
Retrofitting the AutoBayes Program Synthesis System
with Concrete Syntax

Bernd Fischer1 and Eelco Visser2

1 RIACS / NASA Ames Research Center, Moffett Field, CA 94035, USA
fisch@email.arc.nasa.gov

2 Institute of Information and Computing Sciences, Universiteit Utrecht
3508 TB Utrecht, The Netherlands

visser@acm.org

Abstract. AUTOBAYES is a fully automatic, schema-based program synthesis
system for statistical data analysis applications. Its core component is a schema
library, i.e., a collection of generic code templates with associated applicability
constraints which are instantiated in a problem-specific way during synthesis.
Currently, AUTOBAYES is implemented in Prolog; the schemas thus use abstract
syntax (i.e., Prolog terms) to formulate the templates. However, the conceptual
distance between this abstract representation and the concrete syntax of the gen-
erated programs makes the schemas hard to create and maintain.

In this paper we describe how AUTOBAYES is retrofitted with concrete syntax.
We show how it is integrated into Prolog and describe how the seamless interac-
tion of concrete syntax fragments with AUTOBAYES’s remaining “legacy” meta-
programming kernel based on abstract syntax is achieved. We apply the approach
to gradually migrate individual schemas without forcing a disruptive migration
of the entire system to a different meta-programming language. First experiences
show that a smooth migration can be achieved. Moreover, it can result in a con-
siderable reduction of the code size and improved readability of xthe code. In
particular, abstracting out fresh-variable generation and second-order term con-
struction allows the formulation of larger continuous fragments.

1 Introduction

Program synthesis and transformation systems work on two language levels, the object-
level (i.e., the language of the manipulated programs), and the meta-level (i.e., the im-
plementation language of the system itself). Conceptually, these two levels are unrelated
but in practice they have to be interfaced with each other. Often, the object-language
is simply embedded within the meta-language, using a data type to represent the ab-
stract syntax trees of the object-language. Although the actual implementation mecha-
nisms (e.g., records, objects, or algebraic data types) may vary, embeddings can be used
with essentially all meta-languages, making their full programming capabilities imme-
diately available for program manipulations. Meta-level representations of object-level
program fragments are then constructed in an essentially syntax-free fashion, i.e., not
using the notation of the object-language, but using the operations provided by the data
type.

C. Lengauer et al. (Eds.): Domain-Specific Program Generation, LNCS 3016, pp. 239–253, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

240 Bernd Fischer and Eelco Visser

However, syntax matters. The conceptual distance between the concrete programs
that we understand and the meta-level representations that we need to use grows with
the complexity of the object-language syntax and the size of the represented program
fragments, and the use of abstract syntax becomes less and less satisfactory. Languages
like Prolog and Haskell allow a rudimentary integration of concrete syntax via user-
defined operators. However, this is usually restricted to simple precedence grammars,
entailing that realistic object-languages cannot be represented well if at all. Tradition-
ally, a quotation/anti-quotation mechanism is thus used to interface languages: a quo-
tation denotes an object-level fragment, an anti-quotation denotes the result of a meta-
level computation which is spliced into the object-level fragment. If object-language
and meta-language coincide, the distinction between the language levels is purely con-
ceptual, and switching between the levels is easy; a single compiler can be used to
process both levels. If the object-language is user-definable, the mechanism becomes
more complicated to implement and usually requires specialized meta-languages such
as ASF+SDF [5], Maude [3], or TXL [4] which support syntax definition and reflection.

AUTOBAYES [9, 8] is a program synthesis system for the statistical data analysis do-
main. It is a large and complex software system implemented in Prolog and its complex-
ity is comparable to a compiler. The synthesis process is based on schemas which are
written in Prolog and use abstract syntax representations of object-program fragments.
The introduction of concrete syntax would simplify the creation and maintenance of
these schemas. However, a complete migration of the implementation of AUTOBAYES

to a different meta-programming language requires a substantial effort and disrupts the
ongoing system development. To avoid this problem, we have chosen a different path.

In this chapter, we thus describe the first experiences with our ongoing work on
adding support for user-definable concrete syntax to AUTOBAYES. We follow the gen-
eral approach outlined in [15], which allows the extension of an arbitrary meta-language
with concrete object-language syntax by combining the syntax definitions of both lan-
guages. We show how the approach is instantiated for Prolog and describe the pro-
cessing steps required for a seamless interaction of concrete syntax fragments with the
remaining “legacy” meta-programming system based on abstract syntax—despite all
its idiosyncrasies. With this work we show that the approach of [15] can indeed be
applied to meta-languages other than Stratego. To reduce the effort of making such
instantiations we have constructed a generic tool encapsulating the process of parsing
a program using concrete object-syntax. Furthermore, we have extended the approach
with object-level comments, and object-language specific transformations for integrat-
ing object-level abstract syntax in the meta-language.

The original motivation for this specific path was purely pragmatic. We wanted to
realize the benefits of concrete syntax without forcing the disruptive migration of the en-
tire system to a different meta-programming language. Retrofitting Prolog with support
for concrete syntax allows a gradual migration. Our long-term goal, however, is more
ambitious: we want to support domain experts in creating and maintaining schemas. We
expect that the use of concrete syntax makes it easier to gradually “schematize” exist-
ing domain programs. We also plan to use different grammars to describe programs on
different levels of abstraction and thus to support domain engineering.

Retrofitting the AutoBayes Program Synthesis System with Concrete Syntax 241

intermediate code

AutoBayes

model specification

C / C++ code

Test−data
Generator

R
ew

ri
tin

g
E

ng
in

e
E

qu
at

io
n

So
lv

er

Synthesis Kernel

Input Parser

Optimizer

Code Generator

 }
}

for i=0;i<nx;i++ {
 for j=0;j<ny;j++ {

 tmp = x[i,j]**2;
 sigma = ...

 where 1 =< x0 && x0 =< nx && 1=< y0 && y0 =< ny.
double r as ’radius’.
 where 0 < r && r < nx/2 && r < ny/2.

const nat nx, ny as ’number of pixels’.

double x0, y0 as ’center position’.

double i0 as ’overall intensity’.
 where 0 =< i0 && i0 =< 255
double sigma as ’noise’.
 where 0 < sigma.

data double x(1..nx, 1..ny) as ’image’.
x(I,J) ~ gauss(i0*exp(−((I−x0)**2+(J−y0)**2)/(2*r**2)), sigma).

max pr(x | {x0,y0,r,i0,sigma}) for {x0,y0,r,i0,sigma}.

raw data fitted data

Schema
Library

Sy
st

em
 u

til
iti

es

model gauss as ’2D Gauss−Model for Nebula Analysis’

intermediate code

internal representation

Fig. 1. AUTOBAYES system architecture.

2 Overview of the AutoBayes System

AUTOBAYES is a fully automatic program synthesis system for data analysis problems.
It has been used to derive programs for applications like the analysis of planetary nebu-
lae images taken by the Hubble space telescope [7, 6] as well as research-level machine
learning algorithms [1]. It is implemented in SWI-Prolog [18] and currently comprises
about 75,000 lines of documented code; Figure 1 shows the system architecture.

AUTOBAYES derives code from a statistical model which describes the expected
properties of the data in a fully declarative fashion: for each problem variable (i.e.,
observation or parameter), properties and dependencies are specified via probability

242 Bernd Fischer and Eelco Visser

distributions and constraints. The top box in Figure 1 shows the specification of a nebu-
lae analysis model. The last two clauses are the core of this specification; the remaining
clauses declare the model constants and variables, and impose constraints on them. The
distribution clause

x(I,J) ~ gauss(i0 * exp(-((I-x0)**2+(J-y0)**2)/(2*r**2)), sigma).

states that, with an expected error sigma, the expected value of the observation x at
a given position (i, j) is a function of this position and the nebula’s unknown center
position (x0, y0), radius r, and overall intensity i0,. The task clause

max pr(x|{i0,x0,y0,r,sigma}) for {i0,x0,y0,r,sigma}.

specifies the analysis task, which the synthesized program has to solve, i.e., to estimate
the parameter values which maximize the probability of actually observing the given
data and thus under the given model best explain the observations. In this case, the task
can be solved by a mean square error minimization due to the gaussian distribution of
the data and the specific form of the probability. Note, however, that (i) this is not im-
mediately clear from the model, (ii) the function to be minimized is not explicitly given
in the model, and (iii) even small modifications of the model may require completely
different algorithms.

AUTOBAYES derives the code following a schema-based approach. A program
schema consists of a parameterized code fragment (i.e., template) and a set of con-
straints. Code fragments are written in ABIR (AUTOBAYES Intermediate Representa-
tion), which is essentially a “sanitized” variant of C (e.g., neither pointers nor side ef-
fects in expressions) but also contains a number of domain-specific constructs (e.g., vec-
tor/matrix operations, finite sums, and convergence-loops). The fragments also contain
parameterized object-level comments which eventually become the documentation of
the synthesized programs. The parameters are instantiated either directly by the schema
or by AUTOBAYES calling itself recursively with a modified problem. The constraints
determine whether a schema is applicable and how the parameters can be instantiated.
They are formulated as conditions on the model, either directly on the specification, or
indirectly on a Bayesian network [2] extracted from the specification. Such networks
are directed, acyclic graphs whose nodes represent the variables specified in the model
and whose edges represent the probabilistic dependencies between them, as specified
by the distribution clauses: the variable on the left-hand side depends on all model vari-
ables occuring on the right-hand side. In the example, each xij thus depends on i0, x0,
y0, r and sigma.

The schemas are organized hierarchically into a schema library. Its top layers con-
tain decomposition schemas based on independence theorems for Bayesian networks
which try to break down the problem into independent sub-problems. These are domain-
specific divide-and-conquer schemas: the emerging sub-problems are fed back into the
synthesis process and the resulting programs are composed to achieve a solution for the
original problem. Guided by the network structure, AUTOBAYES is thus able to synthe-
size larger programs by composition of different schemas. The core layer of the library
contains statistical algorithm schemas as for example expectation maximization (EM)
[10] and nearest neighbor clustering (k-Means); usually, these generate the skeleton of

Retrofitting the AutoBayes Program Synthesis System with Concrete Syntax 243

the program. The final layer contains standard numeric optimization methods as for ex-
ample the simplex method or different conjugate gradient methods. These are applied
after the statistical problem has been transformed into an ordinary numeric optimiza-
tion problem and AUTOBAYES failed to find a symbolic solution for that problem. The
schemas in the upper layers of the library are very similar to the underlying theorems
and thus contain only relatively small code fragments while the schemas in the lower
layers closely resemble “traditional” generic algorithm templates. Their code fragments
are much larger and make full use of ABIR’s language constructs. These schemas are
the focus of our migration approach.

The schemas are applied exhaustively until all maximization tasks are rewritten
into ABIR code. The schemas can explicitly trigger large-scale optimizations which
take into account information from the synthesis process. For example, all numeric
optimization routines restructure the goal expression using code motion, common sub-
expression elimination, and memoization. In a final step, AUTOBAYES translates the
ABIR code into code tailored for a specific run-time environment. Currently, it pro-
vides code generators for the Octave and Matlab environments; it can also produce
standalone C and Modula-2 code. The entire synthesis process is supported by a large
meta-programming kernel which includes the graphical reasoning routines, a symbolic-
algebraic subsystem based on a rewrite engine, and a symbolic equation solver.

3 Program Generation in Prolog

In the rest of this chapter we will describe how AUTOBAYES is retrofitted with concrete
object syntax for the specification of program schemas. We start in this section with
a description of program generation with abstract syntax in Prolog. In Section 4 we
describe the replacement of abstract syntax with concrete syntax. In Sections 5 to 7 we
then discuss the techniques used to implement this embedding.

Figure 2 shows an excerpt of a schema that implements (i.e., generates code for) the
Nelder-Mead simplex method for numerically optimizing a function with respect to a
set of variables [11]. The complete schema comprises 508 lines of documented Prolog-
code, and is fairly typical in most aspects, e.g., the size of the overall schema and of
the fragment, respectively, the amount of meta-programming, or the ratio between the
code constructed directly (e.g., Code) and recursively (e.g., Reflection). This schema
is also used to generate the algorithm core for the nebula specification example.

3.1 Abstract Syntax in Prolog

The simplex schema is implemented as a single Prolog clause which takes as argu-
ments an expression Formula representing the function to be optimized, a set Vars
of target variables, and an expression Constraint representing the constraints on all
variables. It returns as result Code an ABIR code fragment which contains the appropri-
ately instantiated Nelder-Mead simplex algorithm. This code is represented by means
of a Prolog term. In general, a Prolog term is either an atom, a variable1, a functor ap-
plication f(t1, ..., tn), applying a functor f to Prolog terms ti, or a list [t1,...,tn]

1 Prolog uses capitalization to distinguish a variable X from an atom x.

244 Bernd Fischer and Eelco Visser

schema(Formula, Vars, Constraint, Code) :-

...

model_gensym(simplex, Simplex),

SDim = [dim(A_BASE, Size1) , dim(A_BASE, Size0)],

SDecl = matrix(Simplex, double, SDim,

[comment([’Simplex data structure: (’, Size, ’+1) ’,

’points in the ’, Size,

’-dimensional space’])]) ,

...

var_fresh(I),

var_fresh(J),

index_make([I, dim(A_BASE, Size0)], Index_i),

index_make([J, dim(A_BASE, Size1)], Index_j),

Center_i =.. [Center, I],

Simplex_ji =.. [Simplex, J, I],

Centroid =

for([Index_i],

assign(Center_i, sum([Index_j], Simplex_ji), []),

[comment([’Calculate the center of gravity in the simplex’])]) ,

...

simplex_try(Formula, Simplex, ...,

-1, ’Reflect the simplex from the worst point (F = -1)’,

Reflection),

...

Loop = while(converging([...]),

series([Centroid, Reflection, ...], []),

[comment(’Convergence loop’)]) ,

...

Code = block(local([SDecl, ...]),

series([Init, Loop, Copy], []),

[label(SLabel), comment(XP)]).

Fig. 2. AUTOBAYES-schema for the Nelder-Mead simplex method (excerpt).

of terms. An ABIR program is then represented as a term by using a functor for each
construct in the language, for example:

assign : lvalue * expression * list(comment) -> statement

for : list(index) * statement * list(comment) -> statement

series : list(statement) * list(comment) -> statement

sum : list(index) * expression -> expression

Thus, if i represents an index, s a statement, and c a comment, the term for([i],s,
[c]) represents a for-statement.

Each goal of the form X = t binds a Prolog term t to a Prolog variable X . However,
in the schema, the program for Code is not constructed as a single large term, but rather
assembled from smaller fragments by including the terms bound to these variables. In
Figure 2, the terms corresponding to ABIR fragments are distinguished typographically
using italics, but this is a conceptual distinction only.

Retrofitting the AutoBayes Program Synthesis System with Concrete Syntax 245

3.2 Meta-programming Kernel

In addition to goals composing program fragments by direct term formation, the schema
contains recursive schema invocations such as simplex try, which produces code
for the Reflection fragment from a more constrained version of Formula. Further-
more, the schema calls a number of meta-programming predicates. For example, the
var fresh(X) predicate generates a fresh object variable and binds it to its argument,
which is a meta-level variable. This prevents variable clashes in the generated program.
Similarly, the index make predicate constructs an index expression.

The schema in Figure 2 also uses second-order terms to represent array accesses
or function calls where the names are either given as parameters or automatically re-
named apart from a meaningful root (cf. the model gensym(simplex, Simplex)
goal). A fully abstract syntax would use additional functors for these constructs and
represent for example an access to the array simplex with subscripts pv0 and pv1 by
arraysub(simplex, [var(pv0), var(pv1)]). However, this makes the abstract
syntax rather unwieldy and much harder to read. Therefore, such constructs are abbre-
viated by means of simple functor applications, e.g., simplex(pv0, pv1). Unfortu-
nately, Prolog does not allow second-order term formation, i.e., terms with variables in
the functor-position. Instead, it is necessary to use the built-in =..-operator, which con-
structs a functor application from a list where the head element is used as functor name
and the rest of the list contains the arguments of the application. Hence, the schemas
generate array access expressions such as the one above by goals such as Simplex ji
=.. [Simplex, J, I], where the meta-variables Simplex, J, and I are bound to
concrete names.

4 Migrating from Abstract Syntax to Concrete Syntax

The excerpt shows why the simple abstract syntax approach quickly becomes cumber-
some as the schemas become larger. The code fragment is built up from many smaller
fragments by the introduction of new meta-variables (e.g., Loop) because the abstract
syntax would become unreadable otherwise. However, this makes it harder to follow
and understand the overall structure of the algorithm. The schema is sprinkled with a
large number of calls to small meta-programming predicates, which makes it harder
to write schemas because one needs to know not only the abstract syntax, but also a
large part of the meta-programming base. In our experience, these peculiarities make
the learning curve much steeper than it ought to be, which in turn makes it difficult for a
domain expert to gradually extend the system’s capabilities by adding a single schema.

In the following, we illustrate how this schema is migrated and refactored to make
use of concrete syntax, using the Centroid fragment as running example.

4.1 Concrete Syntax

The first step of the migration is to replace terms representing program fragments in
abstract syntax by the equivalent fragments in the concrete syntax of ABIR. Thus, the
Centroid fragment becomes:

246 Bernd Fischer and Eelco Visser

Centroid = |[

/* Calculate the center of gravity in the simplex */

for(Index_i:idx)

Center_i := sum(Index_j:idx) Simplex_ji:exp

]|

Here, we use |[. . .]| to quote a piece of ABIR code within a Prolog program.

4.2 Meta-variables

In the translation to concrete syntax, Prolog variables in a term are meta-variables,
i.e., variables ranging over ABIR code, rather than variables in ABIR code. In the
fragment |[x := 3 + j]|, x and j are ABIR variables, whereas in the fragment
|[x := 3 + J:exp]|, x is an ABIR variable, but J:exp is a meta-variable rang-
ing over expressions. For the embedding of ABIR in Prolog we use the convention that
meta-variables are distinguished by capitalization and can thus be used directly in the
concrete syntax without tags. In a few places, the meta-variables are tagged with their
syntactic category, e.g., Index i:idx. This allows the parser to resolve ambiguities
and to introduce the injection functions necessary to build well-formed syntax trees.

4.3 Abstracting from Meta-programming Operations

The next migration step eliminates calls to meta-programming predicates and replaces
them by appropriate abstractions in ABIR. First, we remove the creation of index
expressions such as index make([I, dim(A BASE, Size0)], Index i) and re-
place the corresponding Index variables directly with the more natural loop index no-
tation:

Centroid = |[

/* Calculate the center of gravity in the simplex */

for(I := A_BASE .. Size0)

Center_i := sum(J := A_BASE .. Size1) Simplex_ji:exp

]|

Incidentally, this also eliminates the need for the idx-tags because the syntactic cate-
gory is now determined by the source text.

Next, array-reference creation with the =.. operator is replaced with array access
notation in the program fragment:

Centroid = |[

/* Calculate the center of gravity in the simplex */

for(I := A_BASE .. Size0)

Center[I] := sum(J := A_BASE .. Size1) Simplex[J, I]

]|

Finally, the explicit generation of fresh object-variables using var fresh is expressed
in the code by tagging the corresponding meta-variable with @new, a special anti-
quotation operator which constructs fresh object-level variable names.

Retrofitting the AutoBayes Program Synthesis System with Concrete Syntax 247

Centroid = |[

/* Calculate the center of gravity in the simplex */

for(I@new := A_BASE .. Size0)

Center[I] := sum(J@new := A_BASE .. Size1) Simplex[J, I]

]|

Thus 10 lines of code have been reduced to 5 lines, which are more readable.

4.4 Fragment Inlining

The final step of the migration consists of refactoring the schema by inlining program
fragments; the fragments are self-descriptive, do not depend on separate calls to meta-
programming predicates, and can be read as pieces of code. For example, the fragment
for Centroid above can be inlined in the fragment for Loop, which itself can be inlined
in the final Code fragment. After this refactoring, a schema consists of one, or a few,
large program patterns.

In the example schema the use of concrete syntax, @new, and inlining reduces
the overall size by approximately 30% and eliminates the need for explicit meta-pro-
gramming. The reduction ratio is more or less maintained over the entire schema. After
migration along the lines above, the schema size is reduced from 508 lines to 366 lines.
After white space removal, the original schema contains 7779 characters and the result-
ing schema with concrete syntax 5538, confirming a reduction of 30% in actual code
size. At the same time, the resulting fewer but larger code fragments give a better insight
into the structure of the generated code.

5 Embedding Concrete Syntax into Prolog

The extension of Prolog with concrete syntax as sketched in the previous section is
achieved using the syntax definition formalism SDF2 [14, 12] and the transformation
language Stratego [16, 13] following the approach described in [15]. SDF is used to
specify the syntax of ABIR and Prolog as well as the embedding of ABIR into Prolog.
Stratego is used to transform syntax trees over this combined language into a pure Pro-
log program. In this section we explain the syntactical embedding, and in the next two
sections we outline the transformations mapping Prolog with concrete syntax to pure
Prolog.

5.1 Syntax of Prolog and ABIR

The extension of a meta-language with concrete object syntax requires an embed-
ding of the syntax of object code fragments as expressions in the meta-language. We
thus created syntax definitions for Prolog and ABIR using SDF. An SDF production
A1...An->A0 is a context-free grammar rule that declares that the concatenation of
strings of sorts A1 to An is a string of sort A0. The following is a fragment from the
Prolog syntax definition with productions for clauses and terms. Note that the SDF
construct {S l}+ denotes one or more Ss separated by ls.

248 Bernd Fischer and Eelco Visser

module Prolog

exports

context-free syntax

Head ":-" Body "." -> Clause {cons("nonunitclause")}
Goal -> Body {cons("bodygoal")}
Term -> Goal

Functor "(" {Term ","}+ ")" -> Term {cons("func")}
Term Op Term -> Term {cons("infix")}
Variable -> Term {cons("var")}
Atom -> Term {cons("atom")}
Name -> Functor {cons("functor")}
Name -> Op {cons("op")}

The {cons(c)} annotations in the productions declare the constructors to be used in ab-
stract syntax trees corresponding to the parse trees over the syntax definition. Similarly,
the following is a fragment from the syntax definition of ABIR:

module ABIR

exports

context-free syntax

LValue ":=" Exp -> Stat {cons("assign")}
"for" "(" IndexList ")" Stat -> Stat {cons("for")}
{Index ","}* -> IndexList {cons("indexlist")}
Id ":=" Exp ".." Exp -> Index {cons("index")}

5.2 Combining Syntax Definitions

Since SDF is a modular syntax definition formalism, combining languages is simply a
matter of importing the appropriate modules. In addition, object-language expressions
should be embedded in meta-language expressions. The following module defines such
an embedding of ABIR into Prolog:

module PrologABIR

imports Prolog ABIR

exports

context-free syntax

"|[" Exp "]|" -> Term {cons("toterm")}
"|[" Stat "]|" -> Term {cons("toterm")}

variables

[A-Z][A-Za-z0-9]* -> Id {prefer}
[A-Z][A-Za-z0-9]* ":exp" -> Exp

The module declares that ABIR Expressions and Statemements can be used as Prolog
terms by quoting them with the |[and]| delimiters, as we have seen in the previous
section. The variables section declares schemas for meta-variables. Thus, a capital-
ized identifier can be used as a meta-variable for identifiers, and a capitalized identifier
tagged with :exp can be used as a meta-variable for expressions.

Retrofitting the AutoBayes Program Synthesis System with Concrete Syntax 249

6 Exploding Embedded Abstract Syntax

6.1 Embedded Abstract Syntax

After parsing a schema with the combined syntax definition the resulting abstract syntax
tree is a mixture of Prolog and ABIR abstract syntax. For example, the Prolog-goal

Code = |[X := Y:exp + z]|

is parsed into the abstract syntax term

bodygoal(infix(var("Code"), op(symbol("=")),

toterm(assign(var(meta-var("X")),

plus(meta-var("Y:exp"),var("z"))))))

The language transitions are characterized by the toterm-constructor, and meta-vari-
ables are indicated by the meta-var-constructor. Thus, bodygoal and infix belong to
Prolog abstract syntax, while assign, var and plus belong to ABIR abstract syntax.

6.2 Exploding

A mixed syntax tree can be translated to a pure Prolog tree by “exploding” embedded
tree constructors to functor applications2:

bodygoal(infix(var("Code"),op(symbol("=")),

func(functor(word("assign")),

[func(functor(word("var")),[var("X")]),

func(functor(word("plus")),

[var("Y:exp"),

func(functor(word("var")),

[atom(quotedname("’z’"))])])])))

After pretty-printing this tree we get the pure Prolog-goal

Code = assign(var(X), plus(Y, var(’z’)))

Note how the meta-variables X and Y have become Prolog variables representing a vari-
able name and an expression, respectively, while the object variable z has become a
character literal. Also note that X is a a meta-variable for an object-level identifier and
will eventually be instantiated with a character literal, while Y is a variable for an ex-
pression.

6.3 Implementing Explosion in Stratego

Explosion is defined generically using transformations on mixed syntax trees, i.e., it
is independent from the object language. The complete explosion transformation takes
about 35 lines of Stratego and deals with special cases such as strings and lists, but the

2 Note that functor is just a term label and different from the built-in predicate functor/3.

250 Bernd Fischer and Eelco Visser

strategies

explode = alltd(?toterm(<trm-explode>))

trm-explode = trm-metavar <+ trm-op

rules

trm-metavar : meta-var(X) -> var(X)

trm-op : Op#([]) -> atom(word(<lower-case>Op))

trm-op : Op#([T | Ts]) -> func(functor(word(<lower-case>Op)),

<map(trm-explode)>[T | Ts])

Fig. 3. Rules and strategy for exploding embedded abstract syntax.

essence of the transformation is shown in Figure 3. A detailed explanation of the spec-
ification is beyond the scope of this chapter. For an introduction to Stratego see [13].

The explode strategy uses the generic traversal strategy alltd to descend into
the abstract syntax tree of the Prolog program. When encountering a term constructed
with toterm, its argument is exploded using the trm-explode transformation, which
either applies one of the rules trm-op or the rule trm-metavar. The latter rule turns
a meta-variable encountered in an embedded term into a Prolog variable. The trm-op
rules transform constructor applications. The left-hand side of the rules have the form
Op#(Ts), thus generically decomposing a constructor application into its constructor
(or operator) Op, and the list of arguments Ts. If the list of arguments is empty, an atom
is produced. Otherwise a functor application is produced, where the arguments of the
functor are recursively exploded by mapping the trm-explode strategy over the list of
arguments.

7 Custom Abstract Syntax

Parsing and then exploding the final Centroid-fragment on page 247 then produces
the pure Prolog-goal

Centroid =

commented(

comment([’Calculate the center of gravity in the simplex ’]),

for(indexlist([index(newvar(I),var(A_BASE),var(Size0))]),

assign(arraysub(Center,[var(I)]),

sum(indexlist([index(newvar(J),

var(A_BASE),var(Size1))]),

call(Simplex,[var(J),var(I)])))))

Comparing the generated Centroid-goal above with the original in Figure 2 shows
that the abstract syntax underlying the concrete syntax fragments does not correspond
exactly to the original abstract syntax used in AutoBayes. That is, two different abstract
syntax formats are used for the ABIR language. The format used in AUTOBAYES (e.g.,
Figure 2) is less explicit since it uses Prolog functor applications to represent array
references and function calls, instead of the more verbose representation underlying the
concrete syntax fragments.

Retrofitting the AutoBayes Program Synthesis System with Concrete Syntax 251

In order to interface schemas written in concrete syntax with legacy components of
the synthesis system, additional transformations are applied to the Prolog code, which
translate between the two versions of the abstract syntax. For the Centroid-fragment
this produces:

Centroid =

for([idx(newvar(I),A_BASE,Size0)],

assign(arraysub(Center,[I]),

sum([idx(newvar(J),A_BASE,Size1)],call(Simplex,[J,I]))),

[comment([’Calculate the center of gravity in the simplex ’])])

7.1 Lifting Predicates

In AutoBayes, array accesses are represented by means of functor applications and
object variable names are generated by gensym-predicates. This cannot be expressed
in a plain Prolog term. Thus arraysubs and calls are hoisted out of abstract syntax
terms and turned into term constructors and fresh variable generators as follows:

var_fresh(I), _a =.. [Center,I], var_fresh(J), _b =.. [Simplex,J,I],

Centroid =

for([idx(I, A_BASE, Size0)],

assign(_a, sum([idx(J, A_BASE, Size1)], _b)),

[comment([’Calculate the center of gravity in the simplex ’])])

Hence, the embedded concrete syntax is transformed exactly into the form needed to
interface it with the legacy system.

8 Conclusions

Program generation and transformation systems manipulate large, parameterized ob-
ject language fragments. Operating on such fragments using abstract-syntax trees or
string-based concrete syntax is possible, but has severe limitations in maintainability
and expressive power. Any serious program generator should thus provide support for
concrete object syntax together with the underlying abstract syntax.

In this chapter we have shown that the approach of [15] can indeed be generalized
to meta-languages other than Stratego and that it is thus possible to add such support
to systems implemented in a variety of meta-languages. We have applied this approach
to AutoBayes, a large program synthesis system that uses a simple embedding of its
object-language (ABIR) into its meta-language (Prolog). The introduction of concrete
syntax results in a considerable reduction of the schema size (≈ 30%), but even more
importantly, in an improved readability of the schemas. In particular, abstracting out
fresh-variable generation and second-order term construction allows the formulation of
larger continuous fragments and improves the locality in the schemas. Moreover, meta-
programming with concrete syntax is cheap: using Stratego and SDF, the overall effort
to develop all supporting tools was less than three weeks. Once the tools were in place,
the migration of a schema was a matter of a few hours. Finally, the experiment has also
demonstrated that it is possible to introduce concrete syntax support gradually, without

252 Bernd Fischer and Eelco Visser

forcing a disruptive migration of the entire system to the extended meta-language. The
seamless integration with the “legacy” meta-programming kernel is achieved with a few
additional transformations, which can be implemented quickly in Stratego.

8.1 Contributions

The work described in this chapter makes three main contributions to domain-specific
program generation. First, we described an extension of Prolog with concrete object
syntax, which is a useful tool for all meta-programming systems using Prolog. The tools
that implement the mapping back into pure Prolog are available for embedding arbitrary
object languages into Prolog3. Second, we demonstrated that the approach of [15] can
indeed be applied to meta-languages other than Stratego. We extended the approach
by incorporating concrete syntax for object-level comments and annotations, which
are required for documentation and certification of the generated code [17]. Third, we
also extended the approach with object-language-specific transformations to achieve a
seamless integration with the legacy meta-programming kernel. This allows a gradual
migration of existing systems, even if they were originally designed without support for
concrete syntax in mind. These transformations also lift meta-computations from object
code into the surrounding meta-code. This allows us to introduce abstractions for fresh
variable generation and second-order variables to Prolog.

8.2 Future Work

In future work, we will migrate more schemas to concrete syntax to make the mainte-
nance of the AUTOBAYES easier. We expect that these changes will confirm our esti-
mate of 30% reduction in the size of the schemas.

We also plan to investigate the usefulness of concrete syntax in a gradual “schemati-
zation” of existing domain programs. The basic idea here is to use the existing program
initially unmodified as code fragment in a very specialized schema, and then to abstract
it incrementally, e.g., by parameterizing out names or entire computations which can
then be re-instantiated differently during synthesis. Finally, we plan to use grammars as
types to enforce that the fragments are not only syntactically well-formed but actually
contain code of the right form. We hope that we can support domain engineering by
using grammars on different levels of abstraction.

Acknowledgements

We would like to thank the anonymous referees for their comments on a previous ver-
sion of this paper.

References

1. W. Buntine, B. Fischer, and A. G. Gray. Automatic derivation of the multinomial PCA al-
gorithm. Technical report, NASA/Ames, 2003. Available at http://ase.arc.nasa.gov/
people/fischer/.

3 http://www.stratego-language.org/Stratego/PrologTools

Retrofitting the AutoBayes Program Synthesis System with Concrete Syntax 253

2. W. L. Buntine. Operations for learning with graphical models. JAIR, 2:159–225, 1994.
3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. F. Quesada.

Maude: specification and programming in rewriting logic. Theoretical Computer Science,
285(2):187–243, 2002.

4. J. R. Cordy, I. H. Carmichael, and R. Halliday. The TXL Programming Language, Version 8,
April 1995.

5. A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping. An Algebraic Spec-
ification Approach, volume 5 of AMAST Series in Computing. World Scientific, Singapore,
September 1996.

6. B. Fischer, A. Hajian, K. Knuth, and J. Schumann. Automatic derivation of statistical data
analysis algorithms: Planetary nebulae and beyond. Technical report, NASA/Ames, 2003.
Available at http://ase.arc.nasa.gov/people/fischer/.

7. B. Fischer and J. Schumann. Applying autobayes to the analysis of planetary nebulae im-
ages. In J. Grundy and J. Penix, editors, Proc. 18th ASE, pages 337–342, Montreal, Canada,
October 6–10 2003. IEEE Comp. Soc. Press.

8. B. Fischer and J. Schumann. AutoBayes: A system for generating data analysis programs
from statistical models. JFP, 13(3):483–508, May 2003.

9. A. G. Gray, B. Fischer, J. Schumann, and W. Buntine. Automatic derivation of statistical
algorithms: The EM family and beyond. In S. Becker, S. Thrun, and K. Obermayer, editors,
NIPS 15, pages 689–696. MIT Press, 2003.

10. G. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley Series in Proba-
bility and Statistics. John Wiley & Sons, New York, 1997.

11. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C.
Cambridge Univ. Press, Cambridge, UK, 2nd. edition, 1992.

12. M. G. J. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disambiguation filters for
scannerless generalized LR parsers. In N. Horspool, editor, Compiler Construction (CC’02),
volume 2304 of LNCS, pages 143–158, Grenoble, France, April 2002. Springer-Verlag.

13. E. Visser. Program transformation with Stratego/XT. Rules, strategies, tools, and systems in
Stratego/XT 0.9. In this volume.

14. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of Amsterdam,
September 1997.

15. E. Visser. Meta-programming with concrete object syntax. In D. Batory, C. Consel, and
W. Taha, editors, Generative Programming and Component Engineering (GPCE’02), vol-
ume 2487 of LNCS, pages 299–315, Pittsburgh, PA, USA, October 2002. Springer-Verlag.

16. E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers with rewriting
strategies. In Proceedings of the third ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’98), pages 13–26. ACM Press, September 1998.

17. M. Whalen, J. Schumann, and B. Fischer. Synthesizing certified code. In L.-H. Eriksson and
P. A. Lindsay, editors, Proc. FME 2002: Formal Methods—Getting IT Right, volume 2391
of LNCS, pages 431–450, Copenhagen, Denmark, July 2002. Springer.

18. J. Wielemaker. SWI-Prolog 5.2.9 Reference Manual. Amsterdam, 2003.

	1 Introduction
	2 Overview of the AutoBayes System
	3 Program Generation in Prolog
	3.1 Abstract Syntax in Prolog
	3.2 Meta-programming Kernel

	4 Migrating from Abstract Syntax to Concrete Syntax
	4.1 Concrete Syntax
	4.2 Meta-variables
	4.3 Abstracting from Meta-programming Operations
	4.4 Fragment Inlining

	5 Embedding Concrete Syntax into Prolog
	5.1 Syntax of Prolog and ABIR
	5.2 Combining Syntax Definitions

	6 Exploding Embedded Abstract Syntax
	6.1 Embedded Abstract Syntax
	6.2 Exploding
	6.3 Implementing Explosion in Stratego

	7 Custom Abstract Syntax
	7.1 Lifting Predicates

	8 Conclusions
	8.1 Contributions
	8.2 Future Work

	References

