
SETHEO Goes Software Engineering:

Application of ATP to Software Reuse?

Bernd Fischer1 and Johann M. Ph. Schumann2

1 Abt. Softwaretechnologie, TU Braunschweig, D-38092 Braunschweig
fisch@ips.cs.tu-bs.de

2 Institut für Informatik, TU München, D-80290 München
schumann@informatik.tu-muenchen.de

Reuse of approved software components has been identified as one of the key
factors for successful software engineering projects. Although the reuse process
also covers many non-technical aspects [9] we will restrict ourselves to the re-
trieval of software components (SCR) based on their formal specifications. Our
system NORA/HAMMR3 is based on a library of software components with
associated specifications of their pre- and postconditions written in VDM-SL
[2]. A query consists of pre- and postconditions (preq, postq) and the signature
of the desired component. “Plug-in-compatibility” of a library component c is
guaranteed, if (pre

q
⇒ pre

c
) ∧ (post

c
⇒ post

q
) can be shown.

This “retrieval-by-proof” or deduction-based approach to SCR has been pro-
posed before (e.g., [7, 5]) but without convincing success. These earlier failures
result from the strong application requirements, like critical (“sub-minute”) re-
sponse times and full automatic processing: the proof tasks must be generated
and processed completely automatically as we cannot expect the end-user to
cope with ATP details.

System Architecture. The näıve approach to deduction-based SCR would be
to generate a separate proof task for each candidate. But then the number of
tasks per query would be prohibitively large. Even worse, most of them would
be non-theorems (i.e., not valid) because in general, there are many more non-
matching than matching candidates. We thus implemented NORA/HAMMR as
a filter pipeline through which the candidates are fed.

NORA/HAMMR’s graphical user interface (see figure on the next page) re-
flects the idea of successive filtering. The pipeline may easily be customized
through an icon pad; additional inspectors display intermediate results and grant
easy access to the components. The objective of the GUI is to hide all evidence
of ATP usage. Hence, the knowledge necessary to use NORA/HAMMR as a tool

is restricted to VDM-SL and the target language.4

? This work is supported by the DFG within the Schwerpunkt “Deduktion”, the Son-
derforschungsbereich 342, Subproject A5 (Parallelization of Inference Systems), and
grant Schu-908/5-1.

3 NORA is no real acronym, HAMMR is a highly adaptable multi-method retrieval
tool.

4 But we assume the existence of a reuse administrator who knows the applied deduc-



The pipeline typically starts with signature matching filters. They check
whether candidate and query have “compatible” calling conventions (see [3] for
a detailed discussion).

Then, rejection filters try to eliminate non-matches as fast as possible. We
currently use model generation techniques to check the validity of the tasks in
suitable finite models. However, both precision (“do we get the right compo-
nents?”) and recall (“do we get all matching components?”) may decrease in an
acceptable way because this approach is neither sound nor complete.

Finally, confirmation filters check the validity of the remaining proof tasks.
Here, we apply SETHEO, a high-performance automated theorem prover based
on the Model Elimination Calculus. SETHEO accepts unsorted first-order logic
(without equality) in clausal normal form and tries to refute the formula by
constructing a tableau (cf. e.g. [4, 6]). In the remainder of this paper we will
describe how SETHEO handles these proof tasks without having an intolerable
decline of recall.

Characteristics of Proof Tasks. Let us consider the following VDM-SL specifi-
cations:5

rotate(l : List) l′ : List shuffle(x : X) x′ : X

pre true pre true

post (l = [] ⇒ l′ = [])∧ post ∀i : Item · (∃x1, x2 : X · x = x1
∧[i]∧x2 ⇔

(l 6= [] ⇒ l′ = (tl l)∧[hd l]) ∃x1, x2 : X · x′ = x1
∧[i]∧x2)

Several steps have to be performed to convert these specifications (using rotate

as candidate c and shuffle as query q) into a sorted first-order proof task. First,
the formal parameters must be identified, in this case l = x and l′ = x′.6

tion methods and “tunes” (e.g., by giving ATP settings and lemmata) each compo-
nent before it is entered into the library.

5 Here, ∧ means the concatenation of lists, [] the empty list, [i] a singleton list with
item i, and hd and tl the functions head and tail, respectively.

6 This identification is, however, not always a simple renaming substitution as VDM-
SL allows pattern matching and complex data types.



Then, the main body of the proof task in the form (pre
q
⇒ pre

c
) ∧ (post

c
⇒

post
q
) is constructed. Here, we have to make some assumptions on the definedness

of specifications and the usage of partial functions, since VDM-SL’s semantics
is based on the three-valued logics of partial functions [2]. Finally, after several
additional syntactical preprocessing steps, we arrive at the proof task

∀l, l′, x, x′ : List · (l = x ∧ l′ = x′ ∧ true ⇒ true)
∧ (l = x ∧ l′ = x′ ∧ (l = [] ⇒ l′ = []) ∧ (l 6= [] ⇒ (l 6= [] ⇒ l′ = (tl l)∧[hd l]))
⇒ (∀i : Item · (∃x1, x2 : X · x = x1

∧[i]∧x2 ⇔ ∃x1, x2 : X · x′ = x1
∧[i]∧x2)))

Using SETHEO. For the final stage of the filter chain, the prover SETHEO
is used to process the remaining proof tasks. A number of important items had
to be considered for this application, e.g., handling of equality, incorporation of
sorts, selection of axioms and case splitting. A proof task consists almost entirely
of equations. Most equations are simple and just equate formal parameters, but
the remaining equalities relate the functions’ results to their respective argu-
ments and thus specify the computational effect of the component. Thus, an
efficient handling of equality is of particular importance. We currently provide
two variants: the näıve approach by automatically adding the appropriate ax-
ioms of equality, and the handling of equality as it is done in E-SETHEO [6] (a
transformation similar to Brand’s STE-modification).

The hierarchy of sorts contained in the given proof tasks can be expressed as a
many-sorted problem with constant sorts. This allows the given sort information
to be compiled efficiently into the terms of the unsorted clauses. In our prototype,
this is accomplished by the tool ProSpec (developed within Protein [1]).

Due to their recursive structure, many proof tasks require induction to be
solved properly. Our severe restriction on run-times, however, does not allow to
use an inductive theorem prover. We thus approximate induction by splitting

a proof task into several cases. For example, for a component and query with
signature c(l : List), we generate cases for l = [], l = [i], and l = [i]∧l0 for item i

and list l0. This approximation cannot handle all inductive problems but since
the base cases in general induce simple proof problems, this approach also allows
us to implement additional powerful and fast filters to eliminate proof tasks.

Finally, when SETHEO is started with the pre-processed proof task, it has
only a few seconds of run-time (wall clock) to find a proof. Therefore, we use
parallel competition: on each available processor, SETHEO is started with a
different parameter setting. The one which first returns with a proof “wins” and
aborts the others (cf. also SiCoTHEO [8]).

Experiments. First experiments with NORA/HAMMR and SETHEO have
been carried out with more than 350 proof tasks over components about lists.
All experiments have been carried out on a SUN Ultra-SPARC 2 (competition
with 4 different sets of parameters) with a CPU-time limit of 20 seconds. First,
we tried to retrieve components with identical specifications. Here, no axioms
about the theory are necessary. Except for three error cases (due to excessive size
of the input formula), all 55 provable tasks could actually be solved by SETHEO



(T
mean

= 0.43 seconds). Additional experiments tried to retrieve matching but
non-identical components (38 cases in our test-library). With the help of case-
splitting, 21 of these tasks could be solved within our time limit of 20 seconds,
yielding a total recall of 63.7%. Here, however, the selection of axioms turned
out to be crucial. Therefore, our prototype currently just selects those axioms
which directly share function symbols with the proof task.7

Conclusions. The results of our experiments with SETHEO are very encourag-
ing. Nevertheless, many improvements on this approach have to be made before
this tool can really be used in industry. Due to the hard time-constraints (“results
while-u-wait”), the reduction of proof-tasks, both in complexity and number is of
central importance. A powerful chain of filters (ranging from signature matching
to dis-proving techniques) must ensure that only a few proof tasks remain to be
processed by the automated theorem prover. For these, a set of axioms as small
as possible and valuable lemmas must be selected. Furthermore, work will be
done to improve the approximation of induction.

This application of automated theorem proving technique carries the unique
feature that soundness and completeness are not absolutely vital — unsound
and incomplete methods only reduce the precision and recall of the retrieval
tool. This allows interesting and promising techniques of approximating proofs
(e.g., by filter chains or iteration) to be explored which will help to lead to an
industrial application of SETHEO.

[1] P. Baumgartner and U. Furbach. PROTEIN: A PROver with a Theory Extension

Interface. In Proc. 13th Conf. Automated Deduction. Springer, 1996.

[2] J. C. Bicarregui, J. S. Fitzgerald, P. A. Lindsay, R. Moore, and B. Ritchie. Proof

in VDM: A Practitioner’s Guide. Springer, 1993.

[3] B. Fischer. A systematic approach to type-based software component retrieval. PhD

thesis, TU Braunschweig (in preparation).

[4] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-Performance

Theorem Prover. J. Automated Reasoning , 8(2):183–212, 1992.

[5] P. Manhart and S. Meggendorfer. A knowledge and deduction based software re-

trieval tool. In Proc. 4th Intl. Symp. Artificial Intelligence, pp. 29–36, 1991.

[6] M. Moser et.al. The Model Elimination Provers SETHEO and E-SETHEO. Special

issue of J. Automated Reasoning , to appear 1997.

[7] E. J. Rollins and J. M. Wing. Specifications as search keys for software libraries.

Proc. 8th Intl. Conf. Symp. Logic Programming, pp. 173–187. MIT Press, 1991.

[8] J. Schumann. SiCoTHEO: Simple Competitive parallel Theorem Provers (System

Abstract). In Proc. 13th Conf. Automated Deduction. Springer, 1996.

[9] M. Zand and M. Samadzadeh. Software reuse: Current status and trends. J.

Systems Software, 30(3):167–170, 1995.

This article was processed using the LATEX macro package with LLNCS style

7 Although this approach is not complete, we rather aim at finding proofs for many (ob-
vious) proof tasks within the given short run-time. With too many axioms, SETHEO
is not able to find any proofs at all within our short time-limits.


