(1) we obtain the following 
cases: I = [] 9 F( l ) ,  V i  : Item . I = [i] + F( l ) ,  and 
vi : Item, lo  : List . F(l0) A 1 = [iIA’2o F(Z).7 After 
rewriting the formula accordingly, we get three indepen- 
dent first order proof tasks which then must be processed 
by SETHEO. This approach can be implemented efficiently. 
However, we cannot solve every inductive problem. 

6.2. Equality 

All proof tasks heavily rely upon equations. This is due 
to the VDM-SL specification style and the construction of 
the proof tasks. While some equations just equate the for- 
mal parameters of the query and the library module, others 
carry information about the modules’ behavior. Therefore, 
efficient means for handling equalities must be provided. 
We currently provide two variants: the nai’ve approach by 
adding the corresponding axioms of equality (reflexivity, 
symmetry, transitivity, and substitution axioms), and the 
compilation approach used within E-SETHEO [24]. Here, 
symmetry, transitivity and substitution rules are compiled 
into the terms of the formula such that these axioms need 
not be added. This transformation, an optimised variant of 
Brand’s STE modification [ 3 ] ,  usually increases the size of 
the formula, but in many cases the length of the proof and 
the size of the search space becomes substantially smaller. 

7Although it would be sufficient to have cases 1 and 3 only, we also 
generate case 2, since many specifications are valid for non-empty lists 
only. For those specifications, case 1 would be a trivial proof task which 
does not contribute to filtering. 

6.3. Sorts 

All proof tasks are sorted. The sorts are imposed from 
the VDM-SL specifications of the modules and are struc- 
tured in a hierarchical way. All sorts are static and there 
is only limited overloading of function symbols. Therefore, 
the approach to compile the sort information into the terms 
of the formula can be used. Then, the determination of the 
sort of a term and checking, if the sorts of two terms are 
compatible is handled by the usual unification. Thus there 
is no need to modify SETHEO and the overall loss of ef- 
ficiency is minimal. Our current prototype uses the tool 
ProSpec (developed within Protein [ 11). 

6.4. Selection of Axioms 

Each proof task has to contain-besides the theorem and 
the hypotheses-the features of each data type (e.g., List, 
Nut) as a set of axioms. Automated theorem provers, how- 
ever, are extremely sensitive w.r.t. the number and structure 
of the axioms added to the formula. Adding a single (un- 
necessary) axiom can increase the run-time of the prover by 
magnitudes, thus decreasing recall in an unacceptable way. 
In general, selecting the optimal subset of axioms is a very 
hard problem and has not been solved in a satisfactory way 
yet. Our strong time-constraints furthermore won’t allow us 
to use time-consuming selection techniques. In our proto- 
type, we therefore use a simple strategy: 

1. select only those theories for those data types (e.g., 
List, Nat, Boolean) occurring in the proof task, 

2. within such theories, only select clauses which have 
function symbols in common with the proof task, and 

3. leave out particular clauses and axioms which are 
known to increase the search space substantially (e.g., 
long clauses, Non-Horn clauses). 

Although this approach is not complete, we use it, since 
our aim is to solve as many obvious and simple proof tasks 
(i.e., those which don’t use many axioms or have a complex 
proof) within short limits of run-time. 

6.5. Control 

Once started, the theorem prover has only a few sec- 
onds of run time to search for a proof. This requires that 
the parameters which control and influence the search (e.g., 
way of iterative deepening, subgoal reordering) are set in 
an optimal way for the given proof task. However, such 
a global setting does not exist for our application domain. 
In order to obtain optimal efficiency combined with short 
answer times, parallel competition over parameters is used. 
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The basic ideas has been developed foir SiCoTHEO [30] and 
could be adapted easily: on all availahle processors (e.g., a 
network of workstations), a copy of SETHEO is started to 
process the entire given proof task. (On each processor, a 
different setting of parameters is used. The process which 
first finds a proof “wins” and aborts tbe other processes. 

Model 
(List1 + /Item1 
recall T 

g T  

precision p 
QP 
precision increase 
fallout 
reduction 
defect ratio dr 

7. Experimental Results 

A B C 
2+1 3+1 3+2 

74.7% 76.5% 81.3% 
0.25 0.26 0.25 

18.5% 19.6% 16.5% 
0.21 0.19 0.16 

1.5 1.6 1.3 
42.8% 41.0% 55.5% 
50.1% 51.7% 39.0% 

0.51 0.45 0.48 7.1. The Experimental Data Base 

All experiments were carried out over a database of 55 
list specifications which were modified to have the type list 
+ list in  order to please our still very simple signature 
matching filter. Approximately 40 of these specifications 
describe actual list processing functions (e.g., tail or rotate) 
while the rest simulates queries. We thus included underde- 
termined specifications (e.g., the result is an arbitrary front 
segment of the argument list) as well as specifications which 
don’t refer to the arguments (e.g., the result is not empty). 
For simplicity, we formulated the specifications such that 
the postconditions only used VDM-SL’s built-in sequences. 

In order to simulate a realistic number of queries we then 
cross-matched each specification against the entire library, 
using partial compatibility as match rellation. This yielded a 
total of 3025 proof tasks where 375 or 12.4% were valid. 

7.2. Evaluation of Filters 

Information retrieval methods [29] are evaluated by the 
two criteria precision and recall. Both1 are calculated from 
the set REL of relevant components which satisfy the given 
match relation wrt. to the query and RET, the set of re- 
trieved components which actually pass the filter. The pre- 
cision p is defined as the relative number of hits in the 
response while the recall T measures the system’s relative 
ability to retrieve relevant comiponents: 

r = @ T  
IRELnRETI 

p IRETI IRE I 
Ideally, both numbers would be 1 (i.e. the system retrieves 
all and only matching components) but in practice they are 
antagonistic: a higher precision is usually paid for with a 
lower recall. We also need some metrics to evaluate the 
filtering effect. To this end we define thefallout 

I REr\REL I 
f=-- 

I C\REL I 
(where C is the entire librairy) as the fraction of non- 
matching components which pass the filter as well as the 
reduction which is just the relative number of refuted com- 
ponents. Finally, we define the relative defect ratio by 

~ I REL\RET I I L: I 

Table 1. Results of model checking 

as the relative number of rejected matching components in 
relation to the precision of the filter’s input. Thus, a relative 
defect ratio greater than 1 indicates that the filter’s ability 
to reject only irrelevant components is even worse than a 
purely random choice. 

7.3. Rejecting Tasks with Model Generation 

For the rejection filter with MACE, we currently use three 
different models with at most three elements for each data 
type (in our case List, Item). Due to the large number of 
variables in the proof tasks we are generally confined to 
such small models. 

Our experiments with MACE, however, revealed that the 
restrictions are not too serious. As shown in  Table 1, the 
model checking filter (with a run time limit of 20 seconds) 
is able to recover at least 75% of the relevant components, 
regardless of the particular model. The large standard devi- 
ation, however, indicates that the filter’s behavior is far from 
uniform and that it may perform poor for some queries. 

Unfortunately, the filter is still too coarse. While each 
model increases the precision of its answer (compared to the 
the original 12.4% “precision” of the library) significantly, 
it still lets too many non-matches pass. The values for fall- 
out indicate that the results in average contain up to 55% of 
the original non-matching components. Similarly, the over- 
all reduction of approx. 40-50% is at the lower end of our 
expectations. However, the relative defect ratios show that 
model checking with any model is at least twice as good as 
blind guessing. 

7.4. SETHEO as the Confirmation Filter 

For all experiments with SETHEO we used parallel com- 
petition with 4 processes exploring different ways of han- 
dling equality. Due to technical reasons, we had to restrict 
the number of modules from our library to 49. This resulted 
in a total of 2401 proof tasks with 204 or 8.5% matches. 
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In our first set of experiments we tried to retrieve iden- 
tical modules from the library (i.e., c G 4) .  The result- 
ing 49 proof tasks are relatively simple and no induction or 
axioms are needed to prove them. As expected, SETHEO 
could show all of them within a time-limit of 20 seconds 
CPU-time (on a sun Ultra-SPARC). Whereas the mean run- 
time was less than Is, several proof tasks needed up to 13 
seconds. 

Then we tried to retrieve matching, but non-identical 
components. Our experimental basis contains 155 such 
cases. First, these proof tasks were tried without induc- 
tion. Here, SETHEO was able to solve 46 proof tasks with 
a standard set of axioms. The rate of recall could be in- 
creased drastically, when our approximation of induction 
was used. With the same set of axioms, a total of 70 proof 
tasks could be solved. Due to the increased size of the for- 
mulas (esp. in the step case), more overflow errors occurred. 
Nevertheless, with case splitting we have been able to re- 
trieve 18 matches more than without case splitting. Due to 
the different structure of the search space, 6 tasks could be 
shown only without case splitting, making the simple mode 
interesting for parallel competition. In order to obtain the 
overall recall of the SETHEO confirmation filter, we have to 
combine the data of both sets of experiments. From a to- 
tal of 204 = 49 + 155 possible matches, SETHEO could 
retrieve 125 (49 identical modules, 70 non-identical with 
case splitting and 6 without case splitting) modules. This 
yields an overall recall of 61.2%. However, the standard 
deviation is relatively high as in the model checking experi- 
ments, revealing quite different retrieval results for the vari- 
ous queries. Since SETHEO’s proof procedure is sound, all 
solved proof tasks correspond to matches, hence the preci- 
sion is 100%. 

8. Related Work 

Most early publications on deduction-based SCR (e.g., 
[20, 28, 141) were mainly concerned with general concep- 
tual issues and ignored the usability and scaling problems. 
We will thus discuss only more recent related work. 

Zaremski and Wing [34] have investigated specification 
matching in a slightly more general framework but their 
main application area is also software reuse. They use the 
Larch/ML specification language for component descrip- 
tion and the associated interactive Larch prover for retrieval. 
But this promises some severe scaling problems as in our 
experience only a small fraction of the tasks is provable 
without interaction. Unfortunately, the paper does not con- 
tain any larger experimental evaluation. 

Mili et. al. [23] describe a system in which specifications 
are given as binary relations of legal (input, output)-pairs. 
They then define a subsumption relation on such pairs and 
use this for retrieval, relying on Otter to calculate the sub- 

sumption. However, their system is still in a prototypical 
stage, so no relevant statistical evaluation is presented. The 
examples heavily use auxiliary predicates which are not ax- 
iomatized further and thus rely on the arbitrary choice of 
predicate names to represent domain knowledge. The work 
of Jeng and Cheng [l 11 also uses a subsumption test and 
unfortunately also shares the same problematic confidence 
in the choice of predicate names. Again, no statistical eval- 
uation is presented. 

Scaling problems have been addressed differently. The 
Inscape/Inquire-system [27] limits the specification lan- 
guage to make retrieval more efficient. Similarly, AM- 
PHION [17] uses a GUI to foster a more uniform spec- 
ification style which in turn allows an appropriate fine- 
tuning of the prover. Additional speed-up is achieved by 
automatically “compiling” axioms into decision theories 
[ 181. These techniques have successfully been applied to 
to assemble over 100 FORTRAN programs from a scien- 
tific component library for solar system kinematics. Penix, 
Baraona and Alexander [26] use “semantic features” (i.e., 
user-defined abstract predicates which follow from the com- 
ponents’ specifications) to classify the components and per- 
form case-based reasoning along this classification to iden- 
tify the most promising candidates. This classification 
process uses forward reasoning with an ATP. However, the 
authors give no evidence of how successful their approach 

Related work on the use of model checking techniques 
for infinite domains is much rarer. Jackson [lo] is based 
on [ 5 ]  and also investigates abstract model checking of 
software specifications. His goal, however, is to prove 
the conjectures and not to disprove them. This requires 
sound approximations which forced him to restrict his logic 
severely-no negations and exact abstractions only. As 
soon as approximate abstractions are allowed, this approach 
also becomes unsound. Wing and Vaziri-Farahani [32] also 
use abstractions but don’t discuss any correctness aspects 
which are related with them. 

1s. 

9. Conclusions and Further Work 

In this paper, we have presented NORNHAMMR, a 
deduction-based software component retrieval tool. Our 
goal was to show that such a tool is not only theoretically 
possible but practical with statc-of-the-art theorem provers. 
We thus designed it as a user-configurable pipeline of dif- 
ferent filters. Rejection filters are in charge of reducing the 
number of non-matching query-component pairs as soon 
and good as possible. In this paper, we have studied an 
approach which uses model generation techniques for this 
purpose. Our experiments with MACE showed that this ap- 
proach, although neither sound nor complete, returns rea- 
sonable results. The final stage of the filter pipeline is al- 
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ways a confirmation filter which ensures that the selected 
components really match. Here, we have used the automa- 
ted theorem prover SETHEO. Even with a short time-limit 
of 20 seconds, an overall recall of more than 60% was ob- 
tained. 

We have evaluated our approach with a reasonable large 
number of experiments. The results obtained so far are very 
encouraging. We are currently preparing experiments with 
a library of commercial date and time handling functions as 
used for example in stock trading software. This work is 
done in cooperation with the German DC Bank. 

Nevertheless, many improvements still have to be made 
before NORNHAMMR can really be used in industry. Due 
to the hard time-constraints (“results while-U-wait”), the re- 
duction of proof-tasks, both in complexity and number is 
of central importance. Here, powerful rejection filters must 
ensure that only a few proof tasks remain to be processed 
by the automated theorem prover. However, our current 
model-checking filter rejects too much valid matches due to 
the necessary approximate absitractions. We are thus trying 
to model exact predicate abstractions with Belnap’s four- 
valued logic [2] which extend:s the three-valued LPF con- 
sistently. A translation into FOIL which reflects the explicit 
falsehood conditions of Belnap’s logic then yields a sound 
rejection filter. 

Future work will include experiments with specialized 
decision procedures for the different theories and dis- 
proving techniques. Additionailly, knowledge-based filters 
similar to [25] and heuristics will help to reduce the num- 
ber of tasks to be handled by the confirmation filter. All 
these filters will be configurable and allow inspection of the 
behavior of the filter pipeline (during each stage of the re- 
trieval. 

Current high-performance automated theorem provers 
are certainly usable as confirrnation filters. Much work, 
however, is still necessary to adapt the ATPs for such kinds 
of proof tasks. In particular, the requirement of full autom- 
atization and the strong time-limits must be obeyed care- 
fully. The experiments showed that parallel competition 
with several variants (case splitting, set of axioms, handling 
of equality) is essential to obtain short answer times. Fur- 
ther important issues are the handling of inductive proofs, 
and the selection of appropriate axioms. Here, powerful 
heuristics as well as additional information, placed in the 
data base together with the components (e.g., tactics, lem- 
mas, induction schemes) will be helpful. A further re- 
duction of the search space could be achieved by axiom 
compilation techniques similar to those of Meta-AMPHION 
[ 181. However, the integration of decision procedures in 
SETHEO is still an open research topic. 

This application of automatied theorem proving carries 
the unique feature that soundness and completeness are not 
absolutely vital-unsound and incomplete methods only re- 

duce the precision and recall of the retrieval tool. This al- 
lows interesting and promising deduction techniques (e.g., 
approximating proofs by filter chains or iteration) to be ex- 
plored and will help to automate software engineering a lit- 
tle further. 
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