
Continuous Verification of Large Embedded Software
using SMT-Based Bounded Model Checking

Lucas Cordeiro
University of Southampton

lcc08r@ecs.soton.ac.uk

Bernd Fischer
University of Southampton
b.fischer@ecs.soton.ac.uk

Joao Marques-Silva
University College Dublin

jpms@ucd.ie

Abstract

The complexity of software in embedded systems has in-
creased significantly over the last years so that software ver-
ification now plays an important role in ensuring the over-
all product quality. In this context, bounded model check-
ing has been successfully applied to discover subtle errors,
but for larger applications, it often suffers from the state
space explosion problem. This paper describes a new ap-
proach called continuous verification to detect design er-
rors as quickly as possible by exploiting information from
the software configuration management system and by com-
bining dynamic and static verification to reduce the state
space to be explored. We also give a set of encodings that
provide accurate support for program verification and use
different background theories in order to improve scalabil-
ity and precision in a completely automatic way. A case
study from the telecommunications domain shows that the
proposed approach improves the error-detection capability
and reduces the overall verification time by up to 50%.

1 Introduction

Embedded computer systems are used in a wide range of
sophisticated applications, such as mobile phones or set-top
boxes providing internet connectivity. The functionality de-
manded for such systems has increased significantly and an
increasing number of functions are implemented in software
rather than hardware. As a consequence, the verification of
the software design and the correctness of its implementa-
tion have become increasingly difficult.

Bounded model checking (BMC) has been successfully
applied to verify embedded software and discovered subtle
errors in real designs [3]. BMC generates verification con-
ditions (VCs) that reflect the exact path in which a statement
is executed, the context in which a given function is called,
and the bit-accurate representation of the expressions. Prov-
ing the validity of these VCs remains the main performance

bottleneck in verifying large embedded software, despite at-
tempts to cope with increasing system complexity by apply-
ing SMT (Satisfiability Modulo Theories) solvers [1, 8, 12].

We address this bottleneck with a new concept called
continuous verification. It aims to automatically detect de-
sign errors and integration problems as quickly as possi-
ble by exploiting information from the software configu-
ration management (SCM) system, systematically focusing
the verification effort on new or modified functions. We use
equivalence checking to determine whether modified func-
tions need to be re-verified formally and we use existing test
cases to reduce the search space for the model checker, thus
combining dynamic and static verification. We show that
the continuous verification approach substantially reduces
the verification time of large embedded software.

We also exploit the different background theories of
SMT solvers and combine different theories and solvers,
based on an analysis of the syntactic structure of a given
ANSI-C program. We then demonstrate that this combi-
nation significantly improves the performance of software
model checking for a wide range of embedded software
benchmarks from the telecommunications domain. This
is the first work that exploits the syntactic structure of an
ANSI-C program in order to combine different encodings
and SMT solvers for BMC of embedded software.

We describe how these new (w.r.t. our previous
work [8]) contributions are realized in ESBMC, the Effi-
cient SMT-Based Bounded Model Checker. ESBMC ex-
tends CBMC [6] to support different theories and different
SMT solvers and to make use of high-level information to
simplify and reduce the unrolled formula size. Experimen-
tal results show that our approach scales significantly bet-
ter than both the SAT-based and SMT-based versions of the
CBMC model checker. In addition, the continuous verifi-
cation approach and the combination of different encodings
and solvers allow us to go deeper into the system (compared
to software model checkers only) and explore more exhaus-
tively the state space (compared to testing only). This hy-
brid solution is suitable for checking properties in large state
spaces.

2010 17th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4005-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ECBS.2010.24

160

2 Continuous Verification

Our approach has its roots in the continuous integration
(CI) practice described by Fowler [11]. CI relies on every
developer to create and execute unit, functional and inte-
gration tests before committing their source code to a sin-
gle source repository. It also assumes the existence of an
automated unit test framework. The SCM is then used to
perform the system build and test processes in a completely
automatic way. In continuous verification, we use the same
information (i.e., development history and test cases) in a
different way to improve the coverage and substantially re-
duce the verification time throughout the development of a
product or product line. We use SMT-based bounded model
checking to verify for each system build that the entire sys-
tem still satisfies all properties given as assertions by the de-
signers, as well as a range of language-specific safety prop-
erties such as the absence of arithmetic under- and overflow,
out-of-bounds array indexing, or nil-pointer dereferencing.
Figure 1 shows the main elements and steps of the con-
tinuous verification approach; the gray boxes indicate core
steps. Section 3 describes the software verification process
in more detail.

S C M

C h e c k f o r m o d i f i c a t i o n s

T e s t
S u i t e

M o d i f i e d F u n c t i o n s

S ta t i c
Ve r i f i ca t i on

D y n a m i c
Ve r i f i ca t i on

C h e c k p r o p e r t y a n d p a t h c o v e r a g e

B u e c h i
A u t o m a t a

P r o p e r t y
A s s e r t i o n s

P r o p e r t y
L T L

Figure 1. Continuous Verification

For large embedded software, the computational effort
to re-verify the entire software from scratch is too high,
and is largely wasted if, as is often the case, the changes
are small [11]. For each system build, we thus consult
the SCM to identify the functions and methods that have
actually been modified and focus on these. We then use
equivalence checking to determine whether they need to be
re-verified formally: if we can prove that the old and new
versions of a function are functionally equivalent, then we
do not need to show for the new version any of the prop-
erties already shown for the old version. This reduces the
immediate verification effort because proving the equiva-
lence of two function versions is often less expensive than

1 unsigned s i g n a l I n v e r t e r (i n t s i g n a l) {
2 unsigned i n v e r t e r ;
3 i f (s i g n a l >= 0)
4 i n v e r t e r = s i g n a l ;
5 e l s e
6 i n v e r t e r = −1∗ s i g n a l ;
7 re turn i n v e r t e r ;
8 }

(a)

1 unsigned s i g n a l I n v e r t e r (i n t s i g n a l) {
2 i f (s i g n a l < 0)
3 re turn −s i g n a l ;
4 e l s e
5 re turn s i g n a l ;
6 }

(b)

Figure 2. (a) Original function to invert the
sign of signal. (b) Optimized version.

re-verifying the function. However, and more importantly,
it also reduces overall system verification efforts because it
limits the propagation of changes through the system: if we
can prove the two versions of the function computationally
equivalent, then we do not need to re-verify any other func-
tion that depends it (unless that function has been changed
as well). Of course, proving the equivalence of two func-
tions is in general undecidable, due to unbounded memory
usage [16], and the effort we spend in trying to do so might
be wasted. However, in our experience, this does not occur
very often, since a high degree of predictability is a desir-
able design characteristic in embedded software (i.e., dy-
namic memory allocations and recursion are discouraged).

As an example, consider the two versions of the signal-
Inverter function shown in Figure 2. They were extracted
from the embedded software of two releases of a medical
device product. In order to prove the equivalence of these
two ANSI-C functions, we compare their input-output re-
lations. We thus first (i) remove from each function the
variable declarations and return statements, (ii) convert the
function bodies into single static assignment (SSA) form
[17] (i.e., we introduce fresh variables by subscripting the
original name such that every assignment has a unique left
hand side), and (iii) conjoin all program statements. These
operations produce two intermediate formulas α1 and α2

representing the functions’ computations, as shown below.

inverter1 = signal1
∧ inverter2 = −1 ∗ signal1
∧ inverter3 = (signal1 ≥ 0 ? inverter1 : inverter2)

signal ′2 = (signal ′1 < 0 ?−signal ′1 : signal ′1)

161

For the actual equivalence check, we identify the input
variables (i.e., signal1 = signal ′1), and show using SMT-
based bounded model checking that, given the representa-
tion of the function bodies, the output variables then also
coincide:

(α1 ∧ α2 ∧ (signal1 = signal ′1)) ⇒ (inverter3 = signal ′2)

2.1 Specifying Temporal Properties with
Büchi Automata

In addition to the language-specific safety properties, we
can also show user-specified properties. These can be given
directly as assertions in the code, using C’s assert macro
to state an assumption, or as formulas in linear-time tempo-
ral logic (LTL), which can track temporal properties of the
software design. We translate the LTL formulas into Büchi
automata using the Wring tool [21] and further into ANSI-
C and merge them into the code. The resulting ANSI-C
program then monitors the design’s progress and watches
out for violations of the specified properties (as described
in Section 3).

As an example, we extract two properties from the spec-
ification of the medical device, and show how they can be
modelled and used in the context of the continuous verifica-
tion. The device, called a pulse oximeter [7], is responsible
for measuring the oxygen saturation (SpO2) and heart rate
(HR) in the blood system using a non-invasive method. In
particular, we verify (a) the data flow to compute the HR
value that is provided by the pulse oximeter sensor hard-
ware and (b) whether the user of the pulse oximeter is ca-
pable of adjusting the sample time of the embedded device.
The properties (a) and (b) can be expressed using the fol-
lowing LTL pattern:

AG (p→ Fr) (1)

Here, A (“for all paths”), G (“always”), and F (“eventu-
ally”) are the LTL quantifiers, and p and r represent the
required pre- and post-states. In the example, for the prop-
erty (a), p denotes the state that the buffer contains HR and
SpO2 raw data, while r denotes the state that defines the re-
spective HR value. Consequently, any state containing the
HR and SpO2 raw data in the buffer is eventually followed
by a state representing the respective HR value.

A Büchi automaton is a finite automaton over infinite
words. It differs from a standard finite automaton over fi-
nite words in the definition of accepting a word, which is
based on passing through an accepting state infinitely of-
ten (rather than terminating in a final state) [5]. The Büchi
automata we consider here work over computation traces,
i.e., sequences of states of the program to be analyzed.
These are abstracted by the predicates of interest (here p and
r). Hence the “words” can be represented by sequences of

B u e c h i A u t o m a t a

c h o i c e = n o n d e t _ u i n t () % 2 ;
sw i t ch (s ta te) {
 case in i t :
 i f (r | | !p)
 s ta te=S3 ;
 e l se i f (cho i ce==0)
 s ta te=S1 ;
 e l se i f (cho i ce==1)
 s ta te=S2 ;
 b reak ;
 c a s e S 1 :
 . . .
 . . .
}

A N S I - C M o n i t o r

S 1 S 2

S 3

Figure 3. Specifying Temporal Properties for
Software.

propositional expressions over the variables p and r. Fig-
ure 3 shows the non-determininistic Büchi automaton that
represents the LTL formula (1) and its corresponding ANSI-
C monitor. The transition function δ is given by the follow-
ing table.

1 r ∨ ¬p r ¬p

init {S1, S2} S3 init init

S1 S1 S1 S3 S1

S2 S2 S2 S2 S3

S3 S3 S3 S3 S3

From the initial state, we can transition to S3 if r∨¬p holds,
stay in the initial state if either r, or ¬p holds, or nondeter-
ministically transition to either S1 or S2 if none of the three
properties hold (denoted by 1). This automaton will accept
all infinite words that represent computations in which each
state in which p holds will eventually be followed by a state
in which r holds. In order to model the nondeterministic
transition of the Büchi-automata in the ANSI-C specifica-
tion, we use a function nondet uint() (which returns any
number of type unsigned int) and then restricts its returning
value to the domain {0, 1}. The property is then checked by
using a “monitor” in such a way that the C program moni-
tors the design’s progress and watches out for a specific type
of error up to the bound k. An assertion is then used to claim
that an error is never encountered. In our example, we en-
sure that the buffer is not empty and contains the computed
HR and SpO2 values.

2.2 Generalizing Test Cases

After detecting new and/or modified functions, we use
the existing unit test cases to reduce the state space to be ex-
plored by the model checker. In this phase, we first run the
unit tests, keeping track of which inputs have already been

162

used. We then guide the model checker to visit states that
have not been visited previously. In addition, the test cases
also help to reduce the state space to be explored in another
way: by using the test stubs, we can break the global model
(containing the entire program) into local models (contain-
ing only the functions under test) and generate on-demand
the reachable states to be visited by the model checker, start-
ing with the state described by the test case. We can so
reduce the number of paths and variables to be considered
during model checking.

As an example consider the three simple C functions
shown in Figure 4 that were also extracted from the pulse
oximeter embedded software, and one of the test cases
shown in Figure 5. The functions implement a simple cir-
cular buffer using a FIFO (First In, First Out) policy. The
test case checks whether messages are correctly added to
and removed from the circular buffer using the FIFO policy.
Other test cases check for buffer underflow and/or overflow
and whether the elements are lost before reading them from
the buffer.

1 s t a t i c char b u f f e r [BUFFER MAX] ;
2 void i n i t L o g (i n t max) {
3 b u f f e r s i z e = max ;
4 f i r s t = n e x t = 0 ;
5 }
6

7 i n t removeLogElem (void) {
8 f i r s t ++;
9 re turn b u f f e r [f i r s t −1];

10 }
11

12 void i n s e r t L o g E l e m (i n t b) {
13 i f (n e x t < b u f f e r s i z e) {
14 b u f f e r [n e x t] = b ;
15 n e x t = (n e x t +1)% b u f f e r s i z e ;
16 a s s e r t (nex t<b u f f e r s i z e) ;
17 }
18 }

Figure 4. Implementation of a circular buffer.

The pulse oximeter sources contain seven test cases,
which intend to cover all possible execution paths related
to the circular buffer, and during dynamic verification, we
are not able to find any bug in the circular buffer implemen-
tation with these. However, the implementation is flawed:
the array buffer is declared to be of type char[] (see line 1 in
Figure 4) but we assign an element b of type int (see line 14)
The test cases do not uncover this error because they happen
to use only integer values that can safely be cast to a char.

Using SMT-based BMC, we can detect this bug by
non-determininistically assigning a value to the parame-
ter b (i.e., by adding an assignment b = nondet int() after

1 s t a t i c vo id t e s t C i r c u l a r B u f f e r (void){
2 i n t senDa ta [] ={1 , −128, 98 , 88 , 59 ,
3 1 , −128, 90 , 0 , −37};
4 i n t i ;
5 i n i t L o g (5) ;
6 f o r (i =0 ; i <10; i ++)
7 i n s e r t L o g E l e m (senDa ta [i]) ;
8 f o r (i =5 ; i <10; i ++)
9 TEST ASSERT EQUAL INT (senDa ta [i] ,

10 removeLogElem ()) ;
11 }

Figure 5. A unit test for the functions shown
in Figure 4.

line 12 in Figure 4). However, in general this approach
can lead to false positives because the non-deterministic
choice of values for program variables may force the ex-
ploration of paths that are infeasible in the original pro-
gram. Rather than modifying the program we thus mod-
ify the test stubs and replace the concrete input values by
non-deterministic choices. Here, we replace the initializa-
tion of the array senData (see line 2 and 3 of Figure 5) by
int senData[] = {nondet int(),. . . ,nondet int()}. We then
use assume-statements to force the model checker away
from the values that have already been explored during test-
ing. In order to block larger parts of the search space, we
use the given concrete values from all stubs and combine
the respective values into a single interval for each vari-
able or array element; here we assume that all “obvious”
boundary values are used in some of the stubs, so that we
force the model checker towards the “unobvious” errors. In
the example, we thus add an assume-statement such as as-
sume(senData[0]<=1 && senData[0]>=42) and are then
able to find two bugs related to overflow and underflow.

3 SMT-based Bounded Model Checking of
Embedded ANSI-C Software

In BMC, the program to be analyzed is modelled as a
state transition system, which is built by extracting its be-
haviour from the control-flow graph (CFG) [17]. This graph
is used as part of a translation process from program text to
SSA-form. A node in the CFG represents either a deter-
ministic or non-deterministic assignment or a conditional
statement, while an edge in the CFG represents the ability
of the program to change the control location.

A state transition system M = (S, S0, γ) is an abstract
machine that consists of a set of states S (where S0 ⊆ S
represents the set of initial states) and γ ⊆ S × S is the
concrete transition relation [5]. A state s ∈ S consists of

163

the value of the program counter pc and the values of all
program variables. An initial state s0 assigns the initial pro-
gram location of the CFG to the pc. We identify each tran-
sition γ = (si, si+1) between two states si and si+1 with
a logical formula γ(si, si+1) that captures the constraints
on the corresponding values of the program counter and the
program variables.

Given a transition system M, a property φ, and a bound
k, BMC unrolls the system k times and translates it into
a verification condition ψ such that ψ is satisfiable if and
only if φ has a counterexample of depth less than or equal
to k. The VC ψ is a quantifier-free formula in a decidable
subset of first-order logic, which is then checked for satis-
fiability by an SMT solver. In this work, we are interested
in checking two classes of properties: safety and liveness.
The model checking problem associated with SMT-based
BMC for checking safety properties is then formulated by
constructing the following logical formula [1, 12]:

ψk = I (s0) ∧
k−1∧
i=0

γ (si, si+1)︸ ︷︷ ︸
constraints

∧
property︷︸︸︷
¬φk

G (2)

where φk
G represents a safety property φG in step k, I is the

function for the set of initial states of M and γ (si, si+1) is
the function of the transition relation of M at time steps i
and i+ 1. Hence, the formula

∧k−1
i=0 γ (si, si+1) unrolls the

transition system and then represents the set of all execu-
tions of M up to the length k or less. ¬φk

G represents the
condition that φG is violated by a bounded execution of M
of length k or less. A counterexample for a property φG is
a sequence of states s0, s1, . . . , sk with s0 ∈ S0, sk ∈ S,
and γ (si, si+1) for 0 ≤ i < k. Liveness properties φF are
checked by encoding ¬φi

F in a loop within a bounded exe-
cution of length at most k, such that φF is negated on each
state in the loop [3]. In this case, formula (2) is rewritten as:

ψk = I (s0) ∧
k−1∧
i=0

γ (si, si+1) ∧
(

k∨
i=0

¬φi
F

)
(3)

For further information about the main software compo-
nents of our ESBMC tool, we refer the reader to [8].

3.1 Optimizations

ESBMC implements some standard code optimization
techniques such as constant folding, forward substitution,
and reduction of variables [17]. In our previous work [8],
we described how constant folding and forward substitution
are implemented in the context of bounded model checking.
Here, we focus on how to reduce the number of redundant
variables generated from the BMC instances.

1 i n t main () {
2 i n t a [2] , i , x ;
3 i f (x ==0)
4 a [i] = 0 ;
5 e l s e
6 a [i +2]=1 ;
7 a s s e r t (a [i + 1] = = 1) ;
8 }

(a)

1 g1 == (x1 == 0)
2 a1 == (a0 WITH [i 0 : = 0])
3 a2 == a0
4 a3 == (a2 WITH [2+ i 0 : = 1])
5 a4 == (g1 ? a1 : a3)
6 t 1 == (a4 [1+ i 0] == 1)

(b)

Figure 6. (a) A C program with violated prop-
erty. (b) The C program of (a) in SSA form.

We use the code in Figure 6 as a running example. Fig-
ure 6(a) shows a syntactically valid C program that acci-
dentally writes to an address outside the allocated memory
region of the array a (line 6). Figure 6(b) shows the pro-
gram in SSA form, where it only consists of if instructions,
assignments and assertions. As we can see in Figure 6(b),
for each assignment of the form a = expr (lines 4 and 6 from
Figure 6(a)), the left-hand side variable is replaced by a new
variable (e.g., a1, a3). In addition, the if condition in line 3
is replaced by a guard (e.g., g1), the array index i in lines 3,
6 and 7 is replaced by i0 (note that the variable i is not mod-
ified in the C program of Figure 6(a)) and the assert macro
in line 7 is replaced by a Boolean variable t1. From this
representation, we build the constraints (C) and properties
(P) formulae shown in (4) and (5) using the quantifier-free
fragment of the first-order theories (e.g., linear arithmetic,
arrays), which are then passed to an SMT solver as C∧¬P
to check satisfiability.

C :=

⎡
⎢⎢⎢⎢⎣
g1 := (x1 = 0)
∧ a1 := store(a0, i0, 0)
∧ a2 := a0

∧ a3 := store(a2, 2 + i0, 1)
∧ a4 := ite(g1, a1, a3)

⎤
⎥⎥⎥⎥⎦ (4)

P :=

⎡
⎢⎢⎣
i0 ≥ 0 ∧ i0 < 2
∧ 2 + i0 ≥ 0 ∧ 2 + i0 < 2
∧ 1 + i0 ≥ 0 ∧ 1 + i0 < 2
∧ select(a4, i0 + 1) = 1

⎤
⎥⎥⎦ (5)

However, the SSA transformation in the CBMC front-
end introduces redundant variables, which creep into the

164

formula passed into the SMT-solver, thus increasing the
search space. Figure 6(b) shows an example of an addi-
tional (redundant) variable (i.e., a2) created in order to keep
the value of array a before the if statement in line 3 of Fig-
ure 6(a). In our back-end, we eliminate functionally deter-
mined variables by substitution. In our running example,
a2 == a0 holds in all states, so we can eliminate this con-
straint and the variable a2 by substituting every occurrence
of a2 by a0. we thus rewrite (4) as:

C :=

⎡
⎢⎢⎣
g1 := (x1 = 0)
∧ a1 := store(a0, i0, 0)
∧ a3 := store(a0, 2 + i0, 1)
∧ a4 := ite(g1, a1, a3)

⎤
⎥⎥⎦ (6)

Eliminating functionally determined variables allows us to
remove most of the intermediate variables generated dur-
ing the symbolic execution and consequently the size of the
final formula to be sent to the SMT solver.

3.2 Encodings

In this section, we focus on new encodings (compared to
our previous work [8]) that allow us to analyze more com-
plex ANSI-C programs and show how to exploit different
data types and solvers to speed up the verification process.

3.2.1 Fixed-Point Arithmetic

Embedded applications from discrete control and telecom-
munications domains often require arithmetic on non-
integral numbers. However, full floating-point arithmetic
is too heavyweight to be encoded into the BMC frame-
work; instead, we approximate it by fixed-point arithmetic
and use two different representations: in base 2 (when deal-
ing with bit-vector arithmetic) and in base 10 (when deal-
ing with rational arithmetic). Hence, in fixed-point arith-
metic, we encode the numbers using the integer part and
fractional part [16]. For instance, the numbers 0.75 and
0.125 are fixed-point numbers with two-digit and three-digit
fractional parts respectively. The number 0.75 can be rep-
resented as 〈0000.11〉 in base 2 or 3/4 in base 10 while the
number 0.125 can represented as 〈0000.0010〉 in base 2 or
125/1000 in base 10. Given a rational number R that con-
sists of an integer part I with m bits and a fraction part
F with n bits, we represent R by I.F and denote it by
〈I.F 〉 /2n.

Using bit-vector arithmetic, we encode fixed-point arith-
metic exactly as in binary encoding and assume that the
numbers have the same bitwidth before and after the radix
point. If the numbers do not have the same bitwidth (e.g., if
we want to sum 0.75 and 0.125), we add zeros from the right
in the fractional part if there are bits missing after the radix
point (e.g., 0.75 + 0.125 = 〈0000.1100〉 + 〈0000.0010〉) or

we add bits from the left using sign-extension if there are
bits missing before the radix point. On the other hand,
using rational arithmetic, we encode fixed-point numbers
by mapping {0, 1}m+n → Q, which extracts the integer
part (i.e., the most significant bits represented by m), the
fraction part (i.e., the least significant bits represented by
n) and divides 〈F 〉 /2n. Finally, we convert the resulting
number to a rational one in base 10, for example, the num-
ber 3.9 (11.1110011001100110) is represented by I = 3
and F = 0.9 and converted into 39/10. As a result, the
arithmetic operations are performed in the domain of Q in-
stead of R and there is no need to add missing bits to the
integer and fractional parts. In general, the drawback is
that some numbers are not precisely represented with fixed-
point arithmetic. However, we have not detected any false
positives in our benchmarks.

3.2.2 Dynamic Memory Allocation

Although dynamic memory allocation is discouraged in em-
bedded software, ESBMC is capable of model checking
programs that use it through the ANSI-C functions mal-
loc and free. ESBMC checks two properties related to dy-
namic memory allocation: (i) whether the argument to any
malloc, free, or dereferencing operation is a dynamic ob-
ject (IS DYNAMIC OBJECT) and (ii) whether the argument
to any free or dereferencing operation is still a valid object
(VALID OBJECT).

Formally, let po be a pointer expression that points to the
object o of type t and let a be an array of type t and size
n, where n is of integer type and represents the number of
elements to be allocated. In our encoding, each dynamic
object has an unique identifier denoted by ρk, where the
subscript k indicates the objects “serial number” in sequen-
tial order of all dynamically created objects. Let i be an
integer variable that indicates the position in which the ob-
ject pointed to by po must be stored in array a. We thus
encode IS DYNAMIC OBJECT as a literal ld with the fol-
lowing constraint:

ld ⇔
(

k−1∨
n=0

ρn = po

)
∧ (0 ≤ i < n) (7)

To check for invalid objects, we add one additional bit
field ν to each dynamic object to indicate whether it is still
alive or not. Let ⊥ denote the state that the object is not
alive. We then encode VALID OBJECT as a literal lv with
the following constraint:

lv ⇔ (po.ν �= ⊥) (8)

3.2.3 Exploiting Datatypes and Solvers

Modern SMT solvers provide ways to model the program
variables as bit-vectors or as elements of a numerical do-

165

main (e.g., Z, Q, or R). If the program variables are mod-
elled as bit-vectors of fixed size, then the result of the anal-
ysis can be precise (w.r.t. the ANSI-C semantics), depend-
ing on the size considered for the bit-vectors. On the other
hand, if the program variables are modelled as numerical
values, then the result of the analysis is independent from
the actual binary representation, but the analysis may not be
precise when arithmetic expressions are involved. As a mo-
tivating example, consider the following small C program
from [6] as shown in Figure 7.

1 i n t main () {
2 unsigned char a , b ;
3 unsigned i n t r e s u l t =0 , i ;
4 a= n o n d e t u c h a r () ;
5 b= n o n d e t u c h a r () ;
6 f o r (i =0 ; i <8; i ++)
7 i f ((b>>i)&1)
8 r e s u l t +=(a<<i) ;
9 a s s e r t (r e s u l t ==a∗b) ;

10 }

Figure 7. A C program that uses shift-and-add
to multiply two numbers.

This program nondeterministically selects two values of
type unsigned char and uses bitwise AND, right- and left-
shift operations to multiply them. Reasoning about this pro-
gram by means of integer arithmetic produces wrong results
if the bit-level operators are treated as uninterpreted func-
tions (UFs). Although UFs simplify the proofs, they ignore
the semantics of the operators and consequently make the
formula weaker. In addition, the majority of the software
model checkers (e.g., SMT-CBMC [1] and BLAST [14])
fail to check the assertion in line 9. On the other hand, bit-
vector arithmetic allows us to encode bit-level operators in a
more accurate way. However, in our benchmarks, we noted
that the majority of VCs are solved faster if we model the
basic datatypes as integer and/or real. Consequently, we
have to trade off between speed and accuracy which might
be two competing goals in formal verification using SMT.

Based on the extent to which the SMT solvers support
the domain theories and on experimental results obtained
with a large set of benchmarks, we developed a simple but
effective heuristic to determine the best representation for
the program variables as well as the best SMT-solver to be
used in order to check the properties of a given ANSI-C
program. Our default representation for encoding the con-
straints and properties of ANSI-C programs are integers and
reals, respectively, and our default solver is Z3. We then ex-
plore the CFG representation of the program. If we find
expressions that involve bit operations (e.g., <<, >>, &, |,
⊕) or typecasts from signed to unsigned datatypes and vice-

versa, we encode the corresponding variables as bit-vectors
and switch the SMT solver either to Boolector (if no point-
ers are used) or Z3 (if pointers are used).

4 Experimental Evaluation

The experimental evaluation of our work consists of
three parts. Section 4.1 contains the results of applying
ESBMC to the verification of six sets of ANSI-C bench-
marks. The purpose of this first part is to check the error-
detection capability of ESBMC since most of these bench-
marks contain ANSI-C programs with and without bugs.
Section 4.2 contains the experimental results of applying
ESBMC and CBMC to the verification of embedded soft-
ware used in the telecommunications domain. The purpose
of this second part is to evaluate ESBMC’s relative perfor-
mance against CBMC using embedded software industrial
applications. Section 4.3 contains the results of applying the
continuous verification approach, described in Section 2, to
large embedded software used in a commercial product.

All experiments were conducted on an otherwise idle In-
tel Pentium Dual CPU, 2GHz with 4 GB of RAM running
Linux OS. For all benchmarks, the time limit has been set
to 3600 seconds for each individual property. All times
given are wall clock time in seconds as measured by the
unix time command through a single execution.

4.1 Error-Detection Capability

As a first step, we analyze to which extent ESBMC is
able to handle standard ANSI-C benchmarks. For this pur-
pose, we analyzed the programs in the VERISEC, NECLA,
SNU-RT, PowerStone, and WCET benchmarks. VERISEC
and NECLA are not related to embedded software, but
they allow us to check the error-detection capability of the
model checkers since these benchmarks provide ANSI-C
programs with and without bugs including dynamic me-
mory allocation, interprocedural dataflow, aliasing, and
string manipulation. The remaining three benchmarks con-
tain ANSI-C constructs found in embedded software.

Table 1 summarizes the results of applying ESBMC to
the verification of the standard ANSI-C benchmarks; a de-
tailed description of these experimental results is avail-
able at users.ecs.soton.ac.uk/lcc08r/esbmc.
Here, #L denotes the total number of lines of code, B de-
notes the unwinding bound, and #P denotes the number of
properties to be verified for each ANSI-C program. The
Time columns contain the total time in seconds to check all
properties of a given ANSI-C program, broken down into
frontend (i.e., encoding) and backend (i.e., decision proce-
dure). Failed indicates how many properties failed during
the verification process; properties can fail for two reasons:
either due to time out (TO) or due to memory out (MO).

166

Time #P

Module #L #P E
nc

od
in

g

D
ec

is
io

n
Pr

oc
ed

ur
e

To
ta

l

Pa
ss

ed

V
io

la
te

d

Fa
ile

d

1 VERISEC 9090 2148 190.85 228.35 419.2 1946 202 0

2 NECLA 1011 208 59.28 88.9 148.18 188 20 0

3 SNU-RT 3102 790 3166.94 12.18 3179.12 762 28 0

4 WCET 3430 726 72.72 8.28 81 722 4 0

5 POWERSTONE 2957 2053 127.36 913.64 1041 2043 10 0

Table 1. Results of the error-detection capability with ESBMC.

In the VERISEC and NECLA benchmarks, ESBMC is
able to detect common design errors related to buffer over-
flow, aliasing, dynamic memory allocation, and string ma-
nipulation by replacing all inputs by nondeterministic val-
ues. In the remaining benchmarks, ESBMC is able to model
check ANSI-C programs that involve tight interplay be-
tween non-linear arithmetic, bit operations, pointers and ar-
ray manipulations. In addition, ESBMC was able to find
undiscovered bugs in the SNU-RT, WCET, and PowerStone
benchmarks related to arithmetic overflow, invalid pointer
and pointer arithmetic. We also checked the effect of elim-
inating functionally determined variables and we observed
that the total verification time can only be reduced by 0.3%
to 1% in the benchmarks. We believe that the SMT solvers
already eliminate the redundant variables during the pre-
processing phase.

4.2 Comparison to CBMC

In order to evaluate ESBMC’s performance relative to
CBMC, we analyzed the embedded software used in a com-
mercial product from NXP semiconductors [18], a set-top
box that is used in high definition internet protocol (IP) and
hybrid digital TV applications. The embedded software of
this platform relies on the Linux operating system and use
the LinuxDVB, DirectFB and ALSA applications.

We evaluated CBMC version 3.3.2 and we invoked both
tools (i.e., CBMC and ESBMC) by setting manually the file
name, the unwinding bound and the overflow check. CBMC
has support for SAT and SMT solvers in the back-end and
in our comparison we use the SMT solver Z3 for evaluating
both tools CBMC and ESBMC. Table 2 shows the results
when applying SAT-based CBMC, SMT-based CBMC and
ESBMC to the verification of the embedded applications.
SAT-based CBMC performs better than SMT-based CBMC
since it is able to analyze one additional embedded applica-
tion (viz. exStbCc).

CBMC is not able to check the modules exStbKey,
exStbFb, and exStbDemo due to memory limitations as well
as modules exStbResolution and exStbHDMI due to time

out and segmentation fault. Both CBMC and ESBMC fail
to model check the module exStbDemo, which contains
approximately 31KLOC and represents the largest mod-
ule that we analyzed. However, the results indicate that
ESBMC scales significantly better than CBMC for prob-
lems that involve tight interplay between non-linear arith-
metic, bit operations, pointers and arrays.

4.3 Scalability

In order to model check the exStbDemo module we apply
the continuous verification approach as described in Sec-
tion 2; Table 3 summarizes the results. Here, #TC denotes
the total number of test cases. For the dynamic verifica-
tion, we use the EmbUnit1 unit test framework, which pro-
vides means to apply assertion-based verification in embed-
ded software written in C through a set of macros.

As described in Section 4.2, the state-of-the-art model
checkers fail to verify the properties of the exStbDemo ap-
plication due to memory limitations. However, if we use
the test cases to guide the state space exploration, we can
not only define the functions, but also the state variables
that were not yet fully explored during dynamic verifica-
tion. As a result, in the function commandLoop, ESBMC
finds a property violation related to an invalid pointer in
4.39 seconds using an unwinding bound of 6. However,
we are not able to increase further the unwinding bound of
functions commandLoop and getCommand due to memory
limitations.

We had access, from the NXP development team, to four
different product releases (PRs) that contain the applica-
tion exStbDemo. Based on these four PRs, we identified
the functions and methods that have actually been modi-
fied and focus on these since the computational effort to
re-verify each system build from scratch is too high. The
four PRs are shown on the right-hand side in Table 3 as PR
10, 11, 12, 13. The development time of each PR is about
one month and each one contains new features, enhance-
ments (through refactoring), and bug fixes. We use PR10

1EmbUnit. http://embunit.sourceforge.net/

167

SAT-based CBMC SMT-based CBMC ESBMC

Time #P Time #P Time #P

Module #L B #P D
ec

is
io

n
Pr

oc
ed

ur
e

To
ta

l

Pa
ss

ed

V
io

la
te

d

Fa
ile

d

D
ec

is
io

n
Pr

oc
ed

ur
e

To
ta

l

Pa
ss

ed

V
io

la
te

d

Fa
ile

d

D
ec

is
io

n
Pr

oc
ed

ur
e

To
ta

l

Pa
ss

ed

V
io

la
te

d

Fa
ile

d

1 exStbKey 558 1 22 0.1 3.13 22 0 0 0.18 3.13 22 0 0 0.02 1.09 22 0 0

2 exStbHDMI 1508 11 41 † † 0 0 41 † † 0 0 41 128.44 211.02 41 0 0

3 exStbLED 430 10 59 MO MO 0 0 59 TO TO 0 0 59 1781 1817.61 59 0 0

4 exStbHwAcc 1432 1000 115 0.146 2.44 115 0 0 0.71 3.05 115 0 0 0.013 0.937 115 0 0

5 exStbResolution 353 150 32 TO TO 0 0 32 TO TO 0 0 32 1179.34 1596.62 32 0 0

6 exStbFb 689 30 48 MO MO 0 0 48 † † 0 0 48 50.53 138.31 48 0 0

7 exStbCc 331 200 5 174.49 198.19 5 0 0 TO TO 0 0 5 31.24 46.13 5 0 0

8 exStbDemo 30902 17 267 MO MO 0 0 267 MO MO 0 0 267 MO MO 0 0 267

Table 2. Results of the comparison between CBMC and ESBMC. Time-outs are represented with TO
in the Time column; Examples that exceed available memory are represented with MO in the Time
column; Internal errors in the tool are represented with † in the Time column.

ESBMC EmbUnit Subversion
Time (s) #P

Function B #P D
ec

is
io

n
Pr

oc
ed

ur
e

To
ta

l

Pa
ss

ed

V
io

la
te

d

Fa
ile

d

#TC Time (s) PR10 PR11 PR12 PR13
1 getCommand 6 237 <0.2 4.39 236 1 0 18 <0.1 X X X
2 commandLoop 6 237 70.22 128.41 237 0 0 26 <0.1 X X
3 checkCommandParams 17 229 73.29 161.14 229 0 0 4 <0.1 X X X X
4 checkEndOfPvrStream 20 228 <0.1 4.34 228 0 0 3 <0.1 X X
5 checkEndOfIPStream 20 228 <0.1 3.99 228 0 0 3 <0.1 X
6 checkEndOfMediaStream 20 228 <0.1 3.97 228 0 0 4 <0.1 X
7 setupFramebuffers 17 228 <0.1 4.22 228 0 0 2 <0.1 X X X
8 setupFBResolution 17 228 <0.1 3.92 228 0 0 2 <0.1 X X

Total verification time in seconds for each PR 314.38 169.75 169.45 298.11

Table 3. Results of the continuous verification approach.

as a reference (and starting point) to compare with PR11,
PR11 to compare against PR12 and so on. The functions
2-8 shown in Table 3 do not present input/output relations
and the function getCommand is not equivalent in PR10,
PR11 and PR12. However, if we compare PR10 to PR11
and PR12, we can reduce the verification time by up to 50%
since functions checkEndOfIPStream and checkEndOfMe-
diaStream are not modified in four different versions. In
addition, the function commandLoop, which represents one
of the hardest functions, is only modified in PR13.

5 Related Work

One way of tackling large verification problems is to
leverage both parallelism and search diversity [15]. Holz-
mann et al. describe the Swarm tool that allows using differ-
ent search strategies on multi-core machines [15]. It is the
main interface to the SPIN model checker to verify larger

systems. This approach, however, involves large communi-
cation overhead and does not take into account information
from the SCM system in order to focus the verification ef-
fort on new and/or modified functions.

Peled proposes a set of combinations between model
checking and testing, which includes black box checking,
adaptive model checking, and unit checking [19]. However,
he does not consider the development history from the SCM
system and also uses explicit model checking based on au-
tomata theory, which does not scale well due to the number
of program variables and data type widths [10]. In addition,
Peled only describes the techniques, but does not apply it to
any commercial product. Gunter and Peled [13] extend this
approach by proposing a symbolic verification approach for
a unit of code, also called unit checking. The authors, how-
ever, apply this approach only to check whether a complex
number diverges to infinity, while we focus on the verifica-
tion of large embedded software. Sen proposes an approach

168

to execute a program concretely and symbolically by com-
bining random testing and symbolic execution [20]. This
approach might fail to compute concrete values that satisfy
a given path constraint due to the solver performance.

SMT-based BMC is gaining popularity in the formal ver-
ification community due to the advent of sophisticated SMT
solvers built over efficient SAT solvers [4, 9]. Ganai and
Gupta describe a verification framework for BMC which
extracts high-level design information from an extended fi-
nite state machine (EFSM) and applies several techniques
to simplify the BMC problem [12]. However, the authors
flatten the structures and arrays into scalar variables in such
a way that they use only the theory of integer and real arith-
metic, which does not reflect precisely the ANSI-C seman-
tics. Armando et al. also propose a BMC approach using
SMT solvers for ANSI-C programs [1]. In this approach,
however, they only make use of linear arithmetic (addition
and multiplication by constants), arrays, records and bit-
vectors and as a consequence, their SMT-CBMC prototype
does not address important constructs of the ANSI-C lan-
guage (e.g., non-linear arithmetic and bit-shift operations).

Recently, a number of static checkers have been devel-
oped in order to trade off scalability and precision. Ca-
lysto is a static checker that is able to verify VCs related
to arithmetic overflow, nil-pointer dereferencing and asser-
tions specified by the user [2]. The VCs are passed to the
SMT solver SPEAR which supports bit-vector arithmetic
and is customized for the VCs generated by Calysto. How-
ever, Calysto does not support float-point operations and un-
soundly approximates loops by unrolling them only once.
As a consequence, soundness is relinquished for perfor-
mance. Saturn is another efficient static checker that scales
to larger systems, but with the drawback of losing precision
by supporting only the most common integer operators and
performing at most two unwindings of each loop [22].

6 Conclusions

In this work, we have defined a new concept called con-
tinuous verification and we have applied it to the verifica-
tion of large embedded software used in the telecommuni-
cations domain. In addition, we have described a new set
of encodings that allow us to reason accurately about em-
bedded software by discovering subtle bugs in several in-
dustrial applications and to scale for large embedded soft-
ware. Furthermore, the experimental results show that our
SMT-based model checker (ESBMC) outperforms both the
SAT-based and SMT-based CBMC [6] model checker if we
consider the verification of embedded software. As a result,
our approach represents a promising direction to improve
the state space coverage and to verify quickly the negation
of properties in larger state spaces.

Acknowledgments This work was supported by EPSRC, Grant
EP/E012973/1. The paper was written while B. Fischer was visit-
ing the University of Auckland. We thank J. Colley and R. Silva
for their comments on a draft version.

References

[1] A. Armando, J. Mantovani, and L. Platania. Bounded model
checking of software using SMT solvers instead of SAT
solvers. Int. J. Softw. Tools Technol. Transf., 11:69–83, 2009.

[2] D. Babić and A. J. Hu. Calysto: Scalable and Precise Ex-
tended Static Checking. In ICSE, pp. 211–220, 2008.

[3] A. Biere. Bounded model checking. In Handbook of Satis-
fiability, pp. 457–481. 2009.

[4] R. Brummayer and A. Biere. Boolector: An efficient SMT
solver for bit-vectors and arrays. In TACAS, LNCS 5505, pp.
174–177, 2009.

[5] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
The MIT Press, Cambridge, MA, 2000.

[6] E. Clarke et al. A tool for checking ANSI-C programs. In
TACAS, LNCS 2988, pp. 168–176, 2004.

[7] L. Cordeiro et al. Agile development methodology for em-
bedded systems: A platform-based design approach. In
ECBS, pp. 195–202, 2007.

[8] L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-based
bounded model checking for embedded ANSI-C software.
In ASE, pp. 137–148, 2009.

[9] L. M. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In TACAS, LNCS 4963, pp. 337–340, 2008.

[10] V. D’Silva, D. Kroening, and G. Weissenbacher. A sur-
vey of automated techniques for formal software verifica-
tion. IEEE Trans. on CAD of Integrated Circuits and Sys-
tems, 27(7):1165–1178, 2008.

[11] M. Fowler. Continuous Integration. ThoughtWorks.
http://martinfowler.com, 2006.

[12] M. K. Ganai and A. Gupta. Accelerating high-level bounded
model checking. In ICCAD, pp. 794–801, 2006.

[13] E. L. Gunter and D. Peled. Model checking, testing and veri-
fication working together. Formal Asp. Comput., 17(2):201–
221, 2005.

[14] T. A. Henzinger et al. BLAST: Berkeley Lazy Abstrac-
tion Software Verification Tool. http://mtc.epfl.ch/software-
tools/blast/, 2009.

[15] G. J. Holzmann, R. Joshi, and A. Groce. Tackling large veri-
fication problems with the swarm tool. In SPIN, LNCS 5156,
pp. 134–143, 2008.

[16] D. Kroening and O. Strichman. Decision Procedures: An
Algorithmic Point of View. Springer, 2008.

[17] S. S. Muchnick. Advanced compiler design and implemen-
tation. Morgan Kaufmann Publishers Inc., 1997.

[18] NXP. High definition IP and hybrid DTV set-top box
STB225. http://www.nxp.com/, 2009.

[19] D. Peled. Model checking and testing combined. In ICALP,
pp. 47–63, 2003.

[20] K. Sen. Concolic testing. In ASE, pp. 571–572, 2007.
[21] F. Somenzi and R. Bloem. Efficient Büchi Automata from

LTL formulae. In CAV, LNCS 1855, pp. 247–263, 2000.
[22] Y. Xie and A. Aiken. Scalable error detection using Boolean

satisfiability. SIGPLAN Not., 40:351–363, 2005.

169

