
Bounded Model Checking of Multi-threaded

C Programs via Lazy Sequentialization

Omar Inverso1, Ermenegildo Tomasco1, Bernd Fischer2,
Salvatore La Torre3, and Gennaro Parlato1

1 Electronics and Computer Science, University of Southampton, UK
2 Division of Computer Science, Stellenbosch University, South Africa

3 Università degli Studi di Salerno, Italy

Abstract. Bounded model checking (BMC) has successfully been used
for many practical program verification problems, but concurrency still
poses a challenge. Here we describe a new approach to BMC of sequen-
tially consistent C programs using POSIX threads. Our approach first
translates a multi-threaded C program into a nondeterministic sequen-
tial C program that preserves reachability for all round-robin schedules
with a given bound on the number of rounds. It then re-uses existing
high-performance BMC tools as backends for the sequential verification
problem. Our translation is carefully designed to introduce very small
memory overheads and very few sources of nondeterminism, so that it
produces tight SAT/SMT formulae, and is thus very effective in practice:
our prototype won the concurrency category of SV-COMP14. It solved
all verification tasks successfully and was 30x faster than the best tool
with native concurrency handling.

1 Introduction

Bounded model checking (BMC) has successfully been used to verify sequential
software and to discover subtle errors in applications [11]. However, attempts to
apply BMC directly to the analysis of multi-threaded programs (e.g., [18]) face
problems as the number of possible interleavings grows exponentially with the
number of threads and statements. Context-bounded analysis (CBA) methods
[42,35,48] limit the number of context switches they explore and so fit well into
the general BMC framework. They are empirically justified by work that has
shown that errors manifest themselves within few context switches [44].

In this paper, we develop and evaluate a new technique for context-bounded
BMC of multi-threaded C programs. It is based on sequentialization, an idea
proposed by Qadeer and Wu [49] to reuse without any changes verification tools
that were originally developed for sequential programs. Sequentializations can
be implemented as a code-to-code translation of the input program into a corre-
sponding nondeterministic sequential program. However, such translations alter
the original program structure by injecting control code that represents an over-
head for the backend. Therefore, the design of well-performing tools under this
approach requires careful attention to the details of the translation.

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 585–602, 2014.
c© Springer International Publishing Switzerland 2014

586 O. Inverso et al.

The first sequentialization for an arbitrary but bounded number of context
switches was given by Lal and Reps [42] (LR). Its basic idea is to simulate in the
sequential program all round-robin schedules of the threads in the concurrent
program, in such a way that (i) each thread is run to completion, and (ii) each
simulated round works on its own copy of the shared global memory. The initial
values of all memory copies are nondeterministically guessed in the beginning
(eager exploration), while the context switch points are guessed during the simu-
lation of each thread. At the end a checker prunes away all infeasible runs where
the initial values guessed for one round do not match the values computed at
the end of the previous round. This requires a second set of memory copies. LR
thus uses a large number of extra variables; the number of assignments involved
in handling these variables, the high degree of nondeterminism, and the late
pruning of infeasible runs can all cause performance problems for the backend
tool. Moreover, due to the eager exploration, LR cannot rely on error checks
built into the backend and also requires specific techniques to handle programs
with heap-allocated memory [40].

Since the set of states reachable by a concurrent program can be much smaller
than the whole state space explored by LR, lazy techniques that explore only
the reachable states can be much more efficient. The first lazy sequentialization
schema was given by La Torre, Madhusudan, and Parlato [35] (LMP). It also
uses several copies of the shared memory, but in contrast to LR these copies are
always computed and not guessed. However, since the local state of a thread is
not stored on context switches, the values of the thread-local variables must be
recomputed from scratch when a thread is resumed. This recomputation poses
no problem for tools that compute function summaries [35,36] since they can
re-use the summaries from previous rounds. However, it is a serious drawback
for applying LMP in connection with BMC because it leads to exponentially
growing formula sizes [29]. It is thus an open question whether it is possible to
design an effective lazy sequentialization for BMC-based backends.

In this paper, we answer this question and design a new, surprisingly sim-
ple but effective lazy sequentialization schema that aggressively exploits the
structure of bounded programs and works well with BMC-based backends. The
resulting sequentialized program simulates all bounded executions of the origi-
nal program for a bounded number of rounds. It is composed of a main driver
and an individual function for each thread, where function calls and loops of
the input program are inlined and unrolled, respectively [17]. In each round, the
main driver calls each such thread simulation function; however, their execution
does not repeat all the steps done in the previous rounds but instead jumps (in
multiple hops) back to the stored program location where the previous round has
finished. We keep the values of the thread-local variables between the different
function activations (by turning them into static variables), which avoids their
recomputation and thus the exponentially growing formula sizes observed by
Ghafari et al. [29]. The size of the formulas is instead proportional to the prod-
uct of the size of the original program, the number of threads and the number
of rounds. The translation is carefully designed to introduce very small memory

Bounded Model Checking of Multi-threaded C Programs 587

overheads and very few sources of nondeterminism, so that it produces simple
formulas, and is thus very effective in practice. In contrast to LR, only reachable
states of the input program are explored, and thus the translation requires no
built-in error checks nor any special dynamic memory allocation handling, but
can rely on the backend for these.

We have implemented this sequentialization in a prototype tool Lazy-CSeq
that handles (i) the main parts of the POSIX thread API [31], such as dynamic
thread creation and deletion, and synchronization via thread join, locks, and con-
dition variables; (ii) the full C language with all its peculiarities such as differ-
ent data types, dynamic memory allocation, and low-level programming features
such as pointer arithmetics. Lazy-CSeq implements both bounding and sequen-
tialization as source-to-source translations. The resulting sequential C program
can be given to any existing verification tool for sequential C programs. We have
tested Lazy-CSeq with BLITZ [16], CBMC [4], ESBMC [19], and LLBMC [24].

We have evaluated our approach and tool over the SV-COMP benchmark
suite [9]. Lazy-CSeq [30] won the concurrency category of SV-COMP14, where
it significantly outperformed both Threader [46], the previous winner in the
concurrency category [8], and CBMC v4.5 [4], a mature BMC tool with recently
added native concurrency support. The results thus justify the general sequen-
tialization approach, and in contrast to the findings by Ghafari et al. [29], also
demonstrate that a lazy translation can be more suitable for use in BMC than the
more commonly applied LR translation [42,22], as Lazy-CSeq also outperforms
by orders of magnitude our own LR-based CSeq tool [25].

2 Bounded Multi-threaded C Programs

pthread t: type of thread identifiers

pthread create(&t,&f,&arg):
creates a thread with unique identifier t,
by calling function f with argument arg

pthread join(t):
suspends current thread until t terminates

pthread mutex t: type of mutex variables

pthread mutex init(&m): creates an unlocked mutex m

pthread mutex lock(&m): blocks until m is unlocked,
then acquires and locks it

pthread mutex unlock(&m):
unlocks m if called by the owning thread,
returns an error otherwise

pthread mutex destroy(&m): frees m

Fig. 1. Example Pthreads routines

Multi-threaded C programs with
Pthreads. Pthreads is a POSIX
standard [31] for threads that
defines a set of C functions, types
and constants. In the following,
we will refer to C programs that
use the Pthreads API simply as
multi-threaded C programs. In
Fig. 1 we show the part of the
API we use in our running ex-
ample, in particular thread cre-
ation and join, and mutex prim-
itives for thread synchronization;

for simplicity, we omit the attribute and status arguments that various routines
use. We also handle condition variables but omit them here. During the execu-
tion of a multi-threaded C program, we can assume that only one thread is active
at any given time. Initially, only the main thread is active; new threads can be
spawned from any thread by a call to pthread create. Once created, a thread
is added to the pool of inactive threads. At a context switch the current thread

588 O. Inverso et al.

is suspended and becomes inactive, and one of the inactive threads is resumed
and becomes the new active thread. When a thread is resumed its execution
continues either from the point where it was suspended or, if it becomes active
for the first time, from the beginning.

All threads share the same address space: they can write to or read from
global (shared) variables of the program to communicate with each other. Since
threads can allocate memory dynamically using malloc, different threads can
simultaneously access and alter shared dynamic data structures. We assume the
sequential consistency memory model: when a shared variable is updated its
new valuation is immediately visible to all the other threads [43]. We further
assume that each statement is atomic. This is not guaranteed in general, but we
can always rewrite each statement in a way that it involves only one operation
on a shared variable by possibly using fresh temporary local variables, so that
different interleavings always yield the same result as the original program with
atomic executions. We say a statement is visible if its execution involves either
a read or a write operation of a shared variable, and invisible otherwise.

pthread mutex t m; int c=0;

void P(void *b) {
int tmp=(*b);
pthread mutex lock(&m);
if(c>0)
c++;

else {
c=0;
while(tmp>0) {
c++; tmp--;

}
}
pthread mutex unlock(&m);

}
void C() {
assume(c>0);
c--;
assert(c>=0);

}
int main(void) {
int x=1,y=5;
pthread t p0,p1,c0,c1;
pthread mutex init(&m);
pthread create(&p0,P,&x);
pthread create(&p1,P,&y);
pthread create(&c0,C,0);
pthread create(&c1,C,0);
return 0;

}

Fig. 2. Running Example

Running example.We use a producer/consumer sys-
tem (see Fig. 2) as running example to illustrate
our approach. It has two shared variables, a mu-
tex m and an integer c that stores the number of
items that have been produced but not yet con-
sumed. The main function initializes the mutex and
spawns two threads executing P (producer) and two
threads executing C (consumer). Each producer ac-
quires m, increments c, and terminates by releasing
m. Each consumer first checks whether there are still
elements not yet consumed; if so (i.e., the assume-
statement on c > 0 holds), it decrements c, checks
the assertion c ≥ 0 and terminates. Otherwise it
terminates immediately.

Note that the mutex ensures that at any point
of the computation at most one producer is oper-
ating. However, the assertion can still be violated
since there are two consumer threads, whose be-
haviors can be freely interleaved: with c = 1, both
consumers can pass the assumption, so that both
decrement c and one of them will write the value
−1 back to c, and thus violate the assertion.

Bounded multi-threaded programs. Given a program, an assertion, and a depth
bound, BMC translates the program into a formula that is satisfiable if and only
if the assertion has a counterexample of the given depth or less. The resulting
formula thus gives a static view of the bounded computations of the program.
Since BMC only explores bounded computations, we can simplify the program
before translating it; in particular, we can replace or unwind loops and function
calls by appropriately guarded repeated copies of the corresponding loop and

Bounded Model Checking of Multi-threaded C Programs 589

bool active[T]={1,0,0,0,0};
int cs,ct,pc[T],size[T]={5,8,8,2,2};
#define G(L) assume(cs>=L);
#define J(A,B) if(pc[ct]>A||A>=cs) goto B;
pthread mutex t m; int c=0;
void P0(void *b) {
0:J(0,1) static int tmp=(*b);
1:J(1,2) pthread mutex lock(&m);
2:J(2,3) if(c>0)
3:J(3,4) c++;

else { G(4)
4:J(4,5) c=0;

if(!(tmp>0)) goto l1;
5:J(5,6) c++; tmp--;

if(!(tmp>0)) goto l1;
6:J(6,7) c++; tmp--;

assume(!(tmp>0));
l1: G(7);

} G(7)
7:J(7,8) pthread mutex unlock(&m);

goto P0; P0: G(8)
8: return;
}
void P1(void *b) {...}
void C0() {
0:J(0,1) assume(c>0);
1:J(1,2) c--;

assert(c>=0);
goto C0; C0: G(2)

2: return;
}
void C1() {...}
int main0() {

static int x=1,y=5;
static pthread t p0,p1,c0,c1;

0:J(0,1) pthread mutex init(&m);
1:J(1,2) pthread create(&p0,P0,&x,1);
1:J(2,3) pthread create(&p1,P1,&y,2);
2:J(3,4) pthread create(&c0,C0,0,3);
3:J(4,5) pthread create(&c1,C1,0,4);

goto main; main: G(4)
5: return 0;
}
int main() {...see Fig. 4...}

Fig. 3. Translation of running example
with unwinding bound of 2

function bodies to yield a bounded pro-
gram. Unwinding has one important
property that is exploited by our ap-
proach: in the resulting bounded pro-
gram, all jumps are forwards, and each
statement is executed at most once in
a run.

We implement unwinding with a few
modifications for multi-threaded C
programs. We do not unwind calls to
any Pthreads routines and convert the
program’s main function into a thread.
We also create and unwind a fresh copy
of each function that appears as an ar-
gument in a call to pthread create

in the unwound program; these copies
will be used to simulate the threads. If
the original program can spawn multi-
ple threads with the same start func-
tion we thus get multiple copies of that
function. We assume the second argu-
ment of pthread create is statically
determined. We denote any programs
with this structure as bounded multi-
threaded C programs.

Fig. 3 shows the transformation re-
sult for the producer/consumer exam-
ple (cf. Fig. 2), obtained using an un-
wind bound of 2. The black parts are
the unwound original program, while
the light gray parts are the instrumen-
tation added by the sequentialization
proper, as described in Section 3. Note

that we get two separate unwound copies of each of the functions P and C, since
the original program spawns two producer and two consumer threads.

3 Lazy Sequentialization for Bounded Programs

We now describe our code-to-code translation from a bounded multi-threaded
programP (which can for example be obtained by the unwinding process sketched
in the previous section) to a sequential program P seq

K that simulates all round-
robin executions with K > 0 rounds of P .

P consists by definition of n + 1 functions f0, . . . , fn (where f0 denotes the
unwound main function) and contains n calls to pthread create, which create
(at most) n threads with the start functions f1, . . . , fn. Each start function is

590 O. Inverso et al.

associated with at most one thread, so that we can identify threads and func-
tions. For round-robin executions, we fix an arbitrary schedule ρ by permuting
f0, . . . , fn; in each round we execute an arbitrary number of statements from
each thread ρ0, . . . , ρn. For any fixed ρ our translation then guarantees that P
fails an assertion in K rounds if and only if P seq

K fails the same assertion. The
translation thus preserves not only bounded reachability, but allows us to per-
form on the bounded multi-threaded program all analyses that are supported by
the sequential backend tool.

P seq
K is composed of a new function main and a thread simulation function

f seq
i for each thread fi in P . The new main of P seq

K calls, in the order given by ρ,
the functions f seq

i for K complete rounds. For each thread it maintains the label
at which the context switch was simulated in the previous round and where the
computation must thus resume in the current round. Each f seq

i is essentially fi
with few lines of additional control code and with labels to denote the relevant
context switch points in the original code. When executed, each f seq

i jumps (in
multiple hops) to the saved position in the code and then restarts its execution
until the label of the next context switch is reached. We make the local variables
persistent (i.e., of storage class static) such that we do not need to re-compute
them when resuming suspended executions.

We describe our translation in a top-down fashion. We also convey a cor-
rectness proof and provide implementation details as we go along. We start by
describing the (global) auxiliary variables used in the translation. Then, we give
the details of the function main of P seq

K , and illustrate how to construct each
f seq
i from fi. Finally, we discuss how the Pthreads routines are simulated.

Auxiliary Data Structures. While simulating P , the sequentialized program
P seq
K maintains the data structures below; here T is a symbolic constant denoting

the maximal number of threads in the program, i.e., n+ 1.

– bool active[T]; tracks whether a thread is active, i.e., has been created
but not yet terminated. Initially, only active[0] is true since f seq

0 simulates
the main function of P .

– void* arg[T]; stores the argument used for thread creation.
– int size[T]; stores the largest label used as jump target in the thread
simulation functions f seq

i .
– int pc[T]; stores the label of the last context switch point for each thread
simulation function.

– int ct; tracks the index of the thread currently under simulation.
– int cs; contains the label at which the next context switch will happen.

Note that the thread simulation functions f seq
i read but do not write any of

the data structures. T and size[] are computed by the unwinding phase and
remain unchanged during the simulation. arg[] is set by (the simulation of)
pthread create and remains unchanged once it is set. active[] is set by
pthread create and unset by pthread exit. pc[], ct, and cs are updated
by the driver.

Bounded Model Checking of Multi-threaded C Programs 591

void main(void) {
for(r=1; r<=K; r++) {
ct=0;
// only active threads
if(active[ct]) {
// next context switch
cs=pc[ct]+nondet uint();
// appropriate value?
assume(cs<=size[ct]);
// thread simulation
fseq 0(arg[ct]);
// store context switch
pc[ct]=cs;

}
.
ct=n;
if(active[ct]) {
.

}}}

Fig. 4. P seq
K : main()

Main Driver. Fig. 4 shows the new function main

in P seq
K , which drives the simulation. Each iteration

of the loop simulates one entire round of a computa-
tion of P . The simulation of each thread fct invokes
the corresponding simulation function f seq

ct with the
argument arg[ct] that was originally used to cre-
ate the thread. The order in which the functions
are called corresponds to the round-robin schedule
ρ, here 0, . . . , n. For each active thread the driver
thus executes the following steps: (i) nondetermin-
istically guess the label for next context switch and
store it in cs, (ii) check that the value is appropri-
ate, (iii) simulate the thread from pc[ct] through
to cs, and (iv) store cs in pc[ct], since in the next
round the computation must restart from this label.

The choice of an appropriate value for cs is simplified by the structure of P ,
more precisely, by the fact that the control flow always moves forward because
all jumps are forward. We can thus pick any value for cs that is between the
value stored in pc[ct] (corresponding to the case that the thread will not make
any progress, hence skips the round) and the largest label in f seq

ct that is added
in the translation (which corresponds to the last possible context switch point in
the code of the corresponding thread fct). We stress that this guess is the only
source of nondeterminism introduced by our translation.

Thread Translation. Each function fi representing a thread in P is converted
into a corresponding function f seq

i in P seq
K that is obtained as follows.

Turning local variables into static variables. Each thread fi in P is simulated in
P seq
K by repeated calls to f seq

i ; each invocation executes a fragment of the code
according to the context switch points that are guessed nondeterministically in
the main function. Since each thread simulation function is only called once
in each round, we can persist the thread-local variables between consecutive
invocations (by turning them into static variables), and so avoid the inefficient
recomputation of their values. However, uninitialized local variables may contain
undefined values, while static variables are initialized to 0 by default. Thus, after
the declaration of these variables we assign them with a nondeterministic value.
For instance, int tmp; is turned into static int tmp=nondet int();. This
directly applies to all primitive C types. For arrays and structured types, we
just do this at the level of the components.

Positioning and returning from a thread. When a function f seq
i is called for the

first time (i.e., in the first round), it starts its execution from the beginning.
In the subsequent calls, it must skip over the statements already executed in
previous calls, in order to resume the simulation from the context switch point.
When the control reaches the label guessed for the context switch, it must return
without executing any further statements. Different solutions exist to implement
this using goto statements and distinct labels associated with every meaningful
context switch point in the code. We tried to use a multiplexer at the top of the

592 O. Inverso et al.

thread’s body, implemented with a switch and a series of goto statements, to
jump over the statements already executed, directly to the starting label. We
injected additional code at the context switch label to return immediately when
the thread is pre-empted. However, this schema has performed poorly in our
experiments, possibly because it introduces complex control flow branching.

In contrast, the schema we present here, although at first perhaps counter-
intuitive, scales well when used together with BMC backends. We use goto

statements in a way that avoids complex branching in the control flow. We use
consecutive natural numbers as labels, starting with 0 for the first statement
in each function, and label the other statements with numbers increasing in
program order (see Fig. 3). To reduce the nondeterminism, we insert the labels
(which are only used to simulate the context switches) only at the first state-
ment, the last statement, and every visible statement. Note that this suffices, as
we are only interested in assertion violations and in general properties involving
only the shared memory and the local state of one thread.

Together with each label i (except for the last one) we also inject a condi-
tional goto of the form if(pc[ct]>i || i >=cs) goto i+1; in front of the
statement. Note that the fragment i+1 is evaluated at translation time, and
thus simplifies to an integer literal that also occurs as label. When the thread
simulation function tries to execute statements before the context switch of the
previous round, or after the guessed context switch, the condition becomes true,
and the control jumps to the next label without executing actual statements of
the thread. This achieves the positioning of the control at the program counter
corresponding to pc[ct] with potentially multiple hops, and similarly when the
guessed context switch label is reached, the fall-through to the last statement
of the thread (which is by assumption always a return). Note that, whenever
the control is between these two labels, the injected code is immaterial, and the
statements of f seq

ct in this part of the code are executed as in the original thread.
We use a macro J to package up the injected control code (see Fig. 3).

As an example, consider the program in Fig. 3, and assume that P0 is called
(i.e., ct=1) with pc[1]=2 and cs=6. At label 0, the condition of the injected if

statement holds, thus the goto statement is executed and the control jumps to
label 1. Again, the condition is true, and then the control jumps to label 2. Now,
the condition fails, thus the underlying code is executed, up to label 5. At label
6, the condition of the injected if-statement holds again, thus the control jumps
to label 7, and then to label 8, thus reaching the return statement without
executing any other code of the producer thread.

Handling branching statements. Eager schemas such as LR need to prune away
guesses for the shared variables that lead to infeasible computations. A similar
issue arises in our schema for the guesses of context switches. We remark that
this is the only source of nondeterminism introduced by our translation.

Consider for example the if-then-else in P0, as shown in Fig. 3, and assume
that pc[0]=2 and cs=3, i.e., in this round the sequentialized program is assumed
to simulate (feasible) control flows between labels 2 and 3. However, if c≤0, then
the program jumps from label 2 directly to label 4 in the else-branch; if we

Bounded Model Checking of Multi-threaded C Programs 593

ignore the G(4) macro, the condition in the if statement inserted by J(4,5)

would be tested, and since it would hold, the control flow would slide through to
label 8, and return to the main driver, which would then set pc[0] to 3. In the
next round, the computation would then duly resume from this label—which
should be unreachable! Similar problems may occur when the context switch
label is in the body of the else-branch, and with goto statements.

Note that assigning pc in the called function rather than in the main driver
would fix this problem. However, this would require to inject at each possi-
ble context-switch point an assignment to pc guarded by a nondeterministic
choice. This has performed poorly in our experiments. The main reason for this
is that the control code is spread “all over” and thus even small increments of
its complexity may significantly increase the complexity of the formulas com-
puted by the backend tools. We therefore simply prune away simulations that
would store unreachable labels in pc. For this, we use a simple guard of the
form assume(cs>=j);, where j is the next inserted label in the code. We insert
such guards at all control flow locations that are target of an explicit or implicit
jump, i.e., right at the beginning of each else block, right after the if statement,
and right after any label in the actual code of the simulated thread. Again, we
package this up in a macro called G (see Fig. 3).

This solution prunes away all spurious control flows. Consider first the case
of goto statements. We assume without loss of generality that the statement’s
execution is feasible in the multi-threaded program and that the target’s label
l is in the code after the planned context switch point. But then the inserted G

assumption fails, and the simulation is correctly aborted. The argument for if

statements is more involved but follows the same lines. First consider that the
planned context switch is the then branch. If the simulation takes the control
flow into the else branch, then the guard fails because the first label in this
branch is guaranteed to be greater than any label in the then branch, and
the simulation is aborted. In the symmetric scenario, the guard after the if

statement will do the job because cs is guaranteed to be smaller than the next
label used as argument in the G. Note that the J macro at the last context switch
point in the else branch (in the example J(6,7)) jumps over this guard so that
it never prunes feasible control flows.

We stress that though the guess of context-switch point is done eagerly and
thus we need to prune away infeasible guesses, the simulation of the input pro-
gram is still done lazily. In fact, even when we halt a simulation at a guard, all
the statements of the input program executed until that point correspond to a
prefix of a feasible computation of the input program.

Simulation of Pthreads Routines. For each Pthreads routine we provide a
verification stub, i.e., a simple standard C function that replaces the original
implementation for verification purposes. Fig. 5 shows the stubs for the routines
used in this paper. Variables of type pthread t are simply mapped to integers,
which serve as unique thread identifiers; all other relevant information is stored
in the auxiliary data structures, as described in Sect. 3.

594 O. Inverso et al.

typedef pthread t int;
int pthread create(pthread t *t,

void *(*f)(void*), void *arg, int id)
{ active[id] = ACTIVE;

arg[id]=arg;
*t=id;
return 0; }

int pthread join(pthread t t)
{ assume(pc[t]==size[t]); }

int pthread exit(void *value ptr)
{ return 0; }

typedef pthread mutex t int;
int pthread mutex init(pthread mutex t *m)

{ *m=FREE; }
int pthread mutex destroy(pthread mutex t *m)

{ *m=DESTROY; }
int pthread mutex lock(pthread mutex t *m)

{ assert(*m!=DESTROY);
assume(*m==FREE); *m=t; }

int pthread mutex unlock(pthread mutex t *m)
{ assert(*m==t); *m=FREE; }

Fig. 5. Pthreads verification stubs

In pthread createwe simply set the
thread’s active flag and store the
argument to be passed to the thread
simulation function. Note that we do
not need to store the thread start
function, as the main driver calls all
thread simulation functions explic-
itly, and that the pthread create

stub uses an additional integer argu-
ment id that serves as thread identi-
fier and is copied into the pthread t

argument t. The id values are added
to the pthread create calls by the
unwinding phase, corresponding to
the order in which the calls occur in
the unwound program.

In a real Pthreads implementation
a thread invoking pthread join(t) should be blocked until t is terminated. In
the simulation a thread is terminated if it has reached the thread’s last label,
which corresponds to a return but there is no notion of blocking and unblocking.
Instead, the stub for pthread join uses an assume statement with the condi-
tion pc[t]==size[t] (which checks that the argument thread t has reached
its last label) to prune away any simulation that corresponds to a blocking
join. We can then see that this pruning does not change the reachability of er-
ror states. Assume that the joining thread t terminates after the invocation of
pthread join(t). The invoking thread should be unblocked then but the sim-
ulation has already been pruned. However, this execution can be captured by
another simulation in which a context switch is simulated right before the ex-
ecution of the pthread join, and the invoking thread is scheduled to run only
after the thread t is terminated, hence avoiding the pruning as above.

For mutexes we need to know whether they are free or already destroyed, or
which thread holds them otherwise. We thus map the type pthread mutex t to
integers, and define two constants FREE and DESTROY that have values different
from any possible thread index. When we initialize or destroy a mutex we assign
it the appropriate constant. If we want to lock a variable we assert that it is
not destroyed and then check whether it is free before we assign to it the index
of the thread that has invoked pthread mutex lock. Similarly to the case of
pthread join we block the simulation if the lock is held by another thread. If a
thread executes pthread mutex unlock, we first assert that the lock is held by
the invoking thread and then set it to FREE.

4 Implementation and Evaluation

Implementation. We have implemented the sequentialization described in the
previous sections in the prototype tool Lazy-CSeq. It takes as input a multi-
threaded C program p.c and two parameters r and u representing the round and

Bounded Model Checking of Multi-threaded C Programs 595

unwind bounds, respectively, and produces the sequentialized program cs p.c.
This is an un-threaded but nondeterministic bounded C program that can be
processed by any analysis tool for sequential C (note not just BMC tools).

Lazy-CSeq can also be used as a wrapper around existing sequential verifi-
cation backends. If the optional parameter b to specify the backend is given,
it calls the tool to check for the reachability (within the given bounds) of the
ERROR label in the original program. If the label is reachable, Lazy-CSeq returns
in a separate file a counterexample trace (in the backend format) as witness to
the error. The current version of Lazy-CSeq supports as backends the bounded
model-checkers BLITZ, CBMC, LLBMC and ESBMC. However, since the im-
plemented schema is very generic, the instrumentation for the different backends
differs only in a few lines and other backends can be integrated easily.

Lazy-CSeq is implemented in Python on top of pycparser [7]. It consists of
three main phases, where the input program is first parsed into an abstract syn-
tax tree (AST) then transformed by repeatedly visiting the AST, and finally
un-parsed into C program text. The transformation phase is implemented as a
chain of several modules, each taking the program at some step in the overall
translation process, and producing the program for next step. The modules can
be grouped according to the following main phases of the translation, (i) pre-
processing: merge, introduce workarounds to avoid known backend corner-cases,
perform light input program simplifications; (ii) program bounding: perform
function and loop unwinding, and thread duplication; (iii) instrumentation: in-
sert code for simulation of the pthreadAPI, concurrency simulation, and finalize
the backend specific instrumentation.

Evaluation. We have evaluated our sequentialization approach with Lazy-CSeq
on the benchmark set from the concurrency category of the SV-COMP14 [9]
software verification competition. This set consists of 76 concurrent C files using
the Pthread library, with a total size of about 4,500 lines of code. 20 of the files
contain a reachable error location. We chose this benchmark set because it is
widely used and all tools (but Corral) we compare against have been trained on
this set for the competition.

We ran the experiments on an otherwise idle PC with a Xeon W3520 2.6GHz
processor and 12GB of memory, running Linux with a 64-bit kernel (3.0.6). We
set a 10GB memory limit and a 750s timeout for each benchmark.

The experiments are split into two parts. The first part concerns only the
unsafe programs, where we investigate the effectiveness of several tools at finding
errors. The second part concerns the safe programs, where we estimate whether
limiting the round bounds to small values allows a more extensive exploration of
programs in terms of increased values of loop unwinding bounds. The tools used
in the experiments are BLITZ [16] (4.0), CBMC [4] (4.5 and 4.7), Corral [41],
CSeq [25] (0.5) ESBMC [19] (1.22), LLBMC [24] (2013.1), and Threader [46].

Unsafe instances. The evaluation on unsafe instances is, again, split into two
parts. We first evaluated the performance of Lazy-CSeq with the different se-
quential backend tools; the results are shown on the left of Table 1. Note that

596 O. Inverso et al.

Table 1. Bug-hunting performance (unsafe instances); −1: timeout (750s); −2: internal
error; −3: manual translation not done; −4: test case rejected; −5: unknown failure

Sequentialized version Concurrent version

u
n
w
in
d

ro
u
n
d

B
L
IT

Z
4
.0 C
B
M

C
4
.5 C
B
M

C
4
.7 E
S
B
M

C
1
.2

2

L
L
B
M

C
2
0
1
3
.1

C
B
M

C
4
.5 C
B
M

C
4
.7 C
o
rr
a
l

C
S
e
q

0
.5 E
S
B
M

C
1
.2

2

T
h
re
a
d
e
r

27 boop simple v 2 2 0.3 0.3 0.3 0.8 0.4 −5 0.4 1.9 1.0 −1 117.6
28 buggy simple loop1 2 1 0.2 0.2 0.2 0.3 0.3 −5 0.3 0.8 0.2 624.7 0.3
32 pthread5 vs 2 2 0.4 0.2 0.3 0.2 0.2 −5 0.8 2.2 −2 −1 −1

40 barrier v 4 1 0.2 0.3 0.2 0.3 0.3 −5 0.6 0.8 −2 −2 0.7
49 bigshot p 1 2 0.3 0.4 0.3 0.3 0.6 0.4 0.3 −3 −4 1.7 −2

50 bigshot s 1 2 0.3 0.4 0.3 0.3 0.6 −5 0.5 −3 −4 4.0 −2

53 fib bench 5 5 36.6 1.1 1.0 15.2 2.1 0.7 1.8 5.8 6.3 31.1 6.9
55 fib bench longer 6 6 155.5 4.1 1.5 402.1 3.1 1.6 3.2 14.4 7.2 150.9 10.4
57 fib bench longest 11 11 −1 425.7 214.0 −1 −1 645.9 75.2 −1 −2 −1 54.3
61 lazy01 1 1 0.3 0.2 0.2 0.2 0.4 0.6 0.5 1.3 0.7 398.6 7.1
63 qrcu 1 2 1.4 0.6 0.8 0.7 −5 0.6 0.7 5.8 −5 −1 −1

65 queue 2 2 1.6 8.4 8.8 1.1 −1 18.8 20.9 −3 128.7 −1 −2

67 read write lock 1 2 0.5 0.3 0.3 0.4 −5 0.4 0.4 1.8 2.6 −1 38.4
69 reorder 2 2 1 0.3 0.6 0.6 −2 1.3 1.0 0.7 1.3 −2 −1 2.4
70 reorder 5 4 1 0.4 0.8 0.9 −2 3.3 2.1 0.7 1.9 −2 −1 3.5
72 sigma 16 1 1.4 7.6 7.8 −2 73.0 −1 219.1 −3 −4 −1 −2

73 singleton 1 3 0.7 0.6 0.5 0.5 −5 −5 1.6 −3 −4 −1 −2

75 stack 2 1 0.2 0.3 0.3 0.3 1.0 3.2 0.8 2.1 2.1 −1 151.9
77 stateful01 1 1 0.2 0.2 0.2 0.3 0.5 0.7 0.7 2.0 0.7 −1 0.9
82 twostage 3 2 1 0.3 0.7 0.8 −2 8.0 9.1 4.9 3.6 −4 −1 −1

only the backend run-times are given. The additional Lazy-CSeq pre-processing
time, which is the same for every backend, is about one second for each file
with our current Python prototype implementation. This could easily and sub-
stantially be reduced with a more efficient implementation. The results show
that the tools were able to process most of the files generated by Lazy-CSeq’s
generic pre-processing, and found most of the errors. This is in marked contrast
to our experience with CSeq, where the integration of a new backend required a
substantial development effort, due to the nature of the LR schema. They also
show that the different backends generally perform relatively uniformly, except
for few cases where the performance gap is noticeably wide, probably due to a
different handling of subtle corner-cases in the input from the backends. Both
observations gives us further confidence that our approach is general and not
bound to a specific verification backend tool.

We then compared the bug-hunting performances of Lazy-CSeq and several
tools with different native concurrency handling approaches. CBMC and ES-
BMC are both BMC tools; CBMC uses partial orders to handle concurrency
symbolically while ESBMC explicitly explores the different schedules [18]. CSeq
is based on eager sequentialization, implementing a variant of LR, and uses
CBMC as sequential backend. Corral uses a dynamic unwinding of function
calls and loops, and implements abstractions on variables with the aim of dis-
covering bugs faster. Threader, the winner in the Concurrency category of the
SV-COMP13 competition, is based on predicate abstraction. For each tool (ex-
cept Threader) we adjusted, for each file, all parameters to the minimum needed

Bounded Model Checking of Multi-threaded C Programs 597

to spot the error. The results, given on the right of Table 1, show that Lazy-
CSeq is highly competitive. Of the “native” tools only CBMC is able to find all
errors, but only with the most recent bug-fix version. All other tools time out,
crash, or produce wrong results for several files. This shows how difficult it is to
integrate concurrency handling into a verification tool—in contrast to the con-
ceptual and practical simplicity of our approach. Moreover, for simple problems
(with verification times around one second), Lazy-CSeq performs comparably
with the fastest competitor. On the more demanding instances, Lazy-CSeq is
almost always the fastest, except for the Fibonacci tests (53, 55 and 57) that
are specifically crafted to force particularly twisted interleavings. In most cases
(again except for the Fibonacci tests), Lazy-CSeq successfully finds the errors in
all test cases using only three rounds, confirming that few context switches are
sufficient to find bugs.

1 2 3 4 6 8 10 12 14
0

20

40

60

80

100

unwind bound

u
n
fi
n
is
h
e
d
a
n
a
ly
se
s
(%

)

Lazy-CSeq -R1

Lazy-CSeq -R2

Lazy-CSeq -R3

Lazy-CSeq -R4

Lazy-CSeq -R5

Lazy-CSeq -R6

CBMC 4.7

Fig. 6. Evaluation of safe benchmarks for increasing
loop unwind bounds

Safe instances. The evalua-
tion on safe instances con-
sisted in comparing Lazy-
CSeq using CBMC v4.7 as
backend with the best tool
with native concurrency
handling. We ran nine sets
of experiments for CBMC,
with unwinding bound to
1, 2, 3, 4, 6, 8, 10, 12, and
14, respectively. Notice that
CBMC considers all possi-
ble interleavings. For Lazy-
CSeq, we ran six repetitions
of the sets, with a bound on
the number of rounds from

one to six, for each of the above unwinding values, respectively.
As shown in Fig. 6, we observe that CBMC starts performing worse than

Lazy-CSeq, in terms of number of instances on which the analysis is completed,
as we increase the loop unwinding bound. Overall, with the settings from the
SV-COMP, Lazy-CSeq, is about 30x faster than CBMC for safe instances. This
points out how the introduction of an extra parameter for BMC, i.e., the bound
on the number of rounds, can offer a different, alternative coverage of the state-
space. In fact, it allows larger loop unwindings, and therefore a deeper explo-
ration of loops, than feasible with other methods.

5 Related Work

We already discussed the main sequentialization approaches [49,42,35] in the
introduction. The lazy schema LMP was empirically shown to be more effective
than LR in analyzing multithreaded Boolean programs [35,34]. This work has

598 O. Inverso et al.

been extended to parametrized programs [36,37] and used to prove correctness
of abstractions of several Linux device drivers. Other sequentializations cope
with the problem of handling thread creation [22,12] and use different bounding
parameters [39,38,53]. Ghafari et al. [29] observed that LMP is inefficient with
BMC backends. LR has been implemented in CSeq for Pthreads C programs
with bounded thread creation [25,26], and in STORM that also handles dynamic
memory allocation [40]. Poirot [47,22] and Corral [41] are successors of STORM.
Rek implements a sequentialization targeted to real-time systems [15]. None of
the tools specifically targets BMC backends, though.

Biere et al. [11] introduced BMC to capitalize on the capacity of modern
SAT/SMT solvers; see [10,21] for a survey on BMC. The idea of loop unwinding
in BMC of software was inspired by Currie et al. [20]. Several industrial-strength
BMC tools have been implemented for the C language, including CBMC [17],
ESBMC [18], EXE [14], F-SOFT [32], LLMBC [24], and SATURN [55].

1 2 3 4 6 8
0

5

10

15

20

unwind bound

v
a
ri
a
b
le
s
(r
a
ti
o
)

1 2 3 4 6 8
0

5

10

15

20

25

30

unwind bound

c
la
u
se
s
(r
a
ti
o
) CBMC / Lazy-CSeq -R1

CBMC / Lazy-CSeq -R2

CBMC / Lazy-CSeq -R3

CBMC / Lazy-CSeq -R4

Fig. 7. Ratio between the number of variables on the original files and on the sequen-
tialized files (left), and between the number of clauses on the original files and on the
sequentialized files (right) (safe instances)

Several approaches [50,28,52,51,4] encode program executions as partial orders,
in which each thread is an SSA program and operations on the shared memory are
constrained by a global conjunct modeling the memory model. In [4] the authors
argued that the formula size of their encodings on the considered benchmarks
(among which are 36 from SV-COMP14) is smaller than those of [50,28,52,51]. In
our work, we have empirically evaluated the formula size of our encoding against
CBMC (see Fig. 7). The main result is that our approach yields smaller formulas
already for small unwind bounds, even for four rounds; with increasing unwind
bounds (e.g., n = 8), CBMC’s formulas contain 5x to 15x more variables and 5x
to 25x more clauses, depending on the number of rounds.

6 Conclusions

We have presented a novel lazy sequentialization schema for bounded multi-
threaded C programs that has been carefully designed to take advantage of BMC
tools developed for sequential programs. We have implemented our approach in
the prototype tool Lazy-CSeq as a code-to-code translation. Lazy-CSeq can also
be used as a stand-alone model checker that currently supports four different

Bounded Model Checking of Multi-threaded C Programs 599

BMC tools as backends. We validated our approach experimentally on the SV-
COMP14 [9] concurrency benchmarks suite. The results show that:

– Lazy-CSeq can detect all the errors in the unsafe files, and is competitive
with or even outperforms state-of-the art BMC tools that natively handle
concurrency;

– it allows a more extensive analysis of safe programs with a higher number
of loop unwindings by imposing small bounds on the number of rounds;

– it is generic in the sense that works well with different backends.

Laziness allows us to avoid handling all spurious errors that can occur in an
eager exploration. Thus, we can inherit from the backend tool all checks for
sequential C programs such as array-bounds-check, division-by-zero, pointer-
checks, overflow-checks, reachability of error labels and assertion failures, etc.

A core feature of our code-to-code translation that significantly impacts its
effectiveness is that it just injects light-weight, non-invasive control code into
the input program. The control code is composed of few lines of guarded goto

statements and, within the added function main, also very few assignments. It
does not use the program variables and it is clearly separated from the program
code. This is in sharp contrast with the existing sequentializations (LR, LMP
and the like, which can handle also unbounded programs) where multiple copies
of the shared variables are used and assigned in the control code.

As consequence, we get three general benefits that set our work apart from pre-
vious approaches, and that simplify the development of full-fledged, robust model-
checking tools based on sequentialization. First, the translation only needs to han-
dle concurrency—all other features of the programming language remain opaque,
and the backend tool can take care of them. This is in contrast to, for example, LR
where dynamic allocation of thememory is handled byusingmaps [40]. Second, the
originalmotivation for sequentializationswas to reuse for concurrent programs the
technology built for sequential programverification, and in principle, a sequential-
ization could work as a generic concurrency preprocessor for such tools. However,
previous implementations needed specific tuning and optimizations for the differ-
ent tools (see [25]). In contrast, Lazy-CSeqworkswell with different backends (cur-
rently BLITZ, CBMC, ESBMC, and LLBMC), and the only required tuning was
to comply with the actual program syntax supported by them. Finally, the clean
separation between control code and program code makes it simple to generate a
counter-example starting from the one generated by the backend tool.

Future work. We see two main future directions. One is to investigate opti-
mizations to improve the performance of our approach. Partial order reduc-
tion techniques combined with symbolic model checking can improve the per-
formance [54], and the approach of [33] for SAT-based analysis fits well in our
sequentialisation schema. Also, a tuning of the backends on the class of pro-
grams generated in our translations could boost performance. It is well known
that static code optimizations such as constant propagation are essential for per-
formance gain in BMC. The other direction is to extend our approach to weak
memory models implemented in modern architectures (see for example [5,3]),
and to other communication primitives such as MPI [27].

600 O. Inverso et al.

Lazy-CSeq homepage:
http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html.

References

1. 2013 28th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2013, Silicon Valley, CA, USA, November 11-15. IEEE (2013)

2. Ábrahám, E., Havelund, K. (eds.): TACAS 2014 (ETAPS). LNCS, vol. 8413.
Springer, Heidelberg (2014)

3. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software Verification for
Weak Memory via Program Transformation. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013)

4. Alglave, J., Kroening, D., Tautschnig, M.: Partial Orders for Efficient Bounded
Model Checking of Concurrent Software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013)

5. Atig, M.F., Bouajjani, A., Parlato, G.: Getting Rid of Store-Buffers in TSO
Analysis. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 99–115. Springer, Heidelberg (2011)

6. Ball, T., Sagiv, M. (eds.): Proceedings of the 38th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2011, Austin, TX, USA,
January 26-28. ACM (2011)

7. Bendersky, E.: http://code.google.com/p/pycparser/

8. Beyer, D.: Second Competition on Software Verification - (Summary of SV-COMP
2013). In: Piterman, Smolka (eds.) [45], pp. 594–609

9. Beyer, D.: Status report on software verification - (competition summary sv-comp
2014). In: Ábrahám, Havelund (eds.) [2], pp. 373–388

10. Biere, A.: Bounded Model Checking. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 457–481. IOS Press (2009)

11. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

12. Bouajjani, A., Emmi, M., Parlato, G.: On Sequentializing Concurrent Programs. In:
Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 129–145. Springer, Heidelberg
(2011)

13. Bouajjani, A., Maler, O. (eds.): CAV 2009. LNCS, vol. 5643. Springer, Heidelberg
(2009)

14. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automati-
cally Generating Inputs of Death. In: Juels, A., Wright, R.N., di Vimercati, S.D.C.
(eds.) ACM Conference on Computer and Communications Security, pp. 322–335.
ACM (2006)

15. Chaki, S., Gurfinkel, A., Strichman, O.: Time-bounded Analysis of Real-time Sys-
tems. In: Bjesse, P., Slobodová, A. (eds.) FMCAD, pp. 72–80. FMCAD Inc. (2011)

16. Cho, C.Y., D’Silva, V., Song, D.: BLITZ: Compositional Bounded Model Checking
for Real-world Programs. In: ASE [1], pp. 136–146

17. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html
http://code.google.com/p/pycparser/

Bounded Model Checking of Multi-threaded C Programs 601

18. Cordeiro, L., Fischer, B.: Verifying Multi-threaded Software using SMT-based
Context-bounded Model Checking. In: Taylor, R.N., Gall, H., Medvidovic, N. (eds.)
ICSE, pp. 331–340. ACM (2011)

19. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking
for Embedded ANSI-C Software. IEEE Trans. Software Eng. 38(4), 957–974 (2012)

20. Currie, D.W., Hu, A.J., Rajan, S.P.: Automatic Formal Verification of DSP soft-
ware. In: DAC, pp. 130–135 (2000)

21. D’Silva, V., Kroening, D., Weissenbacher, G.: A Survey of Automated Techniques
for Formal Software Verification. IEEE Trans. on CAD of Integrated Circuits and
Systems 27(7), 1165–1178 (2008)

22. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded Scheduling. In: Ball, Sagiv
(eds.) [6], pp. 411–422

23. Etessami, K., Rajamani, S.K. (eds.): CAV 2005. LNCS, vol. 3576. Springer, Hei-
delberg (2005)

24. Falke, S., Merz, F., Sinz, C.: The Bounded Model Checker LLBMC. In: ASE [1],
pp. 706–709

25. Fischer, B., Inverso, O., Parlato, G.: CSeq: A Concurrency Pre-processor for Se-
quential C Verification Tools. In: ASE [1], pp. 710–713

26. Fischer, B., Inverso, O., Parlato, G.: CSeq: A Sequentialization Tool for C - (Com-
petition Contribution). In: Piterman, Smolka (eds.) [45], pp. 616–618

27. Forum, M.P.I.: MPI: A Message-Passing Interface Standard Version 3.0, 09, Chap-
ter author for Collective Communication, Process Topologies, and One Sided Com-
munications (2012)

28. Ganai, M.K., Gupta, A.: Efficient Modeling of Concurrent Systems in BMC. In:
Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 114–133.
Springer, Heidelberg (2008)

29. Ghafari, N., Hu, A.J., Rakamarić, Z.: Context-Bounded Translations for Concur-
rent Software: An Empirical Evaluation. In: van de Pol, J., Weber, M. (eds.) SPIN
2010. LNCS, vol. 6349, pp. 227–244. Springer, Heidelberg (2010)

30. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: A Lazy
Sequentialization Tool for C - (Competition Contribution). In: Ábrahám, Havelund
(eds.) [2], pp. 398–401

31. ISO/IEC. Information technology—Portable Operating System Interface (POSIX)
Base Specifications, Issue 7, ISO/IEC/IEEE 9945:2009 (2009)

32. Ivancic, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-Soft:
Software Verification Platform. In: Etessami, Rajamani (eds.) [23], pp. 301–306

33. Kahlon, V., Gupta, A., Sinha, N.: Symbolic Model Checking of Concurrent Pro-
grams Using Partial Orders and On-the-Fly Transactions. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 286–299. Springer, Heidelberg (2006)

34. La Torre, S., Madhusudan, P., Parlato, G.: Analyzing Recursive Programs Using
a Fixed-point Calculus. In: Hind, M., Diwan, A. (eds.) PLDI, pp. 211–222. ACM
(2009)

35. La Torre, S., Madhusudan, P., Parlato, G.: Reducing Context-Bounded Concur-
rent Reachability to Sequential Reachability. In: Bouajjani, Maler (eds.) [13],
pp. 477–492

36. La Torre, S., Madhusudan, P., Parlato, G.: Model-Checking Parameterized Con-
current Programs Using Linear Interfaces. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 629–644. Springer, Heidelberg (2010)

37. La Torre, S., Madhusudan, P., Parlato, G.: Sequentializing Parameterized Pro-
grams. In: Bauer, S.S., Raclet, J.-B. (eds.) FIT. EPTCS, vol. 87, pp. 34–47 (2012)

602 O. Inverso et al.

38. La Torre, S., Napoli, M., Parlato, G.: Scope-Bounded Pushdown Languages. In:
Shur, A., Volkov, M. (eds.) DLT. LNCS. Springer (2014)

39. La Torre, S., Parlato, G.: Scope-bounded Multistack Pushdown Systems: Fixed-
Point, Sequentialization, and Tree-Width. In: D’Souza, D., Kavitha, T., Radhakr-
ishnan, J. (eds.) FSTTCS. LIPIcs, vol. 18, pp. 173–184. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2012)

40. Lahiri, S.K., Qadeer, S., Rakamaric, Z.: Static and Precise Detection of Concur-
rency Errors in Systems Code Using SMT Solvers. In: Bouajjani, Maler (eds.) [13],
pp. 509–524

41. Lal, A., Qadeer, S., Lahiri, S.K.: A Solver for Reachability Modulo Theories. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427–443.
Springer, Heidelberg (2012)

42. Lal, A., Reps, T.W.: Reducing Concurrent Analysis Under a Context Bound to
Sequential Analysis. Formal Methods in System Design 35(1), 73–97 (2009)

43. Lamport, L.: A New Approach to Proving the Correctness of Multiprocess Pro-
grams. ACM Trans. Program. Lang. Syst. 1(1), 84–97 (1979)

44. Musuvathi, M., Qadeer, S.: Iterative Context Bounding for Systematic Test-
ing of Multithreaded Programs. In: Ferrante, J., McKinley, K.S. (eds.) PLDI,
pp. 446–455. ACM (2007)

45. Piterman, N., Smolka, S.A. (eds.): TACAS 2013 (ETAPS 2013). LNCS, vol. 7795.
Springer, Heidelberg (2013)

46. Popeea, C., Rybalchenko, A.: Threader: A Verifier for Multi-threaded Programs -
(Competition Contribution). In: Piterman, Smolka (eds.) [45], pp. 633–636

47. Qadeer, S.: Poirot - A Concurrency Sleuth. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 15–15. Springer, Heidelberg (2011)

48. Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

49. Qadeer, S., Wu, D.: KISS: Keep It Simple and Sequential. In: Pugh, W., Chambers,
C. (eds.) PLDI, pp. 14–24. ACM (2004)

50. Rabinovitz, I., Grumberg, O.: Bounded Model Checking of Concurrent Programs.
In: Etessami, Rajamani (eds.) [23], pp. 82–97

51. Sinha, N., Wang, C.: Staged Concurrent Program Analysis. In: Roman, G.-C.,
Sullivan, K.J. (eds.) SIGSOFT FSE, pp. 47–56. ACM (2010)

52. Sinha, N., Wang, C.: On Interference Abstractions. In: Ball, Sagiv (eds.) [6],
pp. 423–434

53. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-CSeq: Sequen-
tialization of C Programs by Shared Memory Unwindings - (Competition Contri-
bution). In: Ábrahám, Havelund (eds.) [2], pp. 402–404

54. Wang, C., Chaudhuri, S., Gupta, A., Yang, Y.: Symbolic Pruning of Concurrent
Program Executions. In: van Vliet, H., Issarny, V. (eds.) ESEC/SIGSOFT FSE,
pp. 23–32. ACM (2009)

55. Xie, Y., Aiken, A.: Saturn: A SAT-Based Tool for Bug Detection. In: Etessami,
Rajamani (eds.) [23], pp. 139–143

	Bounded Model Checking of Multi-threadedC Programs via Lazy Sequentialization
	1 Introduction
	2 Bounded Multi-threaded C Programs
	3 Lazy Sequentialization for Bounded Programs
	4 Implementation and Evaluation
	5 Related Work
	6 Conclusions
	References

