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Abstract. Lazy sequentialization has emerged as one of the most
promising approaches for concurrent program analysis but the only effi-
cient implementation given so far works just for bounded programs.
This restricts the approach to bug-finding purposes. In this paper, we
describe and evaluate a new lazy sequentialization translation that does
not unwind loops and thus allows to analyze unbounded computations,
even with an unbounded number of context switches. In connection with
an appropriate sequential backend verification tool it can thus also be
used for the safety verification of concurrent programs, rather than just
for bug-finding. The main technical novelty of our translation is the sim-
ulation of the thread resumption in a way that does not use gotos and
thus does not require that each statement is executed at most once. We
have implemented this translation in the UL-CSeq tool for C99 programs
that use the pthreads API. We evaluate UL-CSeq on several benchmarks,
using different sequential verification backends on the sequentialized pro-
gram, and show that it is more effective than previous approaches in
proving the correctness of the safe benchmarks, and still remains com-
petitive with state-of-the-art approaches for finding bugs in the unsafe
benchmarks.

1 Introduction

Concurrent programming is becoming more important as concurrent computer
architectures such as multi-core processors are becoming more common. How-
ever, the automated verification of concurrent programs remains a difficult prob-
lem. The main cause of the difficulties is the large number of possible ways in
which the different elements of a concurrent program can interact with each
other, e.g., the number of different thread schedules. This in turn makes it diffi-
cult and time-consuming to build effective concurrent program verification tools,
either from scratch or by extending existing sequential program verification tools.
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An alternative approach is to translate the concurrent program into a non-
deterministic sequential program that simulates the original program, and then
to reuse an existing sequential program verification tool as a black-box backend
to verify this simulation program. This approach is also known as sequential-
ization [15,19,23]. It has been used successfully both for bug-finding purposes
[3,12,25] and for the verification of reachability properties [7,16,17]. Its main
advantage is that it separates the concurrency aspects from the rest of the veri-
fication tool design and implementation. This has several benefits. First, it sim-
plifies the concurrency handling, which can be reduced to one (usually simple)
source-to-source translation. Second, it makes it thus also easier to experiment
with different concurrency handling techniques; for example, we have already
implemented a number of different translations such as [5,12,25] within our CSeq
framework [11]. Third, it makes it easier to integrate different sequential back-
ends. Finally, it reduces the overall development effort, because the sequential
program aspects and tools can be reused.

The most widely used sequentialization (implemented in Corral [18], Smack
[24], and LR-CSeq [5]) by Lal and Reps [19] uses additional copies of the shared
variables for the simulation and guesses their values (eager sequentialization).
This makes the schema unsuitable to be extended for proof finding: it can han-
dle only a bounded number of context switches, and the unconstrained variable
guesses lead to over-approximations that are too coarse and make proofs infea-
sible in practice. Lazy sequentializations [15], on the other hand, do not over-
approximate the data, and thus maintain the concurrent program’s invariants
and simulate only feasible computations. They are therefore in principle more
amenable to be extended for correctness proofs although efficient implementa-
tions exist only for bounded programs [16,17].

Here, we develop and implement a lazy sequentialization that can handle
programs with unbounded loops and an unbounded number of context switches,
and is therefore suitable for program verification (both for correctness and bug-
finding). The main technical novelty of our translation is the simulation of
the thread resumption in a way that does not require that each statement is
executed at most once and does (unlike Lazy-CSeq [11–13]) not rely on gotos
to reposition the execution. Instead, we maintain a single scalar variable that
determines whether the simulation needs to skip over a statement or needs to
execute it. Our first contribution in this paper is the description of the cor-
responding source-to-source translation in Sect. 3. As a second contribution,
we have implemented this sequentialization in the UL-CSeq tool (within our
CSeq framework) for C99 programs that use the pthreads API (see Sect. 4). We
have evaluated, as a third contribution, UL-CSeq on a large set of benchmarks
from the literature and the concurrency category of the software verification
competition SV-COMP, using different sequential verification backends on the
sequentialized program. We empirically demonstrate, also in Sect. 4, that our
approach is surprisingly efficient in proving the correctness of the safe bench-
marks and improves on existing techniques that are specifically developed for
concurrent programs. Furthermore, we show that our solution is competitive with
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state-of-the-art approaches for finding bugs in the unsafe benchmarks. We
present related work in Sect. 5 and conclude in Sect. 6.

2 Multi-threaded Programs

In this paper, we use a simple multi-threaded imperative language to illustrate
our approach. It includes dynamic thread creation and join, and mutex locking
and unlocking operations for thread synchronization. However, our approach can
easily be extended to full-fledged programming languages, and our implementa-
tion can handle full C99.

P ::= (dec;)∗ (typ p( dec, ∗) {(dec;)∗stm})∗

dec ::= typ z

typ ::= bool | int | mutex | void
stm ::= seq | con | { stm; ∗}

seq ::= assume(b) | assert(b) | x=e | p( e, ∗) | return e
| if(b) stm [else stm ] | while(b) do stm | l : seq | goto l

con ::= x=y | y=x | t=create p( e, ∗) | join t
| init m | lock m | unlock m | destroy m | l : con

Fig. 1. Syntax of multi-threaded programs.

Syntax. The syntax of multi-threaded programs is defined by the grammar shown
in Fig. 1. x denotes a local variable, y a shared variable, m a mutex, t a thread
variable and p a procedure name. All variables involved in a sequential statement
are local. We assume expressions e to be local variables, constants, that can be
combined using mathematical operators. Boolean expressions b can be true or
false, or Boolean variables, which can be combined using standard Boolean
operations.

A multi-threaded program P consists of a list of global variable declarations
(i.e., shared variables), followed by a list of procedures. Each procedure has a
list of zero or more typed parameters, and its body has a declaration of local
variables followed by a statement. A statement stm is either a sequential, or a
concurrent statement, or a sequence of statements enclosed in braces.

A sequential statement seq can be an assume- or assert-statement, an assign-
ment, a call to a procedure that takes multiple parameters (with an implicit
call-by-reference parameter passing semantics), a return-statement, a condi-
tional statement, a while-loop, a labelled sequential statement, or a jump to a
label. Local variables are considered uninitialised right after their declaration,
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which means that they can take any value from their respective domains. There-
fore, until not explicitly set by an appropriate assignment statement, they can
non-deterministically assume any value allowed by their type. We also use the
symbol * to denote the expression that non-deterministically evaluates to any
possible value; for example, with x = * we mean that x is assigned any possible
value of its type domain.

A concurrent statement con can be a concurrent assignment, a call to a
thread routine, such as a thread creation, a join, or a mutex operation (i.e., init,
lock, unlock, and destroy), or a labelled concurrent statement. A concurrent
assignment assigns a shared (resp. local) variable to a local (resp. shared) one.
Unlike local variables, global variables are always assumed to be initialised to a
default value. A thread creation statement t = create p(e1, . . . , en) spawns a
new thread from procedure p with expressions e1, . . . , en as arguments. A thread
join statement, join t, pauses the current thread until the thread identified by
t terminates its execution. Lock and unlock statements respectively acquire and
release a mutex. If the mutex is already acquired, the lock operation is blocking
for the thread, i.e., the thread is suspended until the mutex is released and can
then be acquired.

We assume that a valid program P satisfies the usual well-formedness and
type-correctness conditions. We also assume that P does not contain direct or
indirect recursive function calls but contains a procedure main, which is the
starting procedure of the only thread that exists in the beginning. We call this
the main thread. We further assume that there are no calls to main in P and no
other thread can be created that uses main as starting procedure. Finally, our
programs are not parameterized, in the sense that we allow only for a bounded
number of thread creations.

Semantics. We assume a C-like semantics for each thread execution and a stan-
dard semantics by interleaving for the concurrent executions. At any given time
of a computation, only one thread is executing (active). In the beginning only
the main thread is active and no other thread exists; new threads can be spawned
by a thread creation statement and are added to the pool of enabled threads. At
a context switch the currently active thread is suspended and becomes enabled,
and one of the enabled threads is resumed and becomes the new active thread.
When a thread is resumed its execution continues either from the point where
it was suspended or, if it becomes active for the first time, from the beginning.

All threads share the same address space: they can write to or read from
global (shared) variables of the program to communicate with each other. We
assume the sequential consistency memory model: when a shared variable is
updated its new valuation is immediately visible to all the other threads [20].
We further assume that each statement is atomic. This is not a severe restriction,
as it is always possible to decompose a statement into a sequence of statements,
each involving at most one shared variable.
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mutex m1,m2; int c;

void P(int b) {
int l=b;
lock m1;
if(c>0) c=c+1
else {

c=0;
while(l>0) do {

c=c+1;
l=l-1;

}
}
unlock m1;

}

void C() {
L:lock m2;

if(c<1) {
unlock m2;
goto L;

}
c=c-1;
assert(c>=0);
unlock m2;

}

void main() {
c=0;
init m1;
init m2;
int p0,p1,c0,c1;
p0=create P(5);
p1=create P(1);
c0=create C();
c1=create C();

}

Fig. 2. Producer-consumer multi-threaded program containing a reachable assertion
failure. In the main thread, functions P and C are both used twice to spawn a thread.

Example. The program shown in Fig. 2 models a producer-consumer system,
with two shared variables, two mutexes m1 and m2, an integer c that stores the
number of items that have been produced but not yet consumed.

The main function initializes the mutex and spawns two threads executing
P (producer) and two threads executing C (consumer). Each producer acquires
m1, increments c if it is positive or copies over the initial value “one-by-one”,
and terminates by releasing m1. Each consumer first acquires m2, then checks
whether all the elements have been consumed; if so, it releases m2 and restarts
from the beginning (goto-statement); otherwise, it decrements c, checks the
assertion c ≥ 0, releases m2 and terminates.

At any point of the computation, mutex m1 ensures that at most one pro-
ducer is operating and mutex m2 ensures that only one consumer is attempting
to decrement c. Therefore the assertion cannot be violated (safe instance of the
Producer-Consumer program). However, by removing the consumers’ synchro-
nization on mutex m2, the assertion could be violated since the behavior of the
two consumer threads now can be freely interleaved: with c = 1, both consumers
can decrement c and one of them will write the value −1 back to c, and thus
violate the assertion (unsafe instance of the Producer-Consumer program). ��

3 Unlimited Lazy Sequentialization

In this section we present a code-to-code translation from a multi-threaded pro-
gram P to a sequential program P seq that simulates all executions of P .

We assume that P consists of n+1 functions f0, . . . , fn, where f0 is the main
function, and that there are no function calls and each create statement (1) is
executed at most once in any execution and (2) is associated with a distinct start
function fi. Consequently, the number of threads is bounded, and threads and
functions can be identified. For ease of presentation, we also assume that thread
functions have no arguments. We adopt the convention that each statement in P
is annotated with a (unique) numerical label: the first statement of each function
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is labelled by 0, while its following statements are labelled with consecutive
numbers increasing in the text order. This ordering on the numerical labels is
used by our translation for controlling the simulation of the starting program
in the resulting sequential program. These restrictions are used only to simplify
the presentation.

P seq simulates P in a round-robin fashion. Each computation of P is split into
rounds. Each round is an execution of zero or more statements from each thread
in the order f0, . . . , fn. Note that this suffices to capture any possible execution
since we allow for unboundedly many rounds and we can arbitrarily skip the
execution of a thread in any round (i.e., execute zero statements). The main of
P seq is a driver formed by an infinite while-loop that simulates one round of
P in each iteration, by repeatedly calling the thread simulation function fseq

i of
each thread fi.

Each simulation function fseq
i can non-deterministically exit at any statement

to simulate a context switch. Thus, for each thread fi, P seq maintains in a global
variable pci the numerical label at which the context switch was simulated in
the previous round and where the computation must thus resume from in the
next round. The local variables of fi are made persistent in fseq

i (i.e., changed
to static) such that we do not need to recompute them on resuming suspended
executions. Each fseq

i is essentially fi with few lines of injected control code for
each statement that guard its execution, and the thread routines (i.e., create,
join, init, lock, unlock, destroy) are replaced with calls to corresponding
simulation functions. The execution of each call to a function fseq

i goes through
the following modes:

RESUME: the control is stepping through the lines of code without executing any
actual statements of fi until the label stored in pci is reached; this mode is
entered every time the function fseq

i is called.
EXECUTE: the execution of fi has been resumed (i.e., the label stored in pci has

been reached) and the actual statements of fi are now executing.
SUSPEND: the execution has been blocked and the control returns to the main

function; hence, no actual statements of fi are executed in this mode. It
is entered non-deterministically from the EXECUTE mode; on entering it, the
numerical label of the current fi statement (the one to be executed next) is
stored in pci.

Code-to-Code Translation

We now describe our translation in a top-down fashion and convey an informal
correctness argument as we go along. The entire translation is formally described
by the recursive code-to-code translation function [[·]] defined by the rewrite rules
given in Fig. 3. Rule 1 gives the outer structure of P seq: it adds the declarations
of the global auxiliary variables, replaces each thread function fi with the corre-
sponding simulation function fseq

i , adds the code stubs for the thread routines,
and then the main function. The remaining rules give the transformation for all



180 T.L. Nguyen et al.

1.

(dec;)∗

(
void fi ()
{(dec;)∗stm}

)i=0,...,n

def
=

bool created0=1,created1,. . .,createdn;
int s, pc0,. . .,pcn;
(dec;)∗ ( void f seq

i (){(static dec;)∗ stm i})i=0,...,n
seq create(int t, int arg){...}
seq join(int t){...}
seq init(int m){...} seq destroy(int m){...}
seq lock(int m){...} seq unlock(int m){...}
main(){...}

2. stm i

def
= CONTR(l) l : seq i | CONTR(l) l : EXEC( con i) | { stm i;

∗}

3. seq i

def
=

EXEC(assume(b)) | EXEC(assert(b)) | EXEC(x=e) |
EXEC(return e)| if(b) stm [else stm] i |
while(b) do stm i | EXEC(goto l)

4. con i
def
=

x=y | y=x | t := create fj() i | join t i

| initm i | lockm i | unlockm i | destroym i

5.
if(b) { . . . l1 :stm1}
[ else { . . . l2 :stm2} ]

i

def
=

if((s==RESUME && pci <= l1)||(s==EXECUTE && b))
{. . . l1 : stm} i

else if((s==RESUME && pci <= l2) || (s==EXECUTE))
{. . . l2 : stm} i;

6. while(b)do { . . . l1 :stm}
i

def
=

while( (s == RESUME && pci <= l1)
|| (s == EXECUTE && b)) do

{. . . l1 : stm} i;

7. t := create fj() i
def
= { t := j; seq create(e, j) }

8. join t i
def
= seq join(t)

9. initm i
def
= seq init(m)

10. lockm i
def
= seq lock(m)

11. unlock m i
def
= seq unlock(m)

12. destroy m i
def
= seq destroy(m)

CONTR(l)
def
=

if(s == RESUME && pci == l) s = EXECUTE;
if(s == EXECUTE && *) { pci = l; s=SUSPEND;}

EXEC(x)
def
= if(s == EXECUTE ) {x; };

Fig. 3. Rewriting rules for the lazy sequentialization.

statement types in our grammar; we will return to this in the description of the
translation of each thread function fi into the corresponding simulation function
fseq
i .

We start by describing the global auxiliary variables used in the translation.
Then, we give the details of function main of P seq, and illustrate the translation
from fi into fseq

i . Finally, we discuss how the thread routines are simulated.

Auxiliary Variables. Let N denote the maximal number of threads in the program
other than the main thread. We statically assign a distinct identifier to each
thread of P from the interval [0, N]; the identifier assigned to main is 0. During the
simulation of P , P seq maintains the following auxiliary variables, for i ∈ [0, N]:
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– bool createdi tracks whether the thread with identifier i has ever been cre-
ated. Initially, only created0 is set to true since fseq

0 simulates the main
function of P .

– int pci stores the numerical label of the last context switch point for thread
i. All the variables pci are initialized to 0 that is the numerical label of the
first statement of all thread functions.

– int s tracks the simulation mode as described above. It can only assume the
values RESUME, EXECUTE, or SUSPEND.

Main Driver. The new main of P seq (see Fig. 4) consists of an infinite loop that
calls at each iteration the thread functions of the active threads.

int main(void){
while(true)do {

s = RESUME; /* set mode to RESUME before thread simulation */
f0(); /* main thread simulation */

s = RESUME;
if (created1) f1(); /* simulation of thread with id 1 */
. . .
s = RESUME;
if (createdn) fn(); /* simulation of thread with id n */

}
}

Fig. 4. The main function of P seq.

Thread Simulation Functions. Each function fi representing a thread in P is
translated into the thread simulation function fseq

i in P seq as follows. First, the
local variables of fi are declared as static in fseq

i to make them persistent
between consecutive invocations of fseq

i . Then, [[·]]i is applied recursively to the
statements in the body of fseq

i (see Rule 1 of Fig. 3).
For each statement we inject a few lines of code that implement the control

of the simulation, i.e., make decisions on mode transitions in the simulation
and, depending on the current mode, execute or skip the guarded statement.
Specifically, every original statement is preceded by the code of the macro CONTR
defined in Fig. 3 that takes as input the label l of the statement (see Rule 2). The
injected code allows to set the mode to EXECUTE if the simulation is in RESUME
mode and the old context switch point is reached. After that, if the simulation is
in EXECUTE mode, it can non-deterministically transit into SUSPEND, and if so the
label l is stored into pci. Note that, to skip the execution of a thread in a round,
we need first to switch from RESUME to EXECUTE and then to SUSPEND before the
simulation of the original statement. Furthermore, except for if- and while-
statements, all the other statements are guarded by an if-statement injected by
the macro EXEC that prevents their simulation unless the mode of the simulation
is EXECUTE.

We need to (partially) simulate the if- and while-statements even if we
are in RESUME mode, in order to position the execution back to the resumption
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point stored in pci. We achieve this by modifying their respective control flow
guards. For the if-statement (see Rule 3), we check whether pci is in either of
the then- or else-branch (note that if pci was less then the label of the current if-
statement, we must already be in the EXECUTE mode and so we need to compare
only against l1 and l2 which are respectively the labels of the last statements
in the then- and else branches). If so, we go into the corresponding branch,
independent of the current valuation of the condition b; we do this because we
are only repositioning, and our resumption point reflects the previous valuation
of the condition that held when the context switch occurred. Of course, if we are
in EXECUTE mode, we need to check the condition. We follow a similar approach
for while-statements. Note that here we only need one iteration over the loop’s
body to find the resumption point, so we do not need to check the condition in
the RESUME mode. Finally, each call to a thread routine is also translated into a
call to the corresponding simulation function (Rules 7–12).

Figure 5 shows the thread simulation function resulting from sequentializing
the thread P shown in Fig. 2.

void P (int b){ static int l;
if (s == RESUME && pc == 0) s = EXECUTE;
if (s == EXECUTE && *) {pc = 0; s = SUSPEND;}
if (s == EXECUTE) { l = b; }
if (s == RESUME && pc == 1) s = EXECUTE;
if (s == EXECUTE && *) {pc = 1; s = SUSPEND;}
if (s == EXECUTE) { seq lock(m1); }
if (s == RESUME && pc == 2) s = EXECUTE;
if (s == EXECUTE && *) {pc = 2; s = SUSPEND;}
if ((s == RESUME && pc <= 3) || (s == EXECUTE && (c > 0))){

if (s == RESUME && pc == 3) s = EXECUTE;
if (s == EXECUTE && *) {pc = 3; s = SUSPEND;}
if (s == EXECUTE && LOCKED(m1)) { c = c + 1; }}

else if ((s == RESUME && pc <= 6) || (s == EXECUTE)) {
if (s == RESUME && pc == 4) s = EXECUTE;
if (s == EXECUTE && *) {pc = 4; s = SUSPEND;}
if (s == EXECUTE && LOCKED(m1)) { c = 0; }
if (s == RESUME && pc == 5) s = EXECUTE;
if (s == EXECUTE && *) {pc = 5; s = SUSPEND;}
while ((s == RESUME && pc <= 6) || ((s == EXECUTE) && (l > 0))) do {

if (s == RESUME && pc == 6) s = EXECUTE;
if (s == EXECUTE && *) {pc = 6; s = SUSPEND;}
if (s == EXECUTE && LOCKED(m1)) { c = c + 1; }
if (s == EXECUTE && LOCKED(m1)){ l = l - 1; }}}

if (s == RESUME && pc == 7) s = EXECUTE;
if (s == EXECUTE && *) {pc = 7; s = SUSPEND;}
if (s == EXECUTE && LOCKED(m1)) { seq unlock(m1); }
if (s == EXECUTE || (s == RESUME && pc == 8)){ pc = 8; s = SUSPEND; }

}

Fig. 5. Translation of thread P from Fig. 2.

Simulation of the Thread Routines. For each thread routine we provide a verifi-
cation stub, i.e., a simple standard C function that replaces the original imple-
mentation for verification purposes. The verification stubs are identical to those
used by Lazy-CSeq. Below, we informally describe how they work; full details
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are given in [12]. In seq create we simply set the thread’s created flag. Note
that we do not need to store the thread start function, as the main driver calls all
thread simulation functions explicitly and seq create uses an additional integer
argument that serves as thread identifier that is statically determined in the call.

According to the semantics of the join-statement, a thread executing join
t should be blocked until thread t is terminated (i.e., the corresponding pc vari-
able is set to LAST LABEL that is a statically defined constant larger than any
other label in P ). We choose to not implement in P seq any notion of blocking or
unblocking a thread; instead seq join uses an assume-statement with the con-
dition pc t == LAST LABEL to prune away any simulation that corresponds to a
blocking join. We can then see that this pruning does not alter the thread reach-
ability properties of the original program. Assume that the joining thread t ter-
minates after the execution of join t. The invoking thread should be unblocked
then but the simulation has already been pruned. However, this execution can
be captured by another simulation in which a context switch is simulated right
before the execution of this join-statement, and the invoking thread is scheduled
to run only after t has terminated, hence avoiding the pruning as above.

For mutexes we need to know whether they are free or already destroyed, or
which thread holds them otherwise. For this, in the corresponding functions, we
use two constants FREE and DESTROY. On initializing or destroying a mutex we
assign it the appropriate constant. In seq lock, we assert that the mutex is not
destroyed and then check whether it is free before assigning it the index of the
thread that has invoked the function. As in the case of the join-statement we
block the simulation if the lock is held by another thread. In seq unlock, we
first assert that the lock is held by the invoking thread and then set it to FREE.
We also support re-entrant mutexes.

Correctness. The correctness of our construction is quite straightforward.
For the completeness, assume any non-empty execution ρ of P that creates

at most N threads. Let ρ = ρ0 . . . ρk be split into maximal execution contexts
(i.e., each ρi is non-empty and has statements only from one thread and ρi and
ρi+1 are from different threads). Clearly, ρ0 is a context of the main thread of
P that is the only one existing in the beginning. P seq starts the execution from
the driver main and then calls fseq

0 (i.e., the simulation function of the main
thread of P ). At the first injected control code, since s evaluates to RESUME and
pc0 evaluates to 0 (since s is always set to RESUME in the driver before calling
a simulation function and all the pci’s are initialized to 0), and since we do
not context switch yet, s is updated to EXECUTE and the original statement of
P is executed (see Fig. 3). The simulation of the remaining statements in ρ0 is
done similarly. On context-switching from ρ0 to ρ1, at the second if-statement
of the macro CONTR injected to control the first statement in ρ1, since we are
in the EXECUTE mode, we can select to context-switch and thus pc0 is updated
with the label of this statement (that is the next to execute when the thread
will be resumed) and change the simulation mode to SUSPEND. From this point
to the end of fseq

0 the control code will skip the execution of all the remaining
statements of f0, and thus the control returns to the main function of P seq after
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the call to fseq
0 . Now, assume that ρ1 is a context of a thread fj , j �= 0. Clearly,

the thread must have been created in ρ0, thus createdj must hold true. Thus
in the main driver we skip all calls to fi for i < j, either because createdi is
false (i.e., the thread has not been created yet) or because we context-switch out
immediately when calling fseq

i . Then, we call fseq
j and repeat the same argument

as for ρ0. To complete this part we need just to handle the case when we execute
a context ρj of thread fi that is not its first context. In this case, since the
simulation mode is set to RESUME in the main driver, the control code forces to
skip all the statement of P until we reach the label stored in pci. Since all the
local variables are declared static and there are no function calls besides the
call to the thread routine stubs, the local state of fi is exactly as it was when
the thread was pre-empted last time. Therefore, we can simulate ρj as observed
above and we are done.

The soundness argument is a direct consequence of the fact that P seq exe-
cutes statements of P and the injected control code just positions the control
for the simulation of context-switching. Thus, from each execution ρ of P seq we
can extract an execution of P by simply projecting out the auxiliary variables
and the control code statements.

Therefore, we get that P seq violates an assertion if and only if P does and
the following theorem holds:

Theorem 1. A concurrent program P violates an assertion in at least one of
its executions with at most N thread creations if and only if P seq violates the
same assertion.

4 Implementation and Experiments

4.1 Implementation

We have implemented in UL-CSeq v0.21 the schema discussed in Sect. 3 as a
code-to-code transformation for sequentially-consistent concurrent C programs
with POSIX threads (pthreads). This implementation is slightly optimized com-
pared to the version that participated (using the CPAchecker backend) in SV-
COMP16 [22].

UL-CSeq is implemented as a chain of modules within the CSeq framework [5,
6]. The sequentialized program is obtained from the original program through
transformations, which (i) insert boilerplate code for simulating the pthreads
API; (ii) unwind any loops that create threads; (iii) create multiple copies of
the thread start functions, and inline all other function calls; (iv) implement the
translation rules, as shown in Fig. 3; and (v) insert code for the main driver, and
finalize the translation by adding backend-specific instrumentation.

1 http://users.ecs.soton.ac.uk/gp4/cseq/files/ul-cseq-0.2 64bit.tar.gz.

http://users.ecs.soton.ac.uk/gp4/cseq/files/ul-cseq-0.2_64bit.tar.gz
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4.2 Experiments

We experimentally evaluated the capabilities and performance of our UL-CSeq
implementation (as sketched above) for both verification and bug-finding pur-
poses. We mainly used the benchmark set from the Concurrency category of the
TACAS Software Verification Competition (SV-COMP16) [2]. These are wide-
spread benchmarks, and many state-of-the-art analysis tools have been trained
on them. They offer a good coverage of the core features of the C program-
ming language as well as of the basic concurrency mechanisms. In addition, we
also used two smaller benchmark collections from the literature [7,27]. For all
benchmarks we unwound thread-creating loops twice. Since we executed the ver-
ification and the bug-finding experiments on different machines and benchmark
subsets, we report on them separately.

Verification. Here, we used UL-CSeq in combination with four different sequen-
tial backends (SeaHorn, Ultimate Automizer, CPAchecker, and VVT), and com-
pared it with four different verification tools with built-in concurrency handling
(Impara, Satabs, Threader, and VVT). These were chosen to cover a range of
different sequential and concurrent verification techniques. Please note that we
cannot compare to the top tools of the SV-COMP because all three medal win-
ners are based on bounded model checking and do not produce proofs but simply
claim benchmarks to be safe if they do not find a bug with their chosen settings.

Experimental Setup. For the verification experiments, we used the 221 safe
benchmarks from the SV-COMP collection as well as the 13 safe benchmarks
from [7,27]. The total size of the benchmarks was approximately 37 K lines
of code. We ran the experiments on a large compute cluster of Xeon E5-2670
2.6 GHz processors with 16 GB of memory each, running a Linux operating sys-
tem with 64-bit kernel 2.6.32. We set a 15 GB memory limit and a 900 s timeout
for the analysis of each benchmark. We used SeaHorn [9] (v0.1.0),2 an LLVM-
based [21] framework for verification of safety properties of programs using Horn
Clause solvers; Ultimate Automizer [10] (SV-COMP16),3 an automata-based
software model checker that is implemented in the Ultimate software analysis
framework; CPAchecker (v1.4 with predicate abstraction),4 a tool for config-
urable software verification that supports a wide range of techniques, includ-
ing predicate abstraction, and shape and value analysis; Impara (v0.2),5 a tool
that implements an algorithm that combines a symbolic form of partial-order
reduction and lazy abstraction with interpolants for concurrent programs; Satabs

2 https://github.com/seahorn/seahorn/releases/download/v0.1.0/SeaHorn-0.1.0-Linu
xx8664.tar.gz.

3 http://ultimate.informatik.uni-freiburg.de/downloads/svcomp2016/UltimateAutom
izer.zip.

4 http://cpachecker.sosy-lab.org/CPAchecker-1.4-unix.tar.bz2.
5 http://www.cprover.org/concurrent-impact/impara-linux64-0.2.tgz.

https://github.com/seahorn/seahorn/releases/download/v0.1.0/SeaHorn-0.1.0-Linuxx8664.tar.gz
https://github.com/seahorn/seahorn/releases/download/v0.1.0/SeaHorn-0.1.0-Linuxx8664.tar.gz
http://ultimate.informatik.uni-freiburg.de/downloads/svcomp2016/UltimateAutomizer.zip
http://ultimate.informatik.uni-freiburg.de/downloads/svcomp2016/UltimateAutomizer.zip
http://cpachecker.sosy-lab.org/CPAchecker-1.4-unix.tar.bz2
http://www.cprover.org/concurrent-impact/impara-linux64-0.2.tgz
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Table 1. Performance comparison of different verification tools on safe benchmarks:
UL-CSeq with different sequential backends (top); other tools with built-in concur-
rency handling (bottom). Each row corresponds to a sub-category of the SV-COMP16
benchmarks, or to one of the benchmark sets from the literature; we report the number
of files and the total number of lines of code. pass denotes the number of correctly veri-
fied safe benchmarks (i.e., proofs found), fail the number of benchmarks where the tool
found a spurious error or crashed (including running out of memory), t.o. the number
of benchmarks on which the tool exceeded the given time limit, and time is the average
proof time (i.e., excluding failed attempts).

UL-CSeq +

SeaHorn Automizer CPAchecker VVT

Sub-category Files l.o.c. pass fail t.o. time pass fail t.o. time pass fail t.o. time pass fail t.o. time

pthread 15 1285 3 2 10 67.3 3 2 10 390.8 2 3 10 204.9 5 3 7 247.3

pthread-atomic 9 1136 6 1 2 167.9 3 1 5 456.7 5 0 4 352.6 5 0 4 171.8

pthread-ext 45 3679 27 0 18 199.1 12 2 31 226.5 15 0 30 214.6 16 5 24 179.7

pthread-lit 8 427 3 0 5 23.3 1 0 7 544.9 3 0 5 164.1 3 2 3 79.8

pthread-wmm 144 29426 144 0 0 32.5 60 0 84 421.6 26 0 118 271.3 141 0 3 275.3

[27] 7 542 5 0 2 51.1 3 1 3 238.6 4 0 3 244.7 4 1 2 133.1

[7] 6 290 6 0 0 5.7 5 0 1 181.8 5 0 1 44.9 6 0 0 17.2

Totals 234 36785 194 3 37 59.9 87 6 141 376.2 60 3 171 235.7 180 11 43 248.2

Impara Satabs Threader VVT

Sub-category Files l.o.c. pass fail t.o. time pass fail t.o. time pass fail t.o. time pass fail t.o. time

pthread 15 1285 5 2 8 12.2 3 8 4 308.7 6 8 1 128.4 5 1 9 7.3

pthread-atomic 9 1136 5 0 4 61.8 4 3 2 1.3 7 0 2 24.4 7 1 1 143.7

pthread-ext 45 3679 30 0 15 8.7 15 13 17 34.6 36 1 8 104.8 38 1 6 66.2

pthread-lit 8 427 2 0 6 0.4 2 5 1 8.1 0 7 1 N/A 5 1 2 7.3

pthread-wmm 144 29426 24 0 120 9.0 100 22 22 312.2 0 144 0 N/A 130 0 14 222.2

[27] 7 542 6 0 1 0.5 4 1 2 1.0 5 1 1 27.5 4 3 0 154.7

[7] 6 290 5 1 0 2.7 6 0 0 0.8 3 3 0 58.2 3 3 0 8.8

Totals 234 36785 77 3 154 11.2 134 52 48 244.0 57 164 13 88.2 192 10 30 172.6

(v3.2),6 a verification tool based on predicate abstraction; and Threader (SV-
COMP14), a tool that uses compositional reasoning with regards to the thread
structure of concurrent programs based on abstraction refinement. VVT (SV-
COMP16), a tool that can both verify programs using IC3 and predicate abstrac-
tion also can find bugs using bounded model checking. We ran each tool with
its default configuration.

Results. Table 1 summarizes the results. It demonstrates that our approach is
(with suitable backends) surprisingly effective: using SeaHorn, we can prove 194
out of the 234 benchmarks, and just edge out victory over VVT, the best-
performing tool with built-in concurrency handling. However, note that UL-
CSeq’s performance varies widely with the applied backend, and using Automizer
or CPAchecker produces noticeably worse results. Proof times are difficult to
compare in aggregate, but overall UL-CSeq’s proof times are within the range
of the other tools, indicating that the sequentialization does not introduce too
much complexity. This is further corroborated by the fact that the combination
of UL-CSeq and VVT (which finds 180 proofs) is only slightly weaker than VVT
relying on its built-in concurrency handling (which finds 192 proofs).
6 http://www.cprover.org/satabs/download/satabs-3-2-linux-32.tgz.

http://www.cprover.org/satabs/download/satabs-3-2-linux-32.tgz
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Table 2. Performance comparison of different tools on the unsafe instances of the
SV-COMP16 Concurrency category. Each row corresponds to a sub-category of the
SV-COMP16 benchmarks; we report the number of files and the total number of lines
of code. pass now denotes the number of correctly identified unsafe benchmarks (i.e.,
counterexamples found) and t.o. the number of benchmarks on which the tool exceeded
the given time limit, and time the average time to find a bug. None of the tools reported
any spurious counterexample.

Sub-category Files l.o.c UL-CSeq+CBMC Lazy-CSeq+CBMC CBMC CIVL Smack

pass t.o time pass t.o time pass t.o time pass t.o time pass t.o time

pthread 17 4085 14 3 12.2 17 0 19.4 16 1 63.1 17 0 14.9 8 9 84.2

pthread-atomic 2 204 2 0 1.4 2 0 1.0 2 0 0.4 2 0 3.4 2 0 15.0

pthread-ext 8 780 8 0 1.0 8 0 0.3 7 1 12.0 8 0 0.3 8 0 47.2

pthread-lit 3 148 3 0 1.4 3 0 1.3 2 1 0.2 3 0 2.7 1 2 11.1

pthread-wmm 754 237700 754 0 1.1 754 0 1.2 754 0 0.5 754 0 6.1 753 1 78.1

Total 784 242917 781 3 1.4 784 0 1.6 781 3 2.9 784 0 6.2 772 12 77.6

Bug-Finding. Here, we used UL-CSeq in combination with CBMC as sequen-
tial backend, and compared it with four different bug-finding tools, Lazy-CSeq,
CBMC, CIVL, and Smack. All four are (ultimately) based on bounded model
checking, and have performed very well in the recent SV-COMP verification
competitions: both Lazy-CSeq and CIVL scored full marks. Note that the ver-
ifiers we used in the experiments described in the previous section performed
noticeably worse.

Experimental Setup. For the bug-finding experiments, we used the 784 unsafe
benchmarks from the SV-COMP collection. The total size of the benchmarks
was approximately 240 K lines of code. We ran the experiments on an otherwise
idle machine with an Intel i7-3770 CPU 3.4 GHz and 16 GB of memory, running
a Linux operating system with 64-bit kernel 4.4.0. We also set a 15 GB memory
limit and a 900 s timeout for the analysis of each benchmark.

We used CBMC [4] (v5.4)7 both as sequential backend (for UL-CSeq and
Lazy-CSeq) and stand-alone bug-finding tool. It is a mature SAT-based bounded
software model checker that uses a partial-order approach [1] to handle concur-
rent programs. We further used Lazy-CSeq [12] (v1.0),8 a lazy sequentialization
for bounded programs; CIVL [28] (v1.5),9 a framework that uses a combination
of explicit model checking and symbolic execution for verification; and SMACK
[24] (v1.5.2),10 a bounded software model checker that verifies programs up to
a given bound on loop iterations and recursion depth. For all tools we used as
loop unwinding and round bounds the (same) minimum values necessary to find
all bugs in the given sub-category.

Results. Table 2 summarizes the results. We can see that our proof -oriented
sequentialization does not actually impact negatively on our tool’s bug-finding
7 http://www.cprover.org/cbmc/download/cbmc-5-4-linux-64.tgz.
8 http://users.ecs.soton.ac.uk/gp4/cseq/files/lazy-cseq-1.0.tar.gz.
9 http://vsl.cis.udel.edu/lib/sw/civl/1.5/svcomp16/CIVL-1.5 2739 svcomp16.tgz.

10 http://soarlab.org/smack/smack-1.5.2-64.tgz.

http://www.cprover.org/cbmc/download/cbmc-5-4-linux-64.tgz
http://users.ecs.soton.ac.uk/gp4/cseq/files/lazy-cseq-1.0.tar.gz
http://vsl.cis.udel.edu/lib/sw/civl/1.5/svcomp16/CIVL-1.5_2739_svcomp16.tgz
http://soarlab.org/smack/smack-1.5.2-64.tgz
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performance. UL-CSeq solves 781 of the 784 benchmarks, only three fewer
than Lazy-CSeq (whose sequentialization specifically exploits the structure of
bounded programs) or CIVL, and more than Smack. Analysis times are com-
parable across all tools, with the exception of the noticeably slower Smack.
These results indicate that unwinding and lazy sequentialization can effectively
be applied in either order.

The UL-CSeq source code, static Linux binaries and benchmarks are available
at http://users.ecs.soton.ac.uk/gp4/cseq/atva16.zip.

5 Related Work

There is a wide range of approaches to verify concurrent programs. However,
here we focus on more closely related sequentialization approaches. The idea
of sequentialization was originally proposed by Qadeer and Wu [23]. The first
scheme for an arbitrary but bounded number of context switches was given in
[19]. Since then, several algorithms and implementations have been developed
(see [3,5,14,15,18]).

Lazy sequentialization schemes have played an important role in the develop-
ment of efficient tools. Their main feature is that they do not guess the original
program’s data but just its schedules and so induce less non-determinism and
often simpler verification conditions. They also only explore reachable states of
the original program, thus preserving the local invariants. This last property
makes them suitable for static analysis [19]. The first such sequentialization was
given in [15] for bounded context switching and extended to unboundedly many
threads in [16,17]. These schemes avoid the cross-product of the local states
(since only one thread is tracked at any time of a computation) but require their
recomputation at each context-switch. This is a major drawback when such
a sequentialization is used in combination with bounded model-checking (see
[8]). The scheme Lazy-CSeq [12] avoids such recomputations by flattening the
programs and making the locals persistent, and achieves efficiency by handling
context-switches with a very lightweight and decentralized control code.

All sequentializations mentioned above yield under-approximations of the
multi-threaded programs and thus (except for [16] that gives a sufficient con-
dition to test completeness of the reached state space) are designed mainly for
bug-finding. The new lazy sequentialization that we have designed in this paper
is similar in spirit to Lazy-CSeq in that it injects lightweight control code to repo-
sition the program counter on simulating a thread resumption but the injected
control code itself is completely different. The main limitation of Lazy-CSeq’s
approach is that it assumes that each thread program counter uniquely iden-
tify its local state (which can be guaranteed for loop-free bounded programs),
whereas our approach can handle a wider class of programs. First, we do not
unwind loops and thus we allow for an exact simulation of unbounded loops.
Second, we do not bound the number of context-switches in any explored com-
putation. Our experiments show that the new control code is almost as effective
as the goto-based control code used in Lazy-CSeq when using UL-CSeq with a

http://users.ecs.soton.ac.uk/gp4/cseq/atva16.zip
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bounded model checking backend, and performs very well when used to prove
correctness of programs.

The only sequentialization that can be used to prove correctness of mul-
tithreaded programs is [7], but its approach is quite different from ours. It is
closely related to the rely-guarantee style proofs and is aimed to avoid the cross-
product of the thread-local states. Only the valuation of some local variables of
the other threads (forming the abstraction for the assume-guarantee relation)
is retained when simulating a thread. For this, frequent recomputations of the
thread local states are required (in particular, whenever a context switch needs
to be simulated in the construction of the rely-guarantee relations) which intro-
duces control non-determinism and recursive function calls even if the original
program does not contain any recursive calls. Moreover, the resulting sequen-
tialization yields an overapproximation of the original program and thus cannot
be used for bug-finding.

6 Conclusions and Future Work

We have presented a new sequentialization of concurrent programs that does not
need to bound the number of context-switches or to unwind the loops. We only
bound the number of threads and do not allow unbounded function call recursion.
Noticeably, the resulting sequential program preserves all local invariants of the
original program. In combination with suitable sequential verification tools it
can thus be used both to find bugs (i.e., prove assertion violations) and prove
concurrent programs safe.

We have implemented this sequentialization in the tool UL-CSeq within our
framework CSeq and provided support for several backends. We have conducted
a large set of experiments which have shown that UL-CSeq performs almost as
efficiently as the best performing tools for bug-finding, and is very competitive for
proving correctness. To the best of our knowledge this is the first approach that
works well both as bug finder and to prove correctness for concurrent programs.

UL-CSeq is a first prototype implementation and has wide margins for
improvements with fine tuning and optimizations. As future work, we plan to
extend the range of programs that UL-CSeq can handle. We will modify the
translation to lift some of the restrictions (e.g., the bounded number of thread
creations), and will support new language features (e.g., other thread synchro-
nization and communication primitives). We will also integrate further backends.
Finally, we are working to extend our approach to support weak memory models
implemented in modern architectures [26].
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