
Formalizing a SAT Proof Checker in Coq

Ashish Darbari, Bernd Fischer
School of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, England

email: {ad06v,b.�scher}@ecs.soton.ac.uk

Joao Marques-Silva
School of Computer Science and Informatics

University College Dublin, Bel�eld, Dublin 4, Ireland
email: jpms@ucd.ie

Abstract

Advances in SAT technology have made it possible for the SAT solvers to solve much bigger
instances of problems using fewer resources. Much of the speed of these solvers comes from
well-crafted optimizations but these complicate the implementations of the solvers, and make
them vulnerable to bugs. However, assurance can be re-gained by use of a checker that validates
the outcome of the solver. Two important aspects of this approach are (i) to ensure that the
checker program itself is bug free, and (ii) is easy-to-use as a standalone executable.

We have designed and implemented a SAT proof checker using the Coq proof assistant. Our
checker is capable of validating a SAT or an UNSAT claim of a SAT solver. In this paper we
report on the more interesting aspect of checking the unsatis�ability claims, which have the form
of a ground resolution proof. We present our formalization of the checker as a set of de�nitions
within Coq, and characterize and prove its correctness properties. The proofs have been all
machine checked in Coq, and an equivalent Ocaml executable program is extracted that can
be used independently of the proof-assistant itself. Finally, we present some early evaluation
results on industrial benchmarks to illustrate the strength of the extracted checker.

1 Introduction

Advances in SAT technology have made it possible for SAT solvers to be routinely used in the
veri�cation of large industrial problems. Moreover, they are now also used as back-end veri�ca-
tion engines in several safety-critical domains such as railway systems [1] and avionics [2]. Such
applications require some form of formal certi�cation or guarantee that they are correct.

However, much of the performance enhancements in SAT technology come from well-crafted
optimizations that make the SAT solvers vulnerable to implementation bugs. At the same time
their complexity makes formal proofs of their correctness extremely di�cult. For example, Lescuyer
et al [3] formalized a SAT solver in the Coq proof assistant and extracted an executable program.
The resulting program was mathematically rigourously checked, but its performance su�ered, due
to the lack of optimizations. Reasoning about these optimizations makes the formal correctness
proofs exceedingly hard, as shown by Mari¢ [4], who veri�ed the pseudo-code of the SAT algorithm
used in the ARGO-SAT solver but did not verify the solver itself.

1



An alternative, and more e�ective approach for ensuring correctness is to not formalize the
SAT solver itself, but to instead formalize an independent checker in a proof-assistant, and use
that checker to validate the outcome of the SAT solver. Weber and Amjad [5] proposed the idea of
checking resolution proofs from SAT solvers by re-constructing them in LCF style higher-order logic
theorem provers Isabelle, HOL 4, and HOL Light. They imported the proof trace output obtained
from the proof-logging versions of Zcha� and Minisat into these theorem provers, and re-played
the proofs to check whether they are valid. The bene�t of this approach is that they can rely on
the trusted LCF style kernel of the theorem provers to check the resolution proof obtained from
the trace. However, a problem of this approach is that users need to be able to use these theorem
provers in order to use the checker.

Our approach follows the general ideas of Weber and Amjad, but solves the (practical) problem
of their work by extracting a stand-alone checker that can be used independently of the proof
assistant. We have formalized and implemented a SAT checker called SHRUTI in Coq. Given a
CNF description of the problem, and a proof trace obtained from a SAT solver, our checker can
determine the validity of the claim made by the solver. Our formalization has two parts, one for
checking the satis�ability claim (SAT), and another to validate the unsatis�ability claim (UNSAT).
In this paper we present the formalization of the UNSAT part of the checker in the Coq proof
assistant. We present some preliminary evaluation results on the industrial benchmarks from the
SAT Race competition [6] to illustrate the strength of our approach.

2 Proof Checking Overview

Most SAT solvers can also produce a proof carrying the explanation about why the given problem
was unsatis�able when they produce an UNSAT answer. Any checker should be able to read these
proof traces and should come up with a Yes/No answer depending on whether an outcome of the
SAT solver is correct or not. In fact many of these solvers such as Zcha�, Minisat, Picosat and
Booleforce provide a checker that does just that. However, none of these checkers are formally
certi�ed for correctness.

An UNSAT proof trace is a representation of general resolution proofs consisting of the original
clauses used during resolution and the intermediate resolvents obtained by resolving the original
input clauses. The parts of the proof which are regular input resolutions are called chains. The
whole trace thus consists of original clauses and chains. Since a chain is a new proof rule, its input
clauses are called `antecedents' and the �nal resolvent simply `resolvent'.

In order to design an e�cient checking algorithm we made use of the resolution inference rule [7].
This rule takes a pair of clauses in disjunctive normal form, and produces a union of the two clauses,
cancelling any complementary literals present in the two clauses. Of course, it is assumed that the
input clauses themselves have no duplicate literals, and have no complementary literals within
themselves. It is well known that this inference rule is sound and complete for propositional logic
and the proof can be found in [8, 9]. When this inference rule is used to compute a resolution
derivation on a set of clauses such that each resolved variable (i.e., the variable that occurs in the
pair of complementary literals) is distinct and each clause is either an input clause or a derived
clause obtained by the application of the resolution rule, the resolution derivation is called trivial
resolution [10]. We often use the term `trivial resolution' to mean the application of the `resolution
inference rule' since the application of the latter results in a trivial resolution.

The use of resolution rule ensures that the number of resolution steps taken to compute the �nal
resolvent of a chain is linear with respect to the number of antecedents within the chain. Thus the

2



computation of a �nal resolvent in a chain begins at one end of the chain (in our case left most end
of the chain) and uses each antecedent within the chain only once.

We decided to test our certi�ed checker by reading the proof trace formats generated by Picosat,
because it can also generate proof traces readable in ASCII form as compared to some of the other
proof logging versions of solvers that only produces binary versions. Picosat [11] was also voted
as one of the best SAT solvers in the industrial category of SAT Race 2007. Like many SAT
solvers, Picosat reads the problem representation in DIMACS [12] notation. This uses non-zero
integers to denote literals. A positive variable is denoted by a positive integer while its complement
uses a negative integer. Zeroes are only used as delimiters. As an example consider the following
unsatis�able formula adapted from the README.tracecheck �le distributed with Booleforce. It
consists of all possible binary clauses over the two variables 1 and 2.

1 2 0
-1 2 0
1 -2 0
-1 -2 0

The zeroes at the end of rows are delimiters. A Picosat proof trace consists of such rows representing
the input clauses, followed by rows encoding the proof chains. Each �chain row� consists of an
asterisk (*) as place-holder for the chain's resolvent,1 followed by the identi�ers of the clauses
involved in the chain. Each chain row thus contains at least two clause identi�ers, and denotes an
application of one or more of the resolution inference rule, describing a trivial resolution derivation.
Each row also starts with a non-zero positive integer denoting the identi�er for that row's (input
or resolvent) clause. In an actual trace there are additional zeroes as delimiters at the end of each
row, but we remove these before we start proof checking. The input to our checker thus looks as
follows:

1 1 2
2 -1 2
3 1 -2
4 -1 -2
5 * 3 1
6 * 4 2 5

The �rst four rows denote the input clauses from the original problem (see above) that are used
in the resolution, with their identi�ers referring to the original clause numbering, whereas rows 5
and 6 represent the proof chains. In row 5, the clauses with identi�ers 3 and 1 are resolved using a
single resolution rule, whilst in row 6 �rst the original clauses with identi�er 4 and 2 are resolved
and then the resulting clause is resolved against the clause denoted by identi�er 5 (i.e., the resolvent
from the previous chain), in total using two resolution steps.

The algorithm of checking the validity of the proof trace relies singularly on the repeated use
of the resolution rule. Checking begins at the �rst row of the proof chain (in the above example it
would be 5), and the resolution rule is applied to all the antecedent clauses denoted by the identi�ers
in the chain. The resolvent clause (in this case consisting of {1}) is stored in a lookup table and is
tagged with the key identi�er 5. This process is then repeated for the next identi�er in the proof
chain (in our example it would be 6) and after two resolution rule applications an empty clause is
obtained. If the empty clause is obtained then the given problem is UNSAT (i.e., the checker will

1This is generated by Picosat; there is another option of generating proof traces from Picosat where instead of the
asterisk the actual resolvents are generated delimited by a single zero from the rest of the chain.

3



return a Yes answer), or else if all proof chain identifers have been checked and the empty clause is
not derived, the given problem is not UNSAT (i.e., the checker will return a No answer). Correctness
of the checking algorithm depends on the correct implementation of the resolution inference rule.
The resolution rule itself is correct if it satis�es the following conditions:

1. All complementary literals are deleted from the given pair of clauses.
2. If the input pair of clauses contains a common literal then only one copy of that literal is

made in the resolvent.
3. All unequal literals in the given pair of clauses are retained in the resolvent.

Additionally the resolution rule should produce an empty resolvent for a given pair of clauses
that only contain complementary literals. A correctly implemented proof-checking algorithm would
produce an empty clause from a proof trace for an unsatis�able problem provided the trace contains
a well-ordered chain of antecedents. If the ordering of the antecedents is not preserved which is the
case with the compact resolution trace produced by Picosat, we are likely to introduce a scenario
at the time of checking in which each trivial resolution step does not necessarily create a resolvent
by cancelling complementary literals using linear number of steps. In other words the antecedents
cannot be resolved to form a regular input resolution proof or the trivial proof e�ciently. The
tracecheck program distributed with Picosat can expand the trace output from Picosat and �x the
ordering problem of the chains. It takes a resolution proof trace from Picosat as input and creates
an extended resolution trace.

In the next section we present our formulation of the UNSAT part of the checker SHRUTI specif-
ically showing the formalization of the resolution inference rule and we characterize its correctness
properties by formalizing three main theorems.

3 Formalization of SHRUTI in Coq

3.1 Motivation for using Coq

We wanted to design a certi�ed proof checker that can be formalized and mechanically veri�ed using
a proof-assistant to generate a high level of con�dence, and at the same time enable the user to
use it independently of the proof-assistant. We envision that by not compromising the safety, and
enhancing ease-of-use, we can encourage the use of certi�ed checkers as a regular component during
the SAT checking �ow. We therefore decided to use a proof-assistant in which it would be possible
to achieve both our goals and the obvious choice was the Coq proof assistant. Coq has been widely
used in several certi�cation projects; most well known is the certi�cation of a C compiler [13].

3.2 Formalizing SHRUTI

At the heart of SHRUTI is the formalization of the UNSAT part of the checker in Coq. The
formalization makes use of a shallow embedding of the proof checker inside Coq using the data
types and data structures of the Coq meta logic to represent the types and data structures of
the proof checker. We then formulate de�nitions over these, and formally prove inside Coq that
these de�nitions are correct. Once the Coq formalization is complete, Ocaml code is extracted
from it through the extraction API that comes with Coq. At the time of extraction, the Coq data
types/data structures are mapped to Ocaml data types/data structures. This way, we get the safe,
static, one-o� characterization in Coq combined with the run-time execution speed of Ocaml. The
extracted Ocaml code expects to read its input data from data structures such as tables and lists.
Data is stored in these from �les containing the CNF description and the proof trace. This is

4



handled by some extra piece of Ocaml glue that wraps the extracted Ocaml code. The glue code
also contains functions for pro�ling and logging the results in �les. The result is then compiled
into a native machine code executable that can be run independently of the proof-assistant Coq. A
high-level architectural view is shown in Figure 1.

Formally  Certified SAT Checker

Ocaml API  
One off offline formalization of
function definitions  and
mechanized proofs.
     

 Coq

extract
Extracted Ocaml

I/O functions
Profilers
Pre-processing

Certified Proof
Checker

Figure 1: A High Level Architectural View of the Certi�ed Checker.

We assume familiarity with the quanti�ers (∀, ∃) and logical connectives such as and (∧), or (∨),
not (¬) and implication. We distinguish implication over propositions by ⊃ and over types with →
for presentation clarity, though inside Coq they are exactly the same. The notation⇒ is used during
pattern matching (using match-with-end) as in other functional languages. For type annotation we
use :, and for the cons operation on lists we use ::. Empty list is denoted by nil . The set of integers
is denoted by Z , the type of polymorphic list by list and the type of list of integers by list Z . List
containment is represented by ∈ and its negation by /∈. The function Zabs computes the absolute
value of an integer. We use De�nition to denote the Coq function de�nitions. Main data structures
that we have used in Coq formalization are lists, and �nite maps. Finite maps or simply maps are
functionally similar to hashtables with integer keys and polymorphic bindings although they are
implemented using balanced binary trees.

To de�ne the resolution function we make use of an auxillary function union which is de�ned
below. This function takes as input a pair of clauses represented as a list of integers and an
accumulator, and performs the functionality of the resolution operation.

De�nition union (c1 c2 : list Z )(acc : list Z ) =
match c1 , c2 with

| nil , c2 ⇒ app (rev acc) c2

| c1 ,nil ⇒ app (rev acc) c1

| x :: xs, y :: ys ⇒ if (x + y = 0) then union xs ys acc
else if (Zabs x ) < (Zabs y) then union xs (y :: ys) (x :: acc)
else if (Zabs y) < (Zabs x ) then union (x :: xs) ys (y :: acc)
else union xs ys (x :: acc)

The key feature of this function is that it expects the input clauses to be sorted by absolute
value and the resolvent produced is also sorted by absolute value. This has the bene�t of keeping
the e�ciency of the resolution operation linear in the size of the input clauses.

De�nition sorted =
Inductive sorted : list Z → Prop :=
| sorted0 : sorted nil
| sorted1 : ∀z : Z . sorted (z :: nil)
| sorted2 : ∀z1 z2 :Z `: list Z . (Zabs z1 ≤Zabs z2 ) ⊃ sorted (z2 :: `) ⊃ sorted (z1 :: z2 ::`)

5



Note that in this predicate we do not enforce the constraint that an element has to be strictly
less than the other, as we use the ≤ relation. However, when it comes to the proofs later on,
this constraint is automatically enforced by stating that the clauses cannot contain duplicates or
complementary literals.

Once the input clauses are sorted by absolute value, at the time of resolution each integer in
the clause is compared pointwise. If the integers are complementary to one another then neither
is added to the accumulator else the smaller (in terms of absolute value) of the two is added. If
the integers are equal, one of them is stored in the accumulator. Once a single run of any of the
clauses is �nished, the accumulator's contents are sorted and then merged with the other, longer
clause. Sorting is done by simply reversing the accumulator. This is because integers are added to
the front of the list using the (::) operation, and the resulting accumulator has the �nal elements
in descending order.

The actual binary resolution function is de�ned below. It is denoted by ./ and makes use of the
union function.

De�nition c1 ./ c2 = (union c1 c2 nil)

To ensure that the formalization of our checker is correct we need to check that the resolution
(./) function is de�ned correctly. What it means is that it should preserve the basic properties of
the binary resolution function which are enumerated below:

1. Any pair of complementary literals is deleted in the resolvent obtained from resolving a given
pair of clauses (Theorem 1).

2. All non-complementary literals that are pairwise unequal are retained in the resolvent (The-
orem 2).

3. For a given pair of clauses, if there are no duplicate literals within each clause, then for a
literal that exists in both the clauses of the pair, only one copy of the literal is retained in the
resolvent (Theorem 3).

We have proven these properties in Coq. The actual proof, including several lemmas, comprises
in total about 2000 lines of proof script in Coq.

For the sake of clarity in presentation we do not detail all the assumptions but we need to assume
that the following assumptions hold for the three main theorems that we present later on.

1. No duplicates are allowed in each of the clauses c1 and c2 .
2. There exists no mutually complementary pair of literals within each of the clauses c1 and c2 .
3. No Zeros are allowed in the clauses c1 and c2 .

These assumptions are essentially the constraints imposed on input clauses when the resolution
function is applied in practice.

Since we have developed the machine checked proofs2 we will not show the proof of these
theorems in this paper. The general stratgey is to use structural induction on clauses c1 and
c2 . For each theorem, this results in four main goals, three of which are proven by contradiction
since for all elements `1, `1 /∈ nil. For the remaining goal a case-split is done on if-then-else,
thereby producing 8 sub-goals, some of whom are proven from induction hypotheses, and some
from con�icting assumptions arising from the case-split. For others we employ a collection of
special properties. Some of these are about integers and their reationship with their absolute values

2Available at http://users.ecs.soton.ac.uk/ad06v/papers/coqwkshp09/

6



and the fact that these values appear in sorted lists without duplicates. Some are about counting
an element and its relationship with the ./-function. The interested reader is referred to the online
proof script. We will point out some of the main properties used in the proof of the theorems when
we present the theorem.

Theorem 1. All complementary literals are deleted:

∀c1 c2 . sorted c1 ⊃ sorted c2 ⊃
∀`1 `2. (`1 ∈ c1 ) ⊃ (`2 ∈ c2 ) ⊃

(`1 /∈ c2 ) ⊃ (`2 /∈ c1 ) ⊃ (`1 + `2 = 0) ⊃
(`1 /∈ (c1 ./ c2 )) ∧ (`2 /∈ (c1 ./ c2 ))

We make use of two important properties to prove two of the sub-goals arising in the proof of this
theorem. The �rst property states that if an element is not present in either of c1, c2 or acc then
it cannot be present in the resolvent of c1 and c2. The other important property states that if an
element is already in acc then it exists in the resolvent of c1 and c2.

For the following theorem we need to assert in the assumption that for any literal in one
clause there exists no complementary literal in the other clause. This is de�ned by the predicate
NoMutualComp.

Theorem 2. All non-complementary, unequal literals are retained:

∀c1 c2 . sorted c1 ⊃ sorted c2 ⊃
∀`1 `2. (`1 ∈ c1 ) ⊃ (`2 ∈ c2 ) ⊃ (`1 /∈ c2 ) ⊃ (`2 /∈ c1 ) ⊃

(`1 6= `2) ⊃ (NoMutualComp `1 c2) ⊃ (NoMutualComp `2 c1) ⊃
(`1 ∈ (c1 ./ c2 )) ∧ (`2 ∈ (c1 ./ c2 ))

For the proof we make use of an important property that states if an element is in clause c1 and is
not in clause c2 and provided that its complement also does not exist in either c1 or c2 we will get
that element in the resolvent of c1 and c2.

Theorem 3. (Factoring) Only one copy of equal literal is retained:

∀c1 c2 . sorted c1 ⊃ sorted c2 ⊃
∀`1 `2. (`1 ∈ c1 ) ⊃ (`2 ∈ c2 ) ⊃

(`1 = `2) ⊃ ((`1 ∈ (c1 ./ c2 )) ∧ (count `1 (c1 ./ c2 ) = 1))

The proof of this theorem makes use of an important counting property. It states that if an element
occurs in the accumulator acc once, and it exists in union c1 c2 acc but it does not exist in c1 or c2,
then it must only occur once in union c1 c2 acc.

In order to check the resolution steps for each row, we have to collect the actual clauses corre-
sponding to their identi�ers and this is done by the findClause function.

De�nition findClause acc ctbl rtbl dlst =
match dlst with

| nil ⇒ (List .rev acc,true)
| (x :: xs) ⇒
match (find x rtbl) with
| Some a ⇒

findClause (a :: acc) ctbl rtbl xs
| None ⇒

7



match (find id ctbl) with
| None ⇒ (acc,false)
| Some a ⇒ findClause (a :: acc) ctbl rtbl xs

The function findClause takes a list of clause identi�ers (dlst), an accumulator (acc) to collect
the list of clauses, and requires as input a table that has the information about all the input
clauses (ctbl). It also takes another table (rtbl) as an argument which is the table that contains the
processed resolvents. Whenever a clause id is processed, then its resolvent clause is �rst looked up
in the resolvent table, if that contains no entry for the given clause identi�er, the clause is obtained
from ctbl . If there is no entry in either of the tables, an error is signalled. It means there is a clause
id for which there is no clause. This could be because there is an input/output problem with the
proof trace �le.

We then prove some sanity-checking properties about the maps. An obvious property that
follows from the �nite map implementation itself is that if a key is inserted in a table it will return
some binding on being queried. We prove that if an entry is not found in the clause table and the
resolvent table then the false �ag is raised.

The function that uses the ./ function recursively on a list of input clause chain is called
hyperResolution and it simply folds the ./ function from left to right for every row in the proof
part of the proof trace �le.

De�nition hyperResolution lst =
match (lst : list (list Z )) with
| nil ⇒ nil
| (x :: xs) ⇒ List .fold left (./) xs x

The function findAndResolve is our last function de�ned in Coq world for UNSAT checking and
provides a wrapper on other functions. The proof traces obtained from Picosat contains the proof
chains specifying the clause identi�ers used to derive the con�ict, and the actual clauses that are used
to generate the con�ict. At the time of proof checking the pre-processed (trailing 0s removed) input
proof trace is scanned and for each line in the trace it is either stored into a clause table (ctbl) since it
represents an input clause, or in the trace table (ttbl) because it denotes a proof chain. The function
findAndResolve then starts the checking process by �rst snar�ng all the antecedents (identi�ers for
clauses) in a chain from the trace table, and then for each antecedent, obtains the actual clause
either from the clause table or from the resolvent table by using the function findClause.

De�nition findAndResolve ctbl ttbl rtbl id =
let dlst = (find id ttbl) in

match dlst with

| None ⇒ (add id (0 :: nil) rtbl)
| Some a ⇒

let (cls,flag) =
findClause nil ctbl rtbl a in

match flag with

| false ⇒ add id (0 :: (0 ::nil)) rtbl
| true ⇒ add id (hyperResolution cls) rtbl

Once all the clauses are obtained for a single chain, the function hyperResolution is called and
applied on the list of clauses for all proof chains. For each chain, the resolvent is stored in a separate

8



resolvent table and tagged with the chain identi�er from the trace table. It then checks whether
the resolvent for the identi�er of the last chain is an empty clause (i.e., empty list), and returns Yes
(meaning that the solver's UNSAT claim is valid) if it �nds one, else No.

We prove that if there is no binding for a given identi�er in the trace table then a list with single
zero is inserted in the resolvent table corresponding to this identi�er. Similarly we prove that if the
findClause function returns an error (�ag is set to false) then a list with two zeroes is inserted in
the resolvent table.

Since the proof trace obtained from Picosat contains proof chains that are a trivial resolution
derivation, and since they are well-ordered, it is guaranteed that at the time of proof checking
each application of the resolution inference rule will resolve at least one complementary pair of
literals, thereby decreasing the count of total literals in the resolvent. For an UNSAT problem
there would be enough proof chains and enough antecedents in each chain so that �nite amount of
resolution inference rule applications would eventually produce a pair of clauses with equal number
of literals that are complementary to one another, and thus the �nal application of resolution rule
would produce an empty clause. Our implementation of the resolution inference rule guarantees
(due to the three main theorems presented) that this will happen provided the input proof trace is
well-ordered and represents a chain of trivial resolution derivations.

We also check whether the given proof trace is a legal proof trace, i.e., whether any input clause
used in any proof chain in the given trace is contained in the original problem. If the trace is not
legal then the user gets a message and the checker aborts. However, this is provided as an option
to the user at runtime, and if invoked, adds about 1-2% time overhead. This feature is currently
optional because the uncerti�ed checkers currently do not do this, and for comparing the runtime
performances of our checker with uncerti�ed ones we would like to disable this option at runtime
to keep the comparison fair. Comparison results for these are still in process.

4 Results and Discussion

Our checker was tested on a chosen set of industrial benchmarks from SAT Race. The results are
summarized in Table 1. We pre-processed the input trace �le to remove trailing zeroes using Ocaml
routines. We do not enforce the check for duplicates in the input trace. If they are present in any
line of the trace, they will �ripple out� in the resolvent, and an empty clause cannot be derived using
the resolution based proof-checking. The input trace then no longer represents an UNSAT problem
and the checker will simply return a No verdict.

We experimented with the extraction process and optimized the extracted Ocaml functions for
e�ciency. In our �rst implementation we only mapped the Coq lists to Ocaml lists. The resulting
implementation (shown as SHRUTI (orig.) in the table) was more than one order of magnitude
slower.

The Coq Zs were replaced with Ocaml integers and we replaced the Coq functions on Zs with
the equivalent Ocaml functions. We also replaced the Coq �nite maps with Ocaml �nite maps and
together with this change noticed a signi�cant improvement.

Replacing Coq Zs with Ocaml integers and the maps gave a performace boost by a factor of
5-10. This can be perhaps attributed to the reduced overhead when dealing with Ocaml integer
keys (in the Ocaml maps) directly, without having to convert between Coq Zs and Ocaml integers,
and that all integer operations were now done on Ocaml integers.

A substantial bottle-neck in performance was the Ocaml garbage collector that unwittingly
kicked in each time the number of inference steps exceed one million. The e�ect of this was almost an

9



Benchmark Proof Steps SHRUTI (opt.) SHRUTI (orig.)

een-tip-uns-nusmv-t5.B 122816 0.91 5.82

een-pico-prop01-75 246430 1.29 10.14

ibm-2004-26-k25 1132 0.004 0.02

ibm-2002-26r-k45 1105 0.001 0.02

ibm-2004-3 02 1-k95 114794 0.63 3.87

ibm-2004-6 02 3-k100 126873 0.76 4.92

ibm-2004-1 11-k25 254544 1.86 11.29

ibm-2002-07r-k100 255159 1.38 9.37

ibm-2004-2 14-k45 701430 6.59 51.51

manol-pipe-c10nidw s 458042 2.82 19.51

manol-pipe-f6bi 1058871 10.32 97.85

Table 1: Results showing the times taken by our extracted checker on a sample of industrial benchmark prob-
lems from the SAT Race Competition. We show the number of proof steps obtained from Picosat/tracecheck
in the second column. The third column shows the time taken by our optimized version SHRUTI (opt.)
whilst the last one shows the timings obtained from the originally extracted, un-optimized version SHRUTI
(orig.). The compiled binaries in both the cases were executed on a server running Red Hat Linux with Intel
Xeon CPU 3 GHz, and 4GB memory. All times include resolution checking time, I/O and pre-processing
times.

exponential drop in performance. We therefore changed the runtime settings of the garbage collector,
by specifying large initial sizes for major and minor heaps and controlling the space overhead and
max overhead settings such that minimal amount of garbage collection takes place. This enabled
us to have much better execution times that scaled linearly with the number of inferences and we
are now able to check proof traces with up to 15 million inferences. The results for this are shown
as SHRUTI (opt.) in the table. Our extraction process only mapped Coq data structures to Ocaml
data structures to enhance e�ciency which is a standard practice in any program extraction based
development in Coq. An important point to note here is that the core logic and functionality of the
checker program is not compromised by program extraction in Coq.

5 Related Work

Lescuyer et al. [3] formalized a SAT solver in the Coq proof assistant and extracted an executable
program. The resulting program was mathematically rigourously checked, but its performance
su�ered, due to the lack of optimizations. Recently Mari¢ [4] proposed to verify a SAT solver with
the low-level optimizations. He formalized the ARGO-SAT solver in Isabelle/HOL by modelling the
solver and its low-level optimizations at an abstract level (pseduo code). One major di�culty is that
it is di�cult to formalize low-level optimizations (that work on real code used in a SAT solver) at a
su�ciently abstract level without loosing sight of the low-level details. Even though optimizations
were formalized, they were done for the pseudo-code, not the actual code that is used in the solver
which still leaves the gap between what is formalized and what is used at runtime. Moreover, its
practically not very useful (it took Mari¢ one man year) to verify a solver, since it has to be done
for each new solver. Instead its more e�cient to verify a checker correct (since checkers are small
and relatively straight-forward), and use it to validate outputs of any solver that produces proof
certi�cates that were previously agreed.

10



Weber and Amjad [5] proposed the idea of checking resolution proofs from SAT solvers by
re-constructing them in higher-order logic based theorem provers Isabelle, HOL 4 and HOL Light.
They imported the proof trace output obtained from the proof-logging versions of Zcha� and Minisat
into these theorem provers, and re-played the proofs to check if they are valid.

A key di�erence between our checker and Weber and Amjad's is in the design and usage. In order
to use Weber and Amjad's checker one has to have the di�erent theorem provers installed, and more
importantly the knowledge of using each one of them becomes paramount. In our case, we provide
an executable binary that can be run independently of the Coq theorem prover or any other for that
matter. Thus usability is considerably enhanced in our case. Weber and Amjad mostly reported
their performance results on pigeon-hole problems and not much on industrial benchmarks. Pigeon
hole problems though somewhat hard are also arti�cially created and thus share a common structure
to them, so we personally decided not to calibrate our checker on these problems and instead chose
to test ours on industrial benchmarks from the SAT Race Competition. We are investigating if
we can get Weber and Amjad's checkers results' on the industrial benchmarks, and provide some
comparison with our's. Bulwahn et al. [14] experimented with the idea of doing re�ective theorem
proving in Isabelle and suggested that it can be used for designing a SAT checker. In this sense their
work is closest to our's. They proposed to enhance the functional core of Isabelle with imperative
data structures for e�ciency. However we have not seen the complete formalization of their SAT
checker, and no benchmark results have been reported to the best of our knowledge. Recently there
has been some work done in certifying SMT solvers notable amongst them are the work done by
Moskal [15] and de Moura [16].

In a recent development related to Coq, there has been an emergence of a tool called Ynot [17]
that can deal with arrays, pointers and �le related I/O in a Hoare Type Theory. Future work in
certi�cation using Coq should de�nitely investigate the usage of this.

6 Conclusion

We presented the formalization of a SAT checker in the Coq proof assistant and presented some
of the early benchmarking results. We observed that by using Coq we could do a one-o� o�ine
formalization of the checker and machine check all the proofs in Coq, while at the same when
we extract an ocaml program, we obtain a fast executable binary, that can be used for checking
industrial benchmarks as demonstrated by some of our results.

Acknowledgement

We thank Yves Bertot, Pierre Letouzey, and many more people on the Coq mailing list who helped us with

Coq questions. We especially thank Tjark Weber and Hasan Amjad for answering our questions on their

work. This work was funded by EPSRC, Grant # EP/E012973/1.

References

[1] M. Penicka, �Formal Approach to Railway Applications,� in Formal Methods and Hybrid Real-

Time Systems, Lecture Notes in Computer Science 4700, pp. 504�520. Springer, 2007.

[2] J. Hammarberg and S. Nadjm-Tehrani, �Formal Veri�cation of Fault Tolerance in Safety-
Critical Recon�gurable Modules,� International Journal on Software Tools for Technology

Transfer 7(3), pp. 268�279, 2005.

[3] S. Lescuyer and S. Conchon, �A Re�exive Formalization of a SAT Solver in Coq,� in Emerging

Trends of the 21st International Conference on Theorem Proving in Higher Order Logics, 2008.

11



[4] F. Mari¢, �Formalization and Implementation of Modern SAT Solvers,� Journal of Automated

Reasoning 43(1), pp. 81�119, 2009.

[5] T. Weber and H. Amjad, �E�ciently Checking Propositional Refutations in HOL Theorem
Provers,� Journal of Applied Logic 7(1), pp. 26�40, 2009.

[6] �SAT Race Competition,� 2008. [Online]. Available: http://baldur.iti.uka.de/sat-race-2008/
index.html

[7] J. A. Robinson, �A Machine-Oriented Logic Based on the Resolution Principle,� Journal of

ACM 12(1), pp. 23�41, 1965.

[8] J. A.Robinson, Logic: Form and function - The Mechanization of Deductive Reasoning. Else-
vier, 1980.

[9] C.-L. Chang and R. C.-T. Lee, Symbolic Logic and Mechanical Theorem Proving. Academic
Press, 1997.

[10] P. Beame, H. Kautz, and A. Sabharwal, �Towards Understanding and Harnessing the Potential
of Clause Learning,� Journal of Arti�cial Intelligence Research 22, pp. 319�351, 2004.

[11] A. Biere, �PicoSAT Essentials,� Journal on Satis�ability, Boolean Modeling and Computation

4, pp. 75�97, 2008.

[12] �Satis�ability Suggested Format,� 1993. [Online]. Available: ftp://dimacs.rutgers.edu/pub/
challenge/satis�ability/doc/

[13] X. Leroy and S. Blazy, �Formal Veri�cation of a C-like Memory Model and its uses for Verifying
Program Transformations,� Journal of Automated Reasoning 41(1), pp. 1�31, 2008.

[14] L. Bulwahn, A. Krauss, F. Haftmann, L. Erkök, and J. Matthews, �Imperative Functional
Programming with Isabelle/HOL,� in Proc 21st International Conference on Theorem Proving

in Higher Order Logics. Lecture Notes in Computer Science 5170, pp. 134�149. Springer, 2008.

[15] M. Moskal, �Rocket-Fast Proof Checking for SMT Solvers,� in Proc. 14th International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes
in Computer Science 4963, pp. 486�500. Springer, 2008.

[16] L. M. de Moura and N. Bjørner, �Proofs and Refutations, and Z3,� in Proc. 7th International

Workshop on the Implementation of Logics, CEUR Workshop Proceedings 418, 2008.

[17] A. Nanevski, G. Morrisett, A. Shinnar, and P. Govereau, �Ynot: Reasoning with the Awkward
Squad,� In Proc. 13th International Conference on Functional Programming, pp. 229�240. ACM
Press, 2008.

12

http://baldur.iti.uka.de/sat-race-2008/index.html
http://baldur.iti.uka.de/sat-race-2008/index.html
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/

	Introduction
	Proof Checking Overview
	Formalization of SHRUTI in Coq
	Motivation for using Coq
	Formalizing SHRUTI

	Results and Discussion
	Related Work
	Conclusion

