
AutoBayes/CC — Combining Program

Synthesis with Automatic Code Certification
— System Description —

Michael Whalen†, Johann Schumann‡, and Bernd Fischer‡

†Department of Computer Science and Engineering
Univ. of Minnesota, Minneapolis, MN 55455 email: whalen@cs.umn.edu

‡RIACS / NASA Ames, Moffett Field, CA 94035
email: {schumann|fisch}@email.arc.nasa.gov

1 Introduction

Code certification is a lightweight approach to formally demonstrate software
quality. It concentrates on aspects of software quality that can be defined and
formalized via properties, e.g., operator safety or memory safety. Its basic idea
is to require code producers to provide formal proofs that their code satisfies
these quality properties. The proofs serve as certificates which can be checked
independently, by the code consumer or by certification authorities, e.g., the
FAA. It is the idea underlying such approaches as proof-carrying code [6].

Code certification can be viewed as a more practical version of traditional
Hoare-style program verification. The properties to be verified are fairly simple
and regular so that it is often possible to use an automated theorem prover
to automatically discharge all emerging proof obligations. Usually, however, the
programmer must still splice auxiliary annotations (e.g., loop invariants) into the
program to facilitate the proofs. For complex properties or larger programs this
quickly becomes the limiting factor for the applicability of current certification
approaches.

Our work combines code certification with automatic program synthesis [4]
which makes it possible to automatically generate both the code and all necessary
annotations for fully automatic certification. By generating detailed annotations,
one of the biggest obstacles for code certification is removed and it becomes pos-
sible to automatically check that synthesized programs obey the desired safety
properties.

Program synthesis systems are built on the notion of “correctness-by-construc-
tion”, i.e., generated programs always implement the specifications correctly.
Hence, verifying these programs may seem redundant. However, a synthesis sys-
tem ensures only that code fragments are assembled correctly while the frag-
ments themselves are included in the domain theory and thus not directly verified
by the synthesis proof. Our approach can verify properties about the instantiat-
ed code fragments, and so provides additional guarantees about the generated
code.

2 The AutoBayes/CC System

AutoBayes/CC (Fig. 1) is a code certification extension to the AutoBayes
synthesis system, which is used in the statistical data analysis domain[2]. Its
input specification is a statistical model, i.e., it describes how the statistical
variables are distributed and depend on each other and which parameters have
to be estimated for the given task. AutoBayes synthesizes code by exhaustive,
layered application of schemas. A schema consists of a code fragment with open
slots and a set of applicability conditions. The synthesis system fills the slots with
code fragments by recursively calling schemas. The conditions constrain how the
slots can be filled; they must be proven to hold for the specification model before
the schema can be applied. Some of the schemas contain calls to symbolic equa-
tion solvers, others contain entire skeletons of statistical or numerical algorithms.
By recursively invoking schemas and composing the resulting code fragments,
AutoBayes is able to automatically synthesize programs of considerable size
and internal complexity (currently up to 1,400 lines of commented C++ code).

forall I : int &
 asize(mu) = N
 and ...

Safety
policy

Domain
theory

Mops Verification CG

E-SETHEO

input specification

annotated Modula-2 code

first order logic

x ~ N(mu,sigma)
max pr(x | mu..

Annotation Propagation

AutoBayes
Synthesis System

FOR i:=1 TO N
 mu[i] := ...
(* POST ...

Fig. 1. The AutoBayes/CC system architecture

At the core of the CC-extension lie “certification augmentations” to the
AutoBayes-schemas; these augmentations are schematic Hoare-style code an-
notations that describe how the schema-generated code locally affects properties
of interest to our safety policy (currently memory and operator safety). For ex-
ample, a loop is annotated with a schematic invariant and schematic pre- and
postconditions describing how its body changes the variables of the program.
During synthesis, the annotations are instantiated in parallel with the original
schemas. The domain knowledge encoded in each schema is detailed enough to
provide all information required for the instantiation. These annotations are also
used to partition the safety proofs into small, automatically provable segments.

Unfortunately, these schema-local annotations are in general insufficient to
prove the postconditions at the end of recursively composed fragments—an “in-
ner” loop-invariant may not be aware of proof obligations that are relevant to

an “outer” loop-invariant. AutoBayes overcomes this problem by propagating

any unchanged information through the annotations. Since program synthesis
restricts aliasing to few, known places, testing which statements influence which
annotations can be accomplished easily without full static analysis of the syn-
thesized program.

As a next step, the synthesized annotated code is processed by a verification
condition generator (VCG). Here we use the VCG of the Modula Proving System

Mops [3], a Hoare-calculus based verification system for a large subset of the
programming language Modula-2,1 including pointers, arrays, and other data
structures. Mops uses a subset of VDM-SL as its specification language; this is
interpreted here only as syntactic sugar for classical first-order logic.

The proof obligations generated by Mops are then fed (after automatic syn-
tactic transformation and addition of domain axioms) into the automated theo-
rem prover E-Setheo, version csp01 [1]. E-Setheo is a compositional theorem
prover for formulas in first-order logic, combining the systems E [8] and Setheo
[5]. The individual subsystems are based on the superposition, model elimina-
tion, and semantic tree calculi. Depending on syntactic characteristics of the
input formula, an optimal schedule for each of the different strategies is selected.
Because all of the subsystems work on formulas in clausal normal form (CNF),
the first-order formula is converted into CNF using the module Flotter [10].

3 A Certification Example

We illustrate the operation of our system on a standard data analysis task: clas-
sify normally (Gaussian) distributed data from a mixture of sources (e.g., photon
energy levels in a spectrum). A straightforward 19-line specification is sufficient
to describe the problem in domain-specific terms. The synthesized program uses
an iterative EM (expectation maximization) algorithm and consists of rough-
ly 380 lines of code, 90 of which are auto-generated comments to explain the
code. For details see http://ase.arc.nasa.gov/schumann/AutoBayesCC and
[2]. The code is annotated to prove division-by-zero and array-bounds safety.
With all annotations (including the propagated annotations), the code grows to
2,116 lines—a clear indication that manual annotation is out of question. For an
excerpt of the code see Figure 2.

The Mops verification condition generator takes this annotated code file
and produces 69 proof tasks in first-order logic. Initially, E-Setheo could solve
65 of the 69 tasks automatically. The remaining four proof tasks were of the
general form Ax ∧ A ∧ B → A′

∧ C where Ax,A,A′, B,C are variable-disjoint
first-order formulas. This form is a consequence of the task generation process:
Ax represents the domain axioms, A and A′ are propagated annotations, and
B → C is the “proper” proof obligation itself. In order to reduce the formula size,
a preprocessing script was used to split each of these proof tasks into two separate
tasks, namely Ax∧A∧B → A′ and Ax∧A∧B → C; these were then processed

1 We extended AutoBayes to generate the Modula-2 code. Usually, AutoBayes
synthesizes C/C++ programs for Matlab and Octave (http://www.octave.org).

separately and proven automatically by E-Setheo. After conversion into CNF
the formulas had on average 131 clauses (between 112 and 166); roughly half
of the clauses were non-Horn. The terms had a syntactically rich structure with
an average number of 51 function symbols and 39 constant symbols. Equality
and relational operators were the only predicate symbols in the original formula;
additional predicate symbols were introduced by Flotter during the conversion
into CNF. Despite the size of the formula and their syntactic richness, most
of the proofs were relatively short and were basically found by only two of E-
Setheo’s strategies, namely using the E-prover, and an iterative combination
of the E-prover and scheme-SETHEO.

1 (*{ assert i=N and j=M and

2 (forall a,b : int & ((0<=a and a<N) and

3 (0<=b and b<M)) => q[a,b]=0.0) }*)

4 (*{ loopinv 0<=k and k<=N-1 and

5 (forall a,b: int & ((0<=a and a<N) and

6 (0<=b and b<M) => 0<=q[a,b] and

7 q[a,b]<=1.0) }*)

8 FOR k := 0 to N - 1 DO

9 q[k,c[k]] := 1.0;

10 END

11 (*{ post (forall a,b : int &

12 ((0<=a and a<N) and (0<=b and b<M))

13 => 0 <= q[a,b] and q[a,b] <= 1.0) }*)
0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14 16 18 20

E-SETHEO run-time[s]

Fig. 2. Left, excerpt of annotated code produced by AutoBayes/CC. Annotations
are enclosed in (*{...}*). Right, distribution of E-Setheo proof times (% solved over
runtime in seconds).

Fig. 2 shows the runtime distribution for the proof tasks.2 Most tasks were
solved in about two to three seconds, but some tasks took up to 20 seconds. The
smaller second peak visible around 15 seconds is due to a non-optimal schedule.
We expect that a re-training of E-Setheo’s internal scheduler could help to avoid
such long runtimes (cf. [9]). The overall proof time of 323 seconds indicates that
our approach is feasible.

In order to compare our approach to certification techniques based on static
analysis, we analyzed the equivalent C-version of our example program with the
commercial tool PolySpace [7]. PolySpace was capable of declaring most of the
code safe with respect to memory/operator safety. However, it could not clear
several crucial parts of the code, most notably the nested indexing (q[k,c[k]],
see line 9 in Fig. 2) and the initialization of some variables in the main loop.
In these cases, certification requires annotation propagation as it is done in our
work; Polyspace does not require or support annotations. On the other hand,
PolySpace detected a possible integer overflow error of a loop counter in the
synthesized code, something that our safety policy does not (yet) check. The
runtime of PolySpace for this example (about one hour of wall-clock time on the

2 All runtimes have been obtained with a total CPU-time limit of 120 seconds on
a 1000 MHz SunBlade workstation. Due to the internal scheduling of E-Setheo,
substantially different runtimes can result if this limit is changed.

same 1000MHz SunBlade) demonstrates that our approach can be competitive
to commercial tools.

4 Conclusions

In this paper, we have described AutoBayes/CC, a novel combination of au-
tomated program synthesis and automated program verification. Our idea is to
use the knowledge of the domain which is formalized in the program synthesis
system to generate the program together with the necessary detailed formal an-
notations required for a fully automatic safety proof. The underlying approach
is general and we expect it to be applicable to other code-generation systems as
well. The major benefit of this combination of program synthesis and program
verification is obviously the additional verification of important quality aspects
of the synthesized code which comes at no cost for the user.

AutoBayes/CC is still work in progress; currently, the certification ex-
tension covers only those parts of the domain theory required to generate EM-
variants. However, we see no fundamental obstacles in extending the approach to
the entire (still growing) domain theory. Also, the safety policy is still hard-coded
in the way the annotations are generated within the synthesis schemas. We will
work on ways to explicitly represent safety policies (e.g., using higher-order for-
mulations) and use this to tailor the annotation generation in AutoBayes/CC.
We also plan to implement a preprocessing and simplification component which
can substantially reduce size and complexity of the proof tasks.

References

[1] CASC-JC Theorem Proving Competition. www.cs.miams.edu/~tptp/CASC/JC, 2001.
[2] B. Fischer and J. Schumann. AutoBayes: A System for Generating Data Analy-

sis Programs from Statistical Models. JFP, to appear 2002. Preprint available at
http://ase.arc.nasa.gov/people/fischer/papers.html.

[3] T. Kaiser, B. Fischer, and W. Struckmann. “MOPS: Verifying Modula-2 programs
specified in VDM-SL”. Proc. 4th Workshop Tools for System Design and Verification,
pp. 163–167, 2000.

[4] C. Kreitz. “Program Synthesis”. In W. Bibel and P. H. Schmitt, (eds.), Automated

Deduction - A Basis for Applications, Vol III, pp. 105–134. 1998.
[5] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and K. Mayr.

“The Model Elimination Provers SETHEO and E-SETHEO”. JAR, 18:237–246,
1997.

[6] G. C. Necula. “Proof-Carrying Code”. Proc. 24th POPL, pp. 106–119. 1997.
[7] PolySpace Technologies. www.polyspace.com, 2002.
[8] S. Schulz. “System Abstract: E 0.3”. Proc. 16th CADE, LNAI 1421, pp. 297–301.

1999.
[9] G. Stenz and A. Wolf. “E-SETHEO: Design Configuration and Use of a Par-

allel Theorem Prover”. Proc. 12th Australian Joint Conf. Artificial Intelligence,
LNAI 1747, pp. 231–243. 1999.

[10] C. Weidenbach, B. Gaede, and G. Rock. “Spass and Flotter version 0.42”. Proc.

13th CADE, LNAI 1104, pp. 141–145. 1996.

