
The AutoBayes Program Synthesis System

— System Description —

Bernd Fischer†, Thomas Pressburger‡, Grigore Roşu†, and Johann Schumann†

†RIACS / ‡Code IC, NASA Ames Research Center, M/S 269-2
Moffett Field, CA 94035 USA,

{fisch,ttp,grosu,schumann}@ptolemy.arc.nasa.gov

1 Introduction

AutoBayes is a fully automatic program synthesis system for the statistical
data analysis domain. Its input is a concise description of a data analysis problem
in the form of a statistical model; its output is optimized and fully documented
C/C++ code which can be linked dynamically into the Matlab and Octave envi-
ronments. AutoBayes synthesizes code by a schema-guided deductive process.
Schemas (i.e., code templates with associated semantic constraints) are applied
to the original problem and recursively to emerging subproblems. AutoBayes

complements this approach by symbolic computation to derive closed-form solu-
tions whenever possible. In this paper, we concentrate on the interaction between
the symbolic computations and the deductive synthesis process; a detailed de-
scription of AutoBayes can be found in [FSP00,FS01].

A statistical model specifies for each problem variable (i.e., data or parame-
ter) its properties and dependencies in the form of a probability distribution. A
typical data analysis task is to estimate the best possible parameter values from
the given observations or measurements. The following example models normal-
distributed data but takes prior information (e.g., from previous experiments)
on the data’s mean value and variance into account.

1 model normal as ’Normal model with conjugate priors’.
2 const double kappa_0, mu_0.
3 where 0 < kappa_0.
4 double mu ~ gauss(mu_0, sqrt(sigma_sq/kappa_0)).
5 const double sigma_0_sq, delta_0.
6 where 0 < sigma_0_sq and 0 < delta_0.
7 double sigma_sq ~ invgamma(delta_0/2+1, sigma_0_sq*(delta_0/2)).
8 const nat n_points.
9 where 0 < n_points.
10 data double x(0..n_points-1) ~ gauss(mu, sqrt(sigma_sq)).
11 max pr({x, mu, sigma_sq}) for {mu, sigma_sq}.

Here, lines 8–10 describe the data properties: x is a vector of n points real-
valued observations that are independently drawn from a normal or Gaussian
distribution with unknown mean mu and variance sqrt(sigma sq). Lines 2–4
specify the prior information on mu, which is itself drawn from a normal distribu-
tion. This prior summarizes a number of previous experiments, where mu turned

out to be mu 0 on average. Similarly, lines 5–7 specify the prior on sigma sq.
Lines 2, 5, and 8 declare constants to represent the model parameters; lines
3, 6, and 9 state constraints on their allowed values. Finally, line 11 comprises
the proper analysis task: given the data x, find the values for mu and sigma sq

which maximize the joint probability pr({x, mu, sigma sq})—in other words,
find the values for mu and sigma sq which explain the observed data x in the
statistically best possible way.

Graphical models [Bun94] are a uniform framework in which many typi-
cal data analysis problems, e.g., data compression [Fre98] or image restoration
[Kok98], can be formulated as similar parameter learning problems. AutoBayes

uses graphical models to represent models internally and to guide the decompo-
sition of the statistical learning task into simpler, independent subtasks.

2 System Architecture

Program generation proceeds in a number of distinct stages that are reflected
in AutoBayes’s system architecture. In a preprocessing step, the given spec-
ification is parsed and converted into the internal graphical model form. The
synthesis kernel then analyzes the model and tries to solve the given optimiza-
tion task. It instantiates appropriate algorithm schemas which are given in a
library and produces a procedural program in AutoBayes’s intermediate lan-
guage. This code is optimized and finally converted into the language of the
target system. The synthesized code is fully documented; assumptions and proof
obligations which have not been discharged during synthesis are laid out clearly
in the documentation or are converted into runtime assertions.

The entire system is implemented in SWI-Prolog [Wie98] and comprises
about 24,000 lines of documented code. SWI-Prolog proved to be a very stable
and efficient development platform with reasonably good debugging facilities.

Synthesis Kernel. Synthesis is performed by exhaustive, layered applica-
tion of schemas. A schema consists of a program fragment with open slots and
a set of applicability conditions. The slots are filled in with code pieces by the
synthesis kernel. The conditions constrain how the slots can be filled; they must
be discharged (i.e., proven to hold in the given model) before the schema can be
applied. Conditions can also be described by specific network patterns; checking
then proceeds efficiently by pattern matching. This allows the network struc-
ture to guide the application of the schemas and thus to prevent combinatorial
explosion of the search space, even if a large number of schemas are applicable.

AutoBayes currently comprises four different layers of schemas; schemas
can easily be added without restructuring the system. Network decomposition
schemas try to break down the network into independent subnets, based on in-
dependence theorems for graphical models. The emerging subnets are fed back
into the synthesis process and the resulting programs are composed to achieve a
program for the original problem. AutoBayes is thus able to automatically syn-
thesize large programs by composition of different schemas. Formula and vector
decomposition schemas work on products of conditional probability distribu-

tions. The application of these schemas is also guided by the network structure
but they require more substantial symbolic computations. The skeleton of the
synthesized code is generated by the application of statistical algorithm schemas.
AutoBayes currently implements two such schemas, the EM-algorithm and k-
Means (i.e., nearest neighbor clustering). After this last network-oriented layer,
the statistical problem has been transformed into an ordinary optimization prob-
lem. If AutoBayes cannot find a symbolic solution for this problem, it ap-
plies standard numeric optimization methods. AutoBayes currently provides
schemas for the Newton-Raphson and Nelder-Mead simplex algorithms. These
schemas are instantiated with the function to be optimized. In contrast to using
a library function, this open approach allows further symbolic simplifications
and optimizations, as well as problem specific documentation.

Symbolic Subsystem. The main task of this subsystem is to find symbolic
solutions to optimization problems. This daunting task, however, is simplified
substantially by the relatively uniform structure of the optimization problems
which allows implementing powerful heuristics.

At the core of the symbolic subsystem is a small but reasonably efficient
AC-rewrite engine implemented in Prolog. Since a rewrite system for this en-
gine is implemented naturally as a Prolog-predicate, conditional rewriting comes
“for free.” Moreover, the rule clauses can access explicit assumptions; hence,
AutoBayes allows conditional rules as for example x/x →|= x6=0 1 where →|= x 6=o

means “rewrites to, provided x 6= 0 can be proven from the current assump-
tions.” The assumptions are managed almost transparently by the rewrite en-
gine; the rewrite system only needs to contain the non-congruent propagation
rules which modify the assumptions under which subterms are rewritten, e.g.,
if p then s else t fi →|=A if p ↓|=A then s ↓|=A∧p else t ↓|=A∧¬p fi where
t ↓|=A is the normal form of t under the assumptions A.

Expression simplification and symbolic differentiation are implemented on
top of the rewrite engine. The basic rules are straightforward; however, vec-
tors and matrices introduce the usual aliasing problems and require careful for-
malizations. For example, as the index values i and j are usually unknown
at synthesis time, the partial derivative ∂xi/∂xj can only be rewritten into
if i = j then 1 else 0 fi. More advanced rules, however, require explicit meta-
programming, especially when bound variables are involved.

Abstract interpretation is used as an efficient mechanism to evaluate range
constraints such as x > 0 or x 6= 0 which occur in the conditions of many rewrite
rules. AutoBayes implements as a rewrite system a domain-specific refinement
of the standard sign abstraction where numbers are not only abstracted into pos

and neg but also into small (i.e., |x |< 1) and large.

It then turns out that a relatively simple solver built on top of this core
system is already sufficient. AutoBayes thus essentially relies on a low-order
polynomial (i.e., linear, quadratic, and simple cubic) symbolic solver. However, it
also shifts and normalizes exponents, recognizes multiple roots and bi-quadratic
forms, and tries to find polynomial factors. It also handles expressions in x and
(1 − x) which are common in Bernoulli models.

3 Experimental Results

We have applied AutoBayes to a number of advanced textbook examples, ma-
chine learning benchmarks, and NASA applications. Table 1 summarizes the
results. cfs indicates whether a closed-form solution exists and, if so, whether it
was found by AutoBayes. The remaining columns give the size of the speci-
fication and the respective number of lines of generated Octave/C++ code, as
well as synthesis and compilation (g++ -O2) times on a Sun Ultra 60.

Description cfs lines of Tsynth[s]+
(priors) spec C++ Tcompile[s]

N1 µ ∼ N(µ0, τ
0.5
0), σ2 Y/Y 8 99 1.5 + 7.1

N2 µ, σ2 ∼ Γ−1(δ0/2 + 1, σ0.5
0 δ0/2) Y/Y 9 99 2.0 + 8.8

N3 µ ∼ N(µ0, (σ
2/κ0)

0.5), Y/Y 12 126 8.9 + 7.7
σ2 ∼ Γ−1(δ0/2 + 1, σ0.5

0 δ0/2)
N4 µ ∼ N(µ0, τ0), σ2 ∼ Γ−1(δ0/2 + 1, σ0.5

0 δ0/2) No 12 478 14.6 + 20.0

M1 1D Gaussian mixture No 16 389 11.7 + 12.4
M2 2D Gaussian mixture (x, y uncorrelated) No 22 536 19.6 + 19.7
M3 1D Gaussian mixture (multi-dim. classes) No 24 519 18.1 + 16.7
M4 exponential mixture (simple failure analysis) No 15 321 6.4 + 10.0
M5 disjoint mixture (binomial + Poisson) No 21 425 19.5 + 11.9

SD step detection No 14 1206 78.0 + 49.4
AB Abalone classifier No 58 1310 63.5 + 139.1
GR γ-ray burst analysis No 12 475 3.9 + 9.5

Table 1. List of examples

The examples N1 to N4 describe different estimation problems for normal
distributions where N3 is the example in Section 1. N1 and N2 are simpler
versions where prior information is specified only for the mean or the variance of
the data. These are advanced textbook examples [GC+95] and AutoBayes

finds exactly the closed form textbook solutions. N4 slightly generalizes the
form of the prior for µ. However, this seemingly small modification renders the
symbolic problem unsolvable. AutoBayes thus generates executable code by
instantiation of an iterative numeric solver. This example shows that a purely
symbolic system is not sufficient in practice.

The remaining examples all require the application of iterative algorithms.
The examples M1 to M5 are all solved via the EM algorithm schema but each
example induces a different symbolic maximization problem. However, after
symbolic differentiation, these subproblems are reduced to essentially linear or
quadratic equations which are easily solved by AutoBayes. SD is a simple time
series model to detect a change of means in a Gaussian process; AB is a classifier
for abalone mussels (http://www.ics.uci.edu/~mlearn/MLRepository.html).
Finally, GR is a model to detect γ-rays bursts from the BATSE radio source
(http://cossc.gsfc.nasa.gov/batse).

4 Conclusions

The tight combination of schema-guided synthesis, deduction, and symbolic com-
putation in AutoBayes is essential to generate efficient code. Symbolic compu-
tation is used for simplification and for finding symbolic solutions if they exist.
However, we can only synthesize a correct program from a specification when we
can rely on the soundness of the symbolic machinery. This in particular means
that all transformations have to be performed with respect to the proper assump-
tions, like an expression being non-zero. Transformations can also give rise to
new proof obligations, e.g., showing that a possible solution is the minimum and
not just a saddle point. AutoBayes keeps track of all assumptions and either
discharges them during synthesis or generates assertions to be checked during
runtime. The importance for symbolic calculation under assumptions and the
unsoundness of a commercial symbolic algebra system like Mathematica led us
to develop our own symbolic subsystem on top of Prolog.

Although we have been able to synthesize code for various non-trivial text-
book examples, AutoBayes’s code generating capabilities for a variety of statis-
tical models need to be extended substantially. Besides adding further algorithm
schemas for statistical computations and for general numerical optimizations,
improvement of the symbolic subsystem is of major importance. The power and
generality of the equation solver will need to be enhanced. Furthermore, for
marginalization in statistical models, symbolic handling of (relatively) simple
integrals is important. Each enhancement in the symbolic subsystem will lead to
improvement of the synthesized code as more subtasks can be solved in closed
form rather than being approximated by (slower) numerical algorithms. In all
cases, AutoBayes ensures correctness of the synthesized code with respect to
the specification by generating the appropriate runtime assertions and documen-
tation.

References

[Bun94] W. L. Buntine. “Operations for learning with graphical models”. J. AI Re-

search, 2:159–225, 1994.
[Fre98] B. J. Frey. Graphical Models for Machine Learning and Digital Communication.

MIT Press, Cambridge, MA, 1998.
[FS01] B. Fischer and J. Schumann. AutoBayes: A System for Generating Data Anal-

ysis Programs from Statistical Models, 2001. submitted for publication.
[FSP00] B. Fischer, J. Schumann, and T. Pressburger. “Generating Data Analysis

Programs from Statistical Models (Position Paper)”. In W. Taha, (ed.), Proc. Intl.

Workshop Semantics Applications, and Implementation of Program Generation, Lect.

Notes Comp. Sci. 1924, pp. 212–229, Montreal, Canada, September 2000. Springer.
[GC+95] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data

Analysis. Texts in Statistical Science. Chapman & Hall, 1995.
[Kok98] A. C. Kokaram. Motion Picture Restoration. Springer, Berlin, 1998.
[Wie98] J. Wielemaker. SWI-Prolog 3.1 Reference Manual, Updated for Version 3.1.0

July, 1998. Amsterdam, 1998.

