
An Integration of Deductive Retrieval into Deductive Synthesis

Bernd Fischer
RIACS/NASA Ames Research Center

CA-94035 Moffett Field, USA
fisch@ptolemy.arc.nasa.gov

Jon Whittle
RECOM/NASA Ames Research Center

CA-94035 Moffett Field, USA
jonathw@ptolemy.arc.nasa.gov

Abstract

Deductive retrieval and deductive synthesis are two con-
ceptually closely related software development methods
which apply theorem proving techniques to support the con-
struction of correct programs. In this paper, we describe an
integration of both methods which combines their comple-
mentary benefits and alleviates some of their drawbacks.

The core of our integration is an algorithm which au-
tomatically extracts queries from the synthesis proof state
and submits them to a specialized retrieval system. Re-
trieved components are then used to close open subgoals
in the proof. We use a higher-order framework for synthesis
in which higher-order meta-variables are used to represent
program fragments still to be synthesized. Hence, the intro-
duction of a new meta-variable is an attempt to synthesize a
new fragment and so highlights a possible reuse step. This
observation allows us to invoke retrieval only after asub-
stantial changerather than at every proof step and prevents
overloading the retrieval mechanism.

Our integration raises the granularity level of synthesis
by avoiding a substantial number of proof steps. It also pro-
vides a framework for adapting “near-miss” components in
the case that an exact match cannot be retrieved.

1. Introduction

Deductive synthesis and deductive retrieval are two com-
plementary yet contrasting approaches to formal software
development. Deductive synthesis starts with a formal spec-
ification and uses a theorem prover to derive new pro-
grams from this specification. In its general form, it is a
decomposition-based, top-down approach oriented towards
creative system design. Deductive retrieval is the appli-
cation of theorem provers to find existing components for
specifications. As such, it is a composition-based, bottom-
up approach and works with entities of smaller scale such as
components or functions. Recently, retrieval systems such
as NORA/HAMMR [18] and REBOUND [17] have shown

tractable ways to scale retrieval up to larger component li-
braries.

In this paper we investigate the integration of a deductive
retrieval system into a deductive synthesis framework in or-
der to maximize the advantages of both approaches. We
present our ideas in the context of deductive tableaus re-
interpreted in higher-order logic as in [2, 3]. Such higher-
order frameworks are well-suited for the creative aspects
of deductive synthesis. They give the designer full control
over the emerging system structure as program fragments
yet to be synthesized are represented by meta-variables, i.e.,
within the logic itself and not by any extra-logical con-
structs. Implementations are typically built on top of in-
teractive proof environments which automate the tedious
bookkeeping tasks. Attempts are being made at full automa-
tion (e.g., [1]) but this is an elusive goal.

The main technical idea of our integration is to extract re-
trieval queries in the form of pre-/postcondition pairs auto-
matically from the synthesis proof statewhenever it changes
substantially. These queries are used to retrieve library
components which are then “plugged into” the proof state
by instantiating meta-variables. The result is an interactive
system further augmented with automated procedures. The
user still controls the synthesis process and the automated
retrieval process kicks in only in promising situations.

An integrated system provides great potential for allevi-
ating drawbacks of the individual approaches. Pure synthe-
sis systems, especially those based on general proof tech-
niques such as deductive tableaus [11], do not scale up well,
as for example observed by [8]:

“The main problem of general approaches to pro-
gram synthesis is that they force the synthesis sys-
tem to derive an algorithm almost from scratch...”

An integrated, dedicated retrieval subsystem effectively
allows synthesis to bottom-out in previously synthesized
components instead of the built-in operators of the language
only and thus helps to raise the level of granularity. Pure
retrieval systems, on the other hand, face problems if no
matching components can be retrieved for a given query. In

an integrated system, further synthesis steps can be applied
to provide a more detailed query, or to adapt retrieved but
not perfectly matching components.

This potential can, however, be realized only if two crit-
ical assumptions are met:(i) the retrieval subsystem actu-
ally saves proof effort and(ii) the synthesis subsystem does
not generate (too many) useless queries. In our case, the
first assumption holds by construction as we utilize special-
ized, highly tuned retrieval systems which work fully auto-
matically, retrieving on average more than 85% of the rele-
vant components in a realistic amount of time. The second
assumption is more difficult to achieve as many proof steps
in program synthesis are mere bookkeeping steps which
do not change the proof state substantially. Hence, invok-
ing the retrieval subsystem after each step would overload
it with an excessive number of equivalent queries. In the
higher-order framework, a substantial change amounts to
the introduction of a new meta-variable, a condition which
can easily be checked automatically. This observation al-
lows us to invoke retrieval only when appropriate.

2. Recast of the basic technology

2.1. Deductive synthesis

Deductive program synthesis is based on the Curry-
Howard isomorphism [7] or “proofs-as-programs”-
paradigm which asserts that a constructive proof of a
specification is equivalent to a functional program which
is correct with respect to this specification. A variety of
different approaches has been investigated (cf. [8] for an
overview). Here, we briefly describe the approaches by
Manna/Waldinger and Ayari/Basin which are the basis of
our work.

2.1.1. Deductive tableaus in classical first-order logics.
Manna and Waldinger [12] have argued that it is “too con-
straining to carry out the entire proof in a constructive logic”
and, moreover, that it is sufficient to restrict a proof in clas-
sical logic to be constructive only when necessary. They
also developed a first-order synthesis methodology which
uses a two-dimensional structure called adeductive tableau
to represent a proof state.

Each row in the tableau contains a single sentence, either
as an assertion or as a goal, and one or more optional output
terms which represent the program under construction. In
the initial tableau

assertions goals f (a)

Q[a; f (a)] z

A1

� � �
An

the only goal row contains the skolemized input specifica-
tion 8x9z � Q[x ; z]; this is also the only row containing an
output entry. All remaining rows are assertion rows; they
contain the axiomsA1; : : : ;An of the domain theory.

Subsequent proof steps change the tableau or extend it
by new rows. The main proof rule is non-clausal resolu-
tion [11, 14] which is similar to a case analysis in an infor-
mal development and which accounts for the introduction of
conditional terms in the program. Non-clausal resolution is
used in several alternative versions; theGG-version shown
here resolves two goal rows with two unifiable quantifier-
free subexpressionsP andP 0.

G1[P] s

G2[P
0] t

G1�[false=P] if P�
^ then t�

G2�[true=P 0] else s�

The resolvent is a new goal row. Its goal is a conjunction
of both original goals under the image of the unifier� af-
ter replacing all occurrences ofP (P 0) by false (true); its
output term is anif-then-else -statement with the uni-
fied subexpressionP� as guard and the two original output
termst� ands� as branches. The other versions are similar.
The calculus also includes rules for simplification and split-
ting of assumptions and goals, skolemization, handling of
equivalences and equalities, and a well-founded induction
rule to introduce recursion.

The proof process is complete if the tableau contains a
final row

true t

or, by duality,

false t

provided that the output termt is ground and built up en-
tirely from primitive (i.e., executable) function symbols;t
can then be extracted as the final program.

2.1.2. Re-interpretation of deductive tableaus in higher-
order logics. Ayari and Basin [3] have pointed out that
the original version of deductive tableaus suffers from some
inherent technical limitations. Since proofs in the deduc-
tive tableaus calculus are sequences rather than trees, rules
that split a tableau into multiple sub-tableaus are not al-
lowed and must be encoded using non-clausal resolution.
Non-clausal resolution, however, while acceptable in an
automated prover, is particularly unfriendly in an interac-
tive context. Finally, the induction rule must be used in a
bottom-up way and the use of a first-order logic means that
reasoning about well-foundedness is not possible, so that
termination proofs must preceed induction.

To overcome these limitations, Ayari and Basin use a
higher-order logic as implemented in theISABELLE-system
[15]. ISABELLE provides a meta-logic in which object log-
ics may be encoded. Universal quantification and implica-
tion of the meta-logic are represented by

V
and=), re-

spectively; iterated implicationA =) (B =) C) is ab-
breviated by[[A;B]] =) C . Higher-order logic is encoded
by formalizing connectives likê of typebool� bool!
bool and8 of type(�! bool) ! bool, where� is a type
variable ranging over allHOL types.

[3] describes the development of some synthesis proofs
using higher-order logic. Rather than transforming the orig-
inal specification into a tableau they directly operate on the
proof state

A1 ^ : : : ^ An ! SPEC
1) [[H1;1; : : : ;H1;n1]] =) G1

...
m) [[Hm;1; : : : ;Hm;nm

]] =) Gm

where the existential variables are replaced by higher-order
meta-variablesAi acting as place-holders for program frag-
ments.1 The tableau rows are replaced by the open sub-
goals. Each subgoal still has a single consequentG (i.e.,
goal in Manna/Waldinger’s terminology) but may at the
same time have an arbitrary number of hypotheses (or as-
sertions)Hj which may include fragmentsAi .

Non-clausal resolution is replaced by higher-order reso-
lution which is applicable to two meta-formulae

[[1; : : : ; m]] =)
[[�1; : : : ;�n]] =) �

where� higher-order unifies with i . The result for the
unifier� is the new subgoal (i.e., row)

[[1�; : : : ; i-1�;�1�; : : : ;�n�; i+1�; : : : ; m�]] =) �

This gives us a natural way to carry out program syn-
thesis in a way consistent with the Deductive Tableau
method. Proof development proceeds top-down since it
starts with the antecedents, but the presence of the shared
meta-variables introduces an element of bottom-up devel-
opment.

The use of higher-order logic means that termination
proofs are also possible within the framework. This is done
via the following rule for well-founded induction:

[[8x � (8y � hy ; x i 2 r ! P(y)) ! P(x) ;wf (r)]]
=) 8x � P(x)

Note that the decision as to which well-founded relation
is to be used may be delayed until later on in the proof ifr

is a meta-variable. Only whenr is instantiated it must be
shown thatwf (r) holds.

1The use of meta-variables to delay the choice of existential witnesses
is also known as middle-out reasoning, a term coined by Alan Bundy.

2.2. Deductive retrieval

The purpose of software component retrieval in gen-
eral is to identify and locate potentially reusable candidates
within a component library. This is a core task in soft-
ware reuse: after all, components have to be found be-
fore they can be reused. A wide variety of different re-
trieval approaches has been investigated (cf. [13] for an
overview); the approaches differ substantially in which
facet of a software component (e.g., documentation, syn-
tactic structure, execution examples) they use for retrieval
and, consequently, in the mechanism to establish potential
reusability.

However, only deductive retrieval can exploitexact se-
mantic information specific to the components. The basic
idea is as follows:

1. Each componentc is associated with acontract, a for-
mal specification which captures the relevant compo-
nent behavior in the form of pre- and postconditions,
e.g.,

run (l : list) r : list
pre true
post 9 l 0 : list � l = r y l 0 ^ ord(r)

to compute an ordered initial subsegment (i.e., run) of
a list.2

2. Contracts also serve as queriesq , e.g.,

proper -segment (l : list) r : list
pre l 6= []
post 9 l1; l2 : list �

l = l1
y r y l2 ^ (l1 6= [] _ l2 6= [])

can be used to retrieve any function which returns an
arbitrary continuous proper sublist of the argument.

3. For each possible candidate in the library, a proof task
is constructed comprising the respective pre- and post-
conditions.

4. A candidate qualifies if and only if the validity of the
associated task can be established, usually using an au-
tomated theorem prover.

Hence, the approach retrieves proven matches only. The
exact nature of component reuse is determined by the exact
form of the proof tasks. The most common form isplug-in
compatibility

(preq ! prec) ^ (preq ^ postc ! postq) (1)

which supports black box reuse—retrieved components
may be reused “as is”, without further proviso or modifi-
cation. Other task variants support white box reuse but then

2y denotes list concatenation,[] the empty list,[i] a singleton list with
item i andord is a user-defined predicate.

manual checks or code modifications are required in order
to guarantee the applicability of the retrieved components.

The main problem in deductive retrieval is the large num-
ber of emerging proof tasks. Naive generate-and-prove im-
plementations drown any prover, but recent efforts show
how to circumvent this problem [18, 17, 5]. We assume
that our integrated tool uses a retrieval system such as
NORA/HAMMR [18] in which a pipeline of filters of increas-
ing deductive strength are used to prune away proof tasks
associated with non-matching components whilst maintain-
ing a balance between fast response and high precision. Ex-
perimental evidence shows that this makes the retrieval task
tractable.

3. Benefits of integration

Pure component retrieval is based on the assumption that
the library already contains solutions to the query. In gen-
eral, however, this assumption is not true. Components
usually need to be modified before they satisfy the query
specification [16]. Suppose that a queryQ has no matching
components in the library but that a partial solutionC can
be retrieved if we relax the matching requirements, e.g., by
dropping preconditions. The problem then is how to adapt
C to a complete solution.

Penix [16] describes an adaptation framework in which
software architectures [6] are used to adaptC to satisfyQ
by building a wrapper aroundC or composingC with an-
other component,D . A limitation of this framework is that
it is based entirely upon retrieval.D must also be avail-
able in the library. If this is not the case, there could be a
potentially infinite number of iterations to search for new
components,D ;D 0;D 00; : : : .

By integrating deductive synthesis into this framework,
the user could invoke a sequence of synthesis steps to carry
out the adaptation. Indeed, it may be that after a small num-
ber of such steps, the specification is refined to the point
where library components match against it. We illustrate
this process on an example taken from [16, p. 94].

The task is to construct a functionfind which given a list
of records and a natural number will return a record whose
keyfield has the integer as its value. A problem specification
for find is as follows:

8c : rec-list ; k : N� ?F (c; k) 2 c ^ ?F (c; k):key = k

where?F is a higher-order meta-variable. Suppose that our
library contains the binary search component:

bsearch (l : rec-list ; k : N) r : rec
pre rec ord(l)
post r 2 l ^ r :key = k

whererec ord is the usual list ordering predicate special-
ized to lists of records.

Clearly, the postcondition ofbsearchsatisfies the specifi-
cation forfindbut the precondition does not hold. However,
bsearchcan still be retrieved by using the weaker match
conditional compatibility:

(prebsearch ^ postbsearch) ! post�nd

This tells us thatbsearchis a partial solution to the problem.
To obtain a complete solution, we need a sorter which is
then composed withbsearch. This is captured formally by
defining a composition architecture, composing two com-
ponents?A and?B sequentially into a composite system
?C :

?Cin (x) ! ?Ain (x)

?Cin (x)^?Aout (x ; y)^?Bout (y ; z) ! ?Cout (x ; z)

?Ain (x)^?Aout(x ; y) ! ?Bin (y)

By instantiating?B with bsearch, a specification for the
missing sorter can be obtained. At this point [16] could
fail—if there is no sorter in the library, then the system
cannot be completed. It may be possible to retrieve near-
matches once again and repeat the process, but there is no
guarantee that this process will terminate.

We propose that oncebsearch is retrieved, the user
should begin to derive the sorter using deductive synthe-
sis rather than relying on further retrieval steps. In our
framework, the use of the compositional architecture cor-
responds to a partial instantiation of?F , ?F (c; k) =
bsearch(?S (c); k) where?S is a meta-variable represent-
ing the sorter. Note that there are two design decisions to
be made here. First, the exact instantiation of?F needs
user interaction to specify, for example, which parameters
?S takes. Second, the user must (as with [16]) choose an
architecture. To extract a specification for?S within the
synthesis framework, there must be a pre-defined tactic that
uses the definition of the architecture as a lemma and in-
vokes theorem proving tactics as in [16]. Applying such
tactics would result in the following proof subgoal:

bsearch(?S (c);k):key = k ^ bsearch(?S (c); k) 2 c

^ perm(c; ?S (c)) ^ rec ord(?S (c))

The last two conjuncts give a specification for the sorter
(whereperm is introduced by resolving against a back-
ground theory) and can be used to synthesize various sort-
ing algorithms. We show how to synthesizequicksort in
the next section. In fact, our presentation there shows how
to make further use of a component library during synthe-
sis by retrieving auxiliary functions used in the definition
of quicksort. This example shows how to combine deduc-
tive synthesis and retrieval in the context of software ar-
chitectures. This combination alleviates the drawbacks of
retrieval (what to do if nothing is retrieved?) and synthesis
(how to raise the level of granularity of synthesis?).

perm([]; [])
perm(l1; l2) ! x 2 l1 $ x 2 l2
perm(l1yl2; t1yt2) $ perm(l1y[a]yl2; t1

y[a]yt2)

ord([])
ord([a])
ord(a::b::l) $ (a � b) ^ ord(b::l)

minl(a; []):
minl(a; b : :l) $ a � b ^minl(a; l):

maxl(a; []):
maxl(a; b : :l) $ a > b ^maxl(a; l):

Figure 1. Background theory (cf. [10, 3])

4. Extracting queries from synthesis proofs

In this section we describe how we integrate deductive
component retrieval into deductive program synthesis. We
assume that synthesis is done interactively in the typed,
higher-order framework of [3] and that retrieval is done au-
tomatically. The synthesis steps still drive the integrated de-
velopment process—the user applies inference rules or tac-
tics in the normal way; retrieval steps are invoked either au-
tomatically, whenever it seems promising, or interactively,
i.e., under explicit user control. The user may choose any
subset of the retrieved components and use them to close
subgoals. If there are still open subgoals left, he has to go
on with the application of further tactics and the process re-
peats. If no components can be retrieved, the user re-gains
control immediately and continues with the proof process.

Note that the integration can only be semi-automatic
even if retrieval works fully automatically. Integrating re-
trieved components involves a number of major design de-
cisions that must be resolved by the user. These are high-
lighted in the following text. Even so, there is great po-
tential for retrieval to bypass many theorem proving steps.
Auxiliary function synthesis may require proofs that are as
or more complicated than the top-level function synthesis.
This effort can be eliminated almost totally by integrating
deductive retrieval.

The core of our integration is an algorithm which auto-
matically extracts retrieval queries from the synthesis proof
state. Each meta-variable in the proof state represents a
program fragment which must either be synthesized or can
alternatively be retrieved. Hence, each time a new meta-
variable is introduced, there are further possibilities for re-
trieval and so we extract a(pre, post)-condition specifica-
tion which is then submitted to the retrieval system.

In the following we will illustrate the various steps in the
query extraction algorithm by synthesizingquicksortfrom

the standard specification3

8l � perm(l ; ?S(l)) ^ ord(?S(l))

of a generic sorting program over a background theory com-
prisingpermandord as specified in Figure 1. Following [3],
the initial ISABELLE proof state is:

A ! 8l � perm(l ; ?S(l)) ^ ord(?S(l))

1: A =) 8l � perm(l ; ?S(l)) ^ ord(?S(l))

Here, and in the general framework of [3], there are in fact
two kinds of meta-variables:

� Accumulator variables such asAwhich range over for-
mulas and hold a possibly incomplete definition of a
synthesized function.

� Proper meta-variables such as?S which range over
lambda terms and represent a part of the output of the
desired program. Only such meta-variables are rele-
vant in retrieval. Henceforth, any references to meta-
variables exclude accumulator variables.

For clarity of explanation, we present the query extraction
algorithm in several stages. Each stage makes a number of
assumptions about the current proof state; some of these
assumptions will be removed or further explained as we
progress. Suppose that the current proof state comprisesn

open subgoalsSi and that we want to retrieve code for each
of theim meta-variables?Mij , 1 � j � im in Si .4 Then the
assumptions are as follows:

1. For eachi ; j , all occurrences of?Mij appear in conse-
quents of the open subgoals. This restriction will not
be lifted in this paper because a meta-variable which
occurs both in the antecedent and consequent of a sub-
goal induces a recursive query specification.

2. For eachi ; j , all applications of?Mij are identical
(modulo�-conversion on the meta-level), i.e., for each
occurrence of?Mij , the parameters of?Mij are the
same. This restriction will not be lifted in this paper
due to space restrictions.

3. There is no meta-variable that appears in more than
one open goal, i.e., the setsM i = f?Mij :1 � j � img
are disjoint for1 � i � n. This restriction will be
lifted in Section 4.4 below.

4. There is only a single meta-variable in each subgoal,
i.e., for eachi , M i is a singleton. This restriction will
be lifted in Section 4.3 below.

3We omit types for sake of clarity.
4Note that there may be other meta-variables in the proof for which we

do not wish to retrieve code.

5. For eachi ; j , all occurrences of?Mij are simple, i.e.,
all its arguments are distinct object-level variables.
This restriction will be lifted in Section 4.2 below.

The basic steps of the algorithm, however, are the same in
all cases.

1. Unskolemize all occurrences of the selected meta-
variable(s)?M .

2. Form a header for the retrieval query.

3. Derive the query precondition from the antecedent of
the subgoal(s)S.

4. Derive the query postcondition from the consequent of
the subgoal(s)S.

5. Search the component library.

6. Instantiate?M in the proof state.

We illustrate these steps using thequicksortexample.

4.1. The base algorithm

In this section we tackle the case in which all of our
assumptions hold, i.e., there is a single meta-variable con-
fined to simple identical occurrences in a single open goal.
Following [3], the initial proof state is refined to the one
given in Figure 2. This new proof state is obtained by
applying induction on the well-founded ordering?R, fol-
lowed by a case analysis onl . The induction rule instanti-
ates the original meta-variable?Swith the partial definition
for qsort and introduces a new accumulator variableA1;
this is recorded in the binding for the accumulator variable
A. The case analysis introduces two new meta-variables
?T and?F which automatically triggers the query extrac-
tion algorithm. However, only?T satisfies all assumptions.
We thus select the first subgoal to further illustrate the algo-
rithm.

The initial algorithm step is unskolemization, i.e., the
meta-variable application?T (l) is replaced by an existen-
tially quantified object-level variabler . The consequent of
the first subgoal then becomes

9r : list � perm(l ; r) ^ ord(r)

This step reverts the initial introduction of the meta-
variables which can be considered as skolemization; it also
introduces a name by which the component’s result can be
referenced within the first-order query.

The query header is easy to form. We just combine an
arbitrary name for the component with the input variables
and the output variable obtained by unskolemization. If the
occurrence of the meta-variable is simple, its arguments are
precisely the input variables for the query. The types of the
variables are easily obtained from the current proof state.
The query header for our example is:

query (l : list) r : list

The third step is to derive the query precondition from
the subgoal antecedent. The strongest possible precondi-
tion is the conjunction over the entire list of hypotheses.
However, some of them may be unfit or irrelevant for re-
trieval purposes. We thus eliminate accumulator variables,
literals which contain meta-variables other than the meta-
variable involved in retrieval, and literals which contain no
free occurrences of the input variables. Hypothesis elimina-
tion is pragmatically motivated but semantically justified by
theweakening rule(A =) C) =) ([[A;B]] =) C) which
is a theorem ofISABELLE’s meta-logic. In the example, hy-
pothesis elimination leavesl = [] as the only (but already
rather strong) precondition.

Due to the unskolemization step, the subgoal’s conse-
quent essentially forms the first-order postcondition of the
query. Only some minor “cosmetic” modifications are still
required. We drop all (universal meta-level) quantifiers of
the input variables and the existential object-level quantifier
introduced by unskolemization. In the example, the post-
condition is therefore

perm(l ; r) ^ ord(r)

The variables do not remain free, however; they are rebound
universally during the construction of the proof task.

The complete query is now

query (l : list) r : list
pre l = []
post perm(l ; r) ^ ord(r)

which can be submitted to the retrieval subsystem. Let
us assume that our library contains two components which
construct and copy lists, respectively. These components
may involve any non-trivial amount of administrative over-
head (e.g., memory management) but we further assume
that their specifications

list :: constructor () r 0 : list
pre true
post r 0 = []

and

copy (l 0 : list) r 0 : list
pre true
post r 0 = l 0

only reflect their basic functionalities. Let us also assume
that both components passed the early filter mechanisms
of the retrieval system. The final retrieval step is an “all-
out match”, i.e., an attempt to prove that the components
actually satisfy the query. The full proof task consists of
(1) along with parameter quantification and identification.
Hence, the proof tasks forlist :: constructor andcopy are

8l � qsort(l) = if l = [] then ?T (l) else ?F (hd(l); tl(l)) ^ A1

! 8l � perm(l ; qsort(l)) ^ ord(qsort(l))

1:
V
l � [[8t � ht ; li 2?R ! perm(t ; qsort(t)) ^ ord(qsort(t));A1; l = []]]
=) perm(l ; ?T (l)) ^ ord(?T (l))

2:
V
l � [[8t � ht ; li 2?R ! perm(t ; qsort(t)) ^ ord(qsort(t));A1; l 6= []]]
=) perm(l ; ?F (hd(l); tl(l))) ^ ord(?F (hd(l); tl(l)))

3: wf(?R)

Figure 2. Proof state after induction and casesplit.

respectively:

8l ; r ; r 0 : list � r = r 0 !
((l = [] ! true)
^ (l = [] ^ r 0 = [] ! perm(l ; r) ^ ord(r)))

8l ; l 0; r ; r 0 : list � l = l 0 ^ r = r 0 !
((l = [] ! true)
^ (l = [] ^ r 0 = l 0 ! perm(l ; r) ^ ord(r)))

Both tasks can easily be proven by an automatic first-
order theorem prover such asSPASS[23], i.e., both com-
ponents are retrieved. Note that the first task is valid even
though the constructor’s signature does not match the query.
The final selection of one of the (in general many) retrieved
components is one of the major design decisions in integra-
tion which cannot be automated. It is similar to the selec-
tion of one of the (possibly infinity number of) higher-order
unifiers in [3].5 However, in our case it may also be based
on the non-functional aspects (e.g., memory or performance
characteristics) of the components. Assume we thus chose
to instantiate?T with copy . The qsort -fragment then
becomes

qsort(l) = if l = [] then copy(l) else ?F (hd(l); tl(l))

In this case the primary reuse effects are rather small as the
instantiation of?T with copy saves no proof steps over
the direct solution?T = �x � [] as done in [3]. How-
ever, there are still secondary benefits. Using the explicit
library component instead of the “inlined”�x � [] improves
the adaptability of the synthesized program. If for example
the lists are refined into arrays, the refinement proof can be
restricted to the specifications of the actual components and
the original synthesis proof need not to be repeated.

4.2. Signature cleaning and signature matching

If all meta-variables are simple (cf. assumption 5), the
identification of the query’s input variables is trivial. This

5E.g.,list::constructorandcopycorrespond to two solutions of the cor-
responding higher-order unification problem?F ([])

:

= [].

assumption rarely holds and so we will lift it here. We try
to construct an appropriately cleaned, simple approximation
of the still unknown component signature. Here, we apply
abstraction, i.e., we replace non-variable object-level terms
by fresh variables and move the original instantiations (via
lifting) into the hypotheses such that they can be used as
additional preconditions which reflect the restricted calling
pattern. For example, the subgoal

V
l � H =) p(?F (hd(l); tl(l)))

becomes
V
l ; i ;m � [[H; i = hd(l);m = tl(l)]] =) p(?F (i ;m))

Abstraction does not introduce new meta-variables but (of
course) new meta-quantified object-level variables. Let us
illustrate this on thequicksort-example. Consider the proof
state in Figure 3 where?F has been instantiated with the
characteristic recursiveqsort -call and?L1 and?L2 rep-
resent the yet unknown partitions.6 Let us also temporar-
ily assume that?L2 will be instantiated with an appropriate
functiongreater in order to meet the fourth assumption.
After abstraction and some simplifications due to this in-
stantiation, the subgoal becomes

V
l ; i ;m � [[: : : ; l 6= []; i = hd(l);m = tl(l)]]
=) perm(m; ?L1(i ;m)y greater(i ;m))

^maxl(i ; ?L1(i ;m))

From this subgoal, the query specification

query (i : item;m : list) r : list
pre l 6= [] ^ i = hd(l) ^m = tl(l)
post perm(m; r y greater(i ;m))^maxl(i ; r)

can be extracted as before. Note that this specification still
contains the original, non-abstracted variablel which has to
be bound universally during the construction of the com-
plete proof task to retain correctness. Before it can be
checked against a library candidate with a different signa-
ture

6Here we omit subgoals which exclusively deal with termination issues,
e.g., (3) in Figure 3.

8l � qsort(l) = if l = [] then copy(l) else qsort(?L1(hd(l); tl(l))
y[hd(l)]yqsort(?L2(hd(l); tl(l)) ^ A1

! 8l � perm(l ; qsort(l)) ^ ord(qsort(l))

1:
V
l � [[8t � ht ; li 2?R ! perm(t ; qsort(t)) ^ ord(qsort(t));A1; l 6= []]]
=) perm(tl(l); ?L1(hd(l); tl(l))y?L2(hd(l); tl(l))) ^
minl(hd(l); ?L2(hd(l); tl(l))) ^maxl(hd(l); ?L1(hd(l); tl(l)))

...
...

Figure 3. Proof state after instantiation of recursive call.

lesseq (l 0 : list ; i 0 : item) r 0 : list
pre true
post 8 j : item �

j 2 l 0 ^ j � i 0 ! #(j ; l 0) = #(j ; r 0)

(where#(x ; k) returns the number of occurrences ofx in
k), the signature mismatchhas to be resolved: a straight-
forward matching would identify alist-parameter with an
item-parameter and thus render the task unprovable. Signa-
ture matching can exploit type information to prevent such
situations. [4] develops an approach based on constructive
isomorphisms of�-terms which fits well into our higher-
order framework.

Ultimately, the signature of an auxiliary function is the
result of a design decision; in [3] a special “two-placed vari-
ant” of the induction rule is used to introducelesseq and
greater as two-place functions. Our techniques can thus
only be an approximation. If they fail to retrieve a match-
ing component, the user has either to provide a different
call pattern by partially instantiating the meta-variable, as
in [3], or—in the worst case—to re-synthesize the missing
component.

4.3. Multiple meta-variables

Our fourth assumption states that there is only a single
meta-variable in each open subgoal. In general, this restric-
tion is also unrealistic but it can fortunately be lifted rela-
tively easily. We still assume that the meta-variables cannot
be shared across subgoals.

All meta-variables are unskolemized as normal. A query
is then formed for each meta-variable?Mi1 ; : : : ; ?Miim

un-
der consideration. To form the postcondition of the query
for ?Mij , we remove the existential quantifier over?Mij

only. This means that the other meta-variables remain exis-
tentially quantified.

Section 4.2 describes how to retrievelesseq from
the proof state, assuming thatgreater has already been
found. Consider what happens if we try to retrieve for the
meta-variables?L1 and?L2 simultaneously. We obtain two
queries corresponding to?L1 and?L2 respectively:

query-1 (i : item;m : list) r1 : list
pre l 6= [] ^ i = hd(l) ^m = tl(l)
post 9 r2 : list � perm(m; r1

yr2)
^minl(i ; r2) ^maxl(i ; r1)

query-2 (i : item;m : list) r2 : list
pre l 6= [] ^ i = hd(l) ^m = tl(l)
post 9 r1 : list � perm(m; r1

yr2)
^minl(i ; r2) ^maxl(i ; r1)

The component specification forlesseq given in Sec-
tion 4.2 and a similar specification forgreater match
these queries. There are potentially a large number of other
components that would also match the queries, however.
The key insight is to notice that the instantiations of the
two meta-variables must be satisfied simultaneously. Us-
ing the two queries independently would therefore be un-
wise. For example, consider two simpler queries with post-
conditions:

9r1 : list � perm(m; r1
yr2)

9r2 : list � perm(m; r1
yr2)

Each query used independently would retrieve, amongst
other things,list::constructor. Clearly, however, this in-
stantiation could not satisfy both queries simultaneously.
We thus follow a different approach. The idea is that
given a list of queries,Q1; : : : ;Qm for meta-variables
?M1; : : : ; ?Mm , we useQi as a filter forQi+1; : : : ;Qm .
The library is first searched usingQ1 which retrieves a num-
ber of possible instantiations for?M1. Next, the library is
searched usingQ2 but the existential variable inQ2 corre-
sponding to?M1 is instantiated with library components re-
trieved in the previous step. Each possible instantiation for
?M1 is checked. Any instantiation for which there are no
components matching the second query are dropped. This
process is repeated and the end result is a set of instantia-
tions satisfying all queries. Note that this set could be sub-
stantially smaller than if the queries had been used indepen-
dently.

In the quicksort example, the first query retrieves
lesseq . After substituting this in the second query we
get:

query-2 (i : item;m : list) r : list
pre l 6= [] ^ i = hd(l) ^m = tl(l)
post perm(m; lesseq(i ;m)yr2) ^minl(i ; r2)

Note also that the third conjunct in this query has been elim-
inated. This is the result of a post-processing step which
removes any conjuncts which no longer contain either the
output variable of the query or any existentially quantified
variables. Since such conjuncts appear in the first query
where they were proved to hold with the appropriate instan-
tiation, they must also hold in the second query under this
instantiation. So they can be removed from consideration.

This second query can now be used to retrieve
greater . In [3], the synthesis oflesseq andgreater
has to be done by an inductive proof. This involves substan-
tial time and effort on behalf of the user which can be saved
by using deductive retrieval.

4.4. Meta-variables shared across multiple open
subgoals

The third assumption states that each meta-variable ap-
pears in a unique open subgoal. There are (at least) two
solutions to this problem. The first is to form a new query
for each open subgoal within which the meta-variable ap-
pears. Since these queries must be satisfied simultaneously,
each query can be used as a filter for the next query in the
same way as was done above. Alternatively, we could ex-
tract a single query from all the open subgoals. Suppose
that there are open subgoalsG1; : : : ;Gn and that we can
use our methods to extract pre- and post-conditions for each
Gi . Then a single query extracting information from all the
subgoals is:

fullquery (: : :)
pre pre1 _ � � � _ pren
post (pre1 ! post1) ^ : : : ^ (pren ! postn)

What are the trade-offs of these two approaches? This
question can be answered in terms of the shape and number
of the corresponding proof obligations. Ignoring the pre-
conditions (since these involve easy proofs), let us look at
the obligations based on matching the query and component
postconditions.fullquery gives rise to a single proof obliga-
tion for each library component but this obligation is rather
large. In the separate query case, there are, in the worst
case,nk proof obligations, wherek is the size of the library.
Each library component must be checked to match with the
postconditions for eachGi . In practice, however, many of
these matches will fail. If a match for a library component
fails, this component can be eliminated from consideration
and matches no longer need to be checked for the remaining
Gi . Hence, there will in all likelihood be substantially fewer
thannk match obligations. Also, the proof obligations will
be much smaller. In this context, it is unclear whether it is
easier to handle a large number of small proofs or a single

large proof. Hence, further experiments are required to de-
termine which is the better strategy for deductive retrieval.

5. Related work

Manna and Waldinger have already shown [12, Sec-
tion VII] that in theory a notion of component reuse can
easily be built-into deductive tableaus. The initial tableau is
just extended by rows containing the specifications (or even
the implementations) of the library components as assump-
tion. These rows can then be used in the derivation process
the same way as the usual axioms of the background theory.
This idea can be translated in a straightforward way into
Ayari and Basin’s higher-order re-formulation of deductive
tableau.

In practice, however, this simple idea has severe disad-
vantages. In a fully automatic synthesis system, the ad-
ditional rows significantly extend the search space. In an
interactive synthesis system, finding the right component
specification for a resolution step is left to the human; how-
ever, since this is exactly the original component retrieval
task, nothing is gained.

The AMPHION system [22] follows the Manna-
Waldinger-approach to combine synthesis and retrieval but
works in the very domain-specific setting of astronomical
subroutines. AMPHION is successful because of this do-
main restriction and because the synthesis granularity is ac-
tually fairly small—each line of specification yields, on av-
erage, only three lines of code. The integration we propose
is far more general.

The KIDS system [20] provides some degree of integra-
tion of synthesis and retrieval in the sense that abstract al-
gorithms can be pre-defined as schemas which are then re-
used in later synthesis problems. We believe that the ben-
efits of integration will only be realized ifconcretealgo-
rithm re-use is also enabled. KIDS has a facility for reusing
concrete components via a process for deriving specifica-
tion morphisms using unskolemization [21]. These mor-
phisms can be applied to existing components to produce
new operators (e.g., to derive a composition operator from
a decomposition operator). However, the choice of source
component must be done manually, i.e., the retrieval prob-
lem emerges in the same way as in the Manna/Waldinger-
approach. [19] hints at how to integrate automated re-
trieval into CYPRESS, a KIDS-predecessor. The tactic
operator match attempts to match synthesis subgoals
to predefined operators. However, the tactic is applied ex-
haustively and so does not scale up to larger component li-
braries. By incorporating the pre-filters (cf. Section 2.2) we
overcome this scalability problem. [19] also fails to con-
trol whenoperator match is applied. We chose to in-
tegrate our retrieval techniques into the higher-order frame-
work because the introduction of new meta-variables yields

a convenient notion of what constitutes a substantial change
of proof state, and hence a control on when to attempt re-
trieval. However, our approach is in principle also applica-
ble to schema-based synthesis.

Our own prior work on deductive retrieval clearly
demonstrates the necessity (and feasibility) of a highly op-
timized retrieval system. An experiment using more than
100 list processing components (comparable to the auxil-
iary functions used in thequicksortexample) showed the
following results averaged over approximately 120 queries
of different granularity. The average number of match-
ing components was 15.45 with a standard deviation of
� = 22:82; however, in more than 27% of the queries,
only a single component matched. In the latest version of
NORA/HAMMR, early pre-filters reject almost 75% of the
invalid proof tasks within approx. 20 seconds per query;7

subsequent preprocessing steps improve the average proof
times by a factor of 1.5–3, depending on the prover. The
average response time per query thus drops by a factor of
almost 3. At the same time, the recall (i.e., prover success
rate) improves from 30–60% to 60–85%, again depending
on the prover. If we put all these numbers together, it means
that the average expected time to retrieve the first matching
component (which is sufficient for synthesis) drops from 19
minutes to 3.5 minutes.

6. Conclusion

In this paper, we have presented an integration of deduc-
tive retrieval into a deductive synthesis system. The key to
a practical integration is to identify promising proof states
where retrieval can be applied. This avoids overloading the
retrieval subsystem with an excessive number of redundant
queries. Experiments show that a specialized retrieval sub-
system is required to overcome the infeasibility of a naive
“all-out match”.

There are three main advantages to integration. First,
the number of interactive proof steps is substantially re-
duced; in thequicksort-example, retrieval of the auxiliary
functions saves two complex inductive sub-proofs. Second,
the granularity level of synthesis is raised from language
constructs to components. Finally, integration supports the
adaptation of retrieved “near-misses” and thus overcomes a
major problem of pure retrieval systems.

References

[1] A. Armando, A. Smaill, and I. Green. “Automatic synthesis
of recursive programs: The proof-planning paradigm”, in
[9], pp. 2–9.

[2] A. Ayari and D. Basin. “Generic system support for deduc-
tive program development”, in T. Margaria and B. Steffen

7All times were measured on a SUN Ultra 1/170.

(eds.),Proc. 2nd Intl. Workshop TACAS, LNCS 1055, pp.
313–328, Passau, Springer, 1996.

[3] A. Ayari and D. Basin. “A higher-order interpretation of
deductive tableau”, Tech. report, Univ. Freiburg, 1999.

[4] R. DiCosmo. Isomorphisms of Types: from�-calculus
to information retrieval and language design, Birkhäuser,
Boston, 1995.

[5] B. Fischer. “Specification-based browsing of software com-
ponent libraries”, in D. F. Redmiles and B. Nuseibeh (eds.),
Proc. 13th ASE, pp. 74–83, Honolulu, 1998. IEEE.

[6] D. Garlan and M. Shaw. “An Introduction to Software Ar-
chitecture”, in V. Ambriola and G. Tortora (eds.),Advances
in Software Engineering and Knowledge Engineering, pp.
1–40. World Scientific Publishing Co., 1992.

[7] W. Howard. “The formulas-as-types notion of construction”,
in J. P. Seldin and J. R. Hindley (eds.),To H. B. Curry: Es-
says on Combinatory Logic, Lambda-Calculus, and Formal-
ism, pp. 479–490. Academic Press, 1980.

[8] C. Kreitz. “Program synthesis”, in W. Bibel and P. H.
Schmitt (eds.),Automated Deduction - A Basis for Appli-
cations, pp. 105–134. Kluwer, Dordrecht, 1998.

[9] M. Lowry and Y. Ledru (eds.),Proc. 12th ASE, Lake Tahoe,
1997. IEEE.

[10] Z. Manna and R. Waldinger. “The Deductive Foundations
of Computer Programming”, Addison-Wesley, New York,
1993.

[11] Z. Manna and R. J. Waldinger. “A deductive approach to
program synthesis”,ACM TOPLAS, 2(1):90–121, 1980.

[12] Z. Manna and R. J. Waldinger. “Fundamentals of deductive
program synthesis”,IEEE TSE, 18(8):674–704, 1992.

[13] A. Mili, R. Mili, and R. Mittermeir. “A survey of software
reuse libraries”,Annals of Software Engineering, 5:349–
414, 1998.

[14] N. V. Murray. “Completely non-clausal theorem proving”,
AI, 18:67–85, 1982.

[15] L. C. Paulson.Isabelle: A Generic Theorem Prover, LNCS
828, Springer, 1994.

[16] J. Penix. Automated Component Retrieval and Adaptation
Using Formal Specifications, PhD thesis, Univ. Cincinnati,
1998.

[17] J. Penix and P. Alexander. “Efficient specification-based
component retrieval”,Automated Software Engineering,
6(2):139–170, 1999.

[18] J. M. P. Schumann and B. Fischer. “NORA/HAMMR: Mak-
ing deduction-based software component retrieval practi-
cal”, in [9], pp. 246–254.

[19] D. R. Smith. “The top-down synthesis of divide and conquer
algorithms”,AI, 27(1):43–96, 1985.

[20] D. R. Smith. “KIDS: A semi-automatic program develop-
ment system”,IEEE TSE, 16(9):1024–1043, 1990.

[21] D. R. Smith. “Constructing specification morphisms”,JSC,
15:571–606, 1993.

[22] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and
I. Underwood. “Deductive composition of astronomical
software from subroutine libraries”, in A. Bundy, (ed.)Proc.
12th CADE, LNAI 814, pp. 341–355, Nancy, Springer, 1994.

[23] C. Weidenbach. “SPASS—version 0.49”,JAR, 18(2):247–
252, 1997.

