
SMT-Based Bounded Model Checking of C++
Programs

Mikhail Ramalho1, Mauro Freitas1, Felipe Sousa1,
Hendrio Marques1, Lucas Cordeiro1, and Bernd Fischer2,3

1 Electronic and Information Research Center, Federal University of Amazonas, Brazil
2 Electronics and Computer Science, University of Southampton, UK

3 Department of Computer Science, Stellenbosch University, South Africa
esbmc@ecs.soton.ac.uk

Abstract—Bounded model checking of C++ programs presents
greater challenges than that of C programs due to the more
complex features that the language offers, such as templates,
containers, and exception handling. We present ESBMC++, a
bounded model checker for C++ programs. It is based on an
operational model, an abstract representation of the standard
C++ libraries that conservatively approximates their semantics.
ESBMC++ uses this to encode the verification conditions using
different background theories supported by an SMT solver.
Our experimental results show that our approach can handle
a wider range of the C++ constructs than existing approaches
and substantially reduces the verification time.

Keywords—Software engineering, formal methods, verification,
model checking.

I. INTRODUCTION

Bounded model checking (BMC) based on Boolean satis-
fiability (SAT) solvers has already been successfully applied
to discover subtle errors in real systems [11]. In an attempt to
cope with growing system complexity, SAT solvers are increas-
ingly replaced by satisfiability modulo theories (SMT) solvers
to prove the generated verification conditions (VCs) [9], [17],
[20]. There have also been attempts to apply BMC to the
verification of C++ programs [24], [30] but with limited
success. The main challenge here is to handle large programs
and to support the complex features that the languages offers,
such as templates, containers, inheritance, and in particular
exception handling, which is an important approach to contain
and handle error situations in computer-based systems. At the
same time, in order to be attractive for mainstream software
development, C++ model checkers have to maintain high speed
and accuracy.

Here, we propose to apply SMT-based BMC to C++
programs using an operational model, which is an abstract
representation of the standard C++ libraries that conservatively
approximates their semantics. We integrate this operational
model into our ESBMC model checker [17] that in turn builds
on top of CBMC’s front-end [16] to support the main C++
features.

We present the implementation of our operational model of
the sequential STL containers, its preconditions and simulation
features (e.g., how the elements values of the containers
are stored), and how these are used in order to verify C++
applications. Additionally, we develop and describe novel

approaches to handle exceptions in C++ programs (e.g., ex-
ception specification for functions and methods) that previous
approaches could not handle [12], [24], [27]. In particular, we
implement the inheritance mechanism during the construction
of the intermediate representation of the program, which avoids
converting the C++ program to a C program and consequently
produces smaller models to be verified. Experimental results
show that our approach consistently outperforms LLBMC [24],
a bounded model checker for C/C++ programs that is also
based on SMT solvers.

The remainder of the paper is organized as follows: We first
give a brief introduction to the CBMC and ESBMC model
checkers and describe the background theories of the SMT
solvers that we will refer throughout the paper. In Section III,
we describe a simplified representation of the C++ libraries,
which conservatively represents the classes, methods, and
other features similar to the actual structure. In Section IV,
we present our implementation of the inheritance mechanism
while Section V is concerned with the implementation of the
exception handling approach. In Section VI, we present the
results of our experiments using several C++ benchmarks and
a real-world C++ application used in the telecommunications
domain. In Section VII, we discuss the related work and we
conclude and describe future work in Section VIII.

II. BACKGROUND

ESBMC++ builds on the front-end of CBMC to generate
the VCs for a given C++ program, and on the back-end
of ESBMC to encode the VCs using different background
theories and SMT solvers.

CBMC (C Bounded Model Checker). CBMC implements
BMC for ANSI-C/C++ programs using SAT/SMT solvers [16].
It can process the code using the goto-cc tool [29], which
compiles the C/C++ code into equivalent GOTO-programs
(i.e., control-flow graphs) using a gcc-compliant style. The
GOTO-programs can then be processed by the symbolic execu-
tion engine. Alternatively, CBMC uses its own, internal parser
based on Flex/Bison, to process the C/C++ files and to build
an abstract syntax tree (AST). The typechecker of CBMC’s
front-end annotates this AST with types and generates a
symbol table. The intermediate representation (IRep) class
of CBMC then converts the annotated AST into an internal,
language-independent format used by the remaining phase of
the front-end. ESBMC++ modifies this front-end to handle

20th Annual IEEE International Conference and Workshops on the Engineering of Computer Based Systems (ECBS)

978-0-7695-4991-0/13 $26.00 © 2013 IEEE

DOI 10.1109/ECBS.2013.15

147

C
Source

C Parser
C

Typecheck
Goto

Programs
Symbolic
Execution

Enconding
C and P

C++ Parser
C++

Typecheck

C++
Source

SMT
Solver

Fig. 1. ESBMC/ESBMC++ Architecture (ESBMC-specific components shown dashed).

the definitions of the standard C++ libraries while the other
features (e.g., inheritance, template, and exception handling)
are treated internally.

CBMC and the original ESBMC (which builds on CBMC)
use two recursive functions C and P that compute the con-
straints (i.e., assumptions and variable assignments) and prop-
erties (i.e., safety conditions and user-defined assertions), re-
spectively. Both tools automatically generate safety conditions
that check for example for arithmetic overflow and underflow,
array bounds violations, and NULL-pointer dereferences, in
the spirit of Site’s clean termination [28]. Both functions
accumulate the control flow predicates to each program point
and use these predicates to guard both the constraints and
the properties, so that they properly reflect the program’s
semantics. A VC generator (VCG) then derives the VCs from
these.

Satisfiability Modulo Theories. SMT decides the satisfiability
of first-order formulae using a combination of different back-
ground theories and thus generalizes propositional satisfiability
by supporting uninterpreted functions, linear and non-linear
arithmetic, bit-vectors, tuples, arrays, and other decidable first-
order theories. Given a theory T and a quantifier-free formula
ψ, we say that ψ is T -satisfiable if and only if there exists a
structure that satisfies both the formula and the sentences of
T , or equivalently, if T ∪ {ψ} is satisfiable [13]. Given a set
Γ∪{ψ} of formulae over T , we say that ψ is a T -consequence
of Γ, and write Γ |=T ψ, if and only if every model of T ∪ Γ
is also a model of ψ. Checking Γ |=T ψ can be reduced in
the usual way to checking the T -satisfiability of Γ ∪ {¬ψ}.

Arrays and Tuples. The most important theories for
ESBMC++ are the array and tuple theories, which are used
to model the sequential container data structures and objects,
respectively. The array theories of SMT solvers are typically
based on the McCarthy axioms [23]. The function select(a, i)
denotes the value of an array a at index position i and store(a,
i, v) denotes an array that is exactly the same as array a except
that the value at index position i is v. Formally, the functions
select and store can then be characterized by the following two
axioms [10], [14], [18]:

i = j ⇒ select(store(a, i, v), j) = v
i �= j ⇒ select(store(a, i, v), j) = select(a, j)

Array bounds checks need to be encoded separately, as the
array theories employ the notion of unbounded arrays size,
but arrays in software are typically of bounded size.

Tuples provide store and select operations similar to those
in arrays, but work on the tuple elements. Each field of
the tuple is represented by an integer constant. Hence, the
expression select(t, f) denotes the field f of tuple t while the

expression store(t, f, v) denotes a tuple t that at field f has
the value v and all other fields remain the same.

Tool Architecture. The tool architecture is shown in Figure 1.
The first step is the source code parser; ESBMC++ takes C++
source code as input and creates most of the intermediate
representation of the program, which will be the base for
the remaining steps of the program verification. The parser
is heavily based on the GNU C++ compiler since this allows
ESBMC++ to finds most of the syntax errors already reported
by GCC.

The next step is the C++ type-check; here, additional
checks are performed in the IRep tree, which include assign-
ment checks, type-cast checks, pointer initialization checks,
function call checks as well as template creation and instan-
tiation (which will be explained later). In the next step, the
IRep tree is converted into goto expressions; this conversion
simplifies the representation of the C++ program (e.g, re-
placement of switch and while by if and goto statements),
and handles the unrolling of loops and the elimination of
recursive functions. In the symbolic execution of the goto
programs, the simplified goto program is then converted to
SSA expressions and assertions are inserted in the resulting
SSA expressions to check for safety properties related to
array out-of-bounds, arithmetic under- and over-flow, memory
leaks, double frees, and division by zero. Additionally, in
this step most of the exception handling is carried out, such
as the insertion of GOTO-instructions for the original throw
statements and exception specification for function calls.

Finally, two set of quantifier-free formulae are created
based on the SSA expressions: C for the constraints and P
for the properties as previously described above. Those two
sets of formulae will be used as input for an SMT solver that
will produce a counterexample if there is a violation of a given
property, or an “unsatisfiable” answer if the property holds.

III. C++ OPERATIONAL MODEL

C++ relies on a collection of powerful standard libraries
to provide much of the functionality programmers require. In
principle, we could use the (available) sources during the veri-
fication, but their optimized implementations would complicate
the VCs unnecessarily. Instead we developed a simplified
representation of the libraries called the C++ Operational
Model (COM), which represents the classes, methods, and
other features similar to the actual structure [2]. ESBMC++
then relies on the COM, and in particular on the operational
model of the standard C++ libraries, to verify properties related
to the definitions in the supported data types. In the verification
process, the COM libraries thus replace the corresponding
actual C++ libraries. The COM consists of four groups of
libraries, as shown in Figure 2.

148

C++
Standard Library

C Libraries General Libraries
Standard Template

Libraries
Input/Output

Stream Libraries

Language Support Containers

Algorithms

Iterators

Numeric

Diagnostics

Strings

Fig. 2. Overview of the operational model.

Note that the COM also includes the ANSI-C libraries al-
ready supported by ESBMC. Since ESBMC++ uses a different
front-end (as shown in Figure 1), we have to build a repre-
sentation of the ANSI-C libraries into the COM; otherwise,
ESBMC++ would not recognize the library methods and fail
to parse the C++ programs. However, the biggest part of the
COM models the Standard Template Libraries (STL). This part
is split into four categories: algorithms, numeric, containers,
and iterators. In this paper, we focus on the operational model
of the sequential containers and iterators in the STL, and how
they are used to verify real-world C++ programs.

Apart from the STL handling, the verification of C++
programs with templates is essentially split into two steps:
template creation and template instantiation. To create a tem-
plate, ESBMC++ finds the respective template declaration and
creates an internal representation of the class or function
by flagging the types as generic; no other representation is
created here since at this step ESBMC++ does not know
which types will be instantiated. To instantiate a template,
ESBMC++ finds a template usage with a specified type and
creates a new internal representation of the class or function
with the instantiated type; this new representation is not a
template anymore. At this point, ESBMC++ keeps track of the
generic template definition and the respective instantiated class
or function. Note that when a new template is instantiated,
ESBMC++ first checks whether it was already instantiated
to avoid creating a duplicate representation of a previously
instantiated template.

A. Core Container Language

To formalize the verification of the STL containers, we
define a core container language, and extend the translation
functions C and P of constraints and properties to this. We then
use this core language to implement the operational model of
the containers.

The container language comprises several syntactic do-
mains, starting with the base elements T , iterators It , pointers
P , and integer indices Int , and of course the (proper) container
expressions C . Figure 3 summarizes the core container syntax.
Here t, i, p, and c are variables of type T , It , P , and C,
respectively. n is a variable or constant of type Int . We abuse

T ::= t | ∗It | ∗P

It ::= i | C .begin | C .end
| C .insert(It ,T ,N) | C .insert(It , It , It)
| C .erase(It) | C .erase(It , It) | C .search(It)

P ::= p | P (+ | −)P | C .array

Int ::= n | Int(+ | ∗ | . . .)Int | It .pos | C .size | C .capacity

C ::= c | It .source

Fig. 3. Core container syntax.

the notation ∗It to denote the value stored in the underlying
container at the position pointed to by the iterator It ; this is
an abbreviation for (It .source.array)[It .pos]. ∗P is the value
stored in the P position of the memory.

C .begin and C .end are methods that return iterators
which point to the beginning and the ending of a container,
respectively. Most container operations also return an iterator
pointing to the new focus element after the operation rather
than simply returning an updated container. For example,
for vectors C .erase returns an iterator pointing to the right
neighbor of the erased element. Note that the only way in the
core language to access the resulting container is thus via the
source field of the returned iterator.

Finally, C .array is a memory address that stores the
beginning of the container array, It .pos is the index (within this
array) of the element that an iterator points to, and C .size and
C .capacity return the actual and maximum size, respectively,
of the containter C.

B. Operational Container Model

As the container structures differ slightly from each other,
some of their methods will vary too, changing the internal
models as well (e.g., a list container does not have a reference
operator and its elements are only reached by iterators).

To simulate the containers appropriately, our model makes
use of three variables: a variable of type P called array that
points to the first element of the array, a natural number
size that stores the quantity of elements in the container,
and a natural value capacity that stores the total capacity of
a container (which is valid only for vectors). Note that, as
the elements are added to a vector container and the size
grows, the capacity is doubled every time the size reaches
the existing capacity value. Similarly, iterators are modeled
using two variables: a variable of type Int called pos, which
contains the index value pointed by the iterator in the container
and a variable of type P called source, which points to
the underlying container. Figure 4 gives an overview of our
operational model for the STL sequantial containers.

The core container language only supports the meth-
ods listed in Fig. 3. Other methods such as push back(),
pop back(), front(), back(), push front(), and pop front() are
only a simplified variation of those main methods, which are
optimized for some containers (e.g., popping the last element
of a stack). As part of the single static assignment (SSA)
transformation, side-effects on the iterators and containers are
made explicit, so that operations return new iterators and
containers as result. As an example, consider a container c

149

with the method call c.insert that returns an iterator result and
makes use of an iterator i that points to the desired (insertion)
position; a template value t with the element to be inserted and
an integer n that denotes the number of times the element is
to be inserted. The statement c.insert(i, t, n); (which discards
the returned iterator) thus becomes (c′, i′) = c.insert(i, t, n);
(where the side effects are explicit).

capacity<2*size

array source pos

container

iterator

e0 e1 e2 e3 ... eN-1size = N

Fig. 4. Operational model of the STL sequential containers.

The translation function C describes the constraints relating
the “before” and “after” versions of the respective model
variables. In particular, we get:

C((c′, i′) = c.insert(i, t, n)) :=
∧ c′.size = c.size + n
∧ c′.array = store(. . . (store(

store(. . . (store(c.array, i.pos, t),
. . . ,
i.pos+ n− 1, t),

i.pos+ n, select(c.array, i.pos)),
. . . ,
c.size+ n− 1, select(c.array, c.size− 1))

∧ i′.source = c′

∧ i′.pos = i.pos+ n

The main effect of the insert method is thus captured by
the second equality that describes the contents of the container
array c′.array after the insertion in terms of update operations
to the container array c.array before the insertion.

There is another version of the insert method. Here it
is possible to insert a sequence of elements in the desired
insertion position, using both iterator (or even pointer) bounds
to select the sequence from another container. Let i0 be an
iterator that marks the first element to be inserted, ik be another
iterator that points to the first element after the end of the
sequence to be inserted in the required position and let k be
the length of the array [i0 ik). Thus, we have:

C((c′, i′) = c.insert(i, i0, ik)) :=
∧ k = ik.pos − i0.pos + 1
∧ a = i0.source.array
∧ c′.size = c.size + k
∧ c′.array = store(. . . (store(

store(. . . (store(c.array,
i.pos, select(a, i0.pos)),
. . . ,
i.pos+ k − 1, select(a, ik.pos− 1)),

i.pos+ k, select(c.array, i.pos)),
. . . ,
c.size+ k − 1, select(c.array, c.size− 1))

∧ i′.source = c′

∧ i′.pos = i.pos+ k

Note that this also implicitly induces the two properties
that [i0 ik) is non-empty (i.e., that k > 0 holds) and that i0
and ik are iterators over the same underlying container (i.e.,
that i0.source.array = ik.source.array holds), although this
container can be different from the one we are inserting into.

The erase method works similarly to the insert method.
It also uses iterator positions, integer values, and pointers,
but it does not use values since the exclusion is made by a
given position, regardless the value. It also returns an iterator
position, pointing to the position next to the previously erased
part of the container. The following model shows the erase
method that deletes a single element:

C((c′, i′) = c.erase(i)) :=
∧ c′.size = c.size − 1
∧ c′.array = store(. . . (store(c.array,

i.pos, select(c.array, i.pos+ 1)),
. . . ,
c.size− 2, select(c.array, c.size− 1))

∧ i′.source = c′

∧ i′.pos = i.pos

Note that this implicitly induces the property that i is an
iterator over c (i.e., that i.source = c holds).

It is also possible to delete a number of elements from
the container by marking the bounds with iterators. It works
similarly to the equivalent insert method; the details are
omitted here. Searches are made in a container by using
reference operators and a pointing type (pointer or iterator),
and return the reference value (the element stored itself).

IV. INHERITANCE AND POLYMORPHISM

C++ features like inheritance and polymorphism makes
static analysis difficult to implement. In contrast to Java, which
only allows single inheritance, where derived classes have only
one base class, C++ also allows multiple inheritance, where a
class may inherit from one or more unrelated base classes. This
particular feature makes C++ programs harder to model check
than programs in other object-oriented programming languages
(e.g., Java) since it disallows the direct transfer of techniques
developed for other, simpler programming languages [25],
[26].

To deal with inheritance in ESBMC++, we simply replicate
the methods and attributes of the base classes to the inherited
class to have direct access to them. If a class inherits from a
base class that does not contain virtual methods, then we call
this replicated inheritance. If there is a path from class X to
class Y whose first edge is virtual, then we call this shared
inheritance.

A formal description to represent the relationship between
classes can be described by the class hierarchy graph (CHG).
This graph is represented by a triple 〈C ,≺s,≺r〉, where C
is the set of classes, ≺s⊆ C × C refers to shared inher-
itance edges, and ≺r⊆ C × C are replicated inheritance
edges. We also define ≺sr=≺s ∪ ≺r and ≤sr= (≺sr)

∗.
(C ,≤sr) is then a partially ordered set [22] and ≤sr is
anti-symmetric (i.e., if one element A of the set precedes
B, the opposite relation cannot exist). As an example, Fig-
ure 5 shows an UML diagram that represents the Shape class

150

hierarchy that contains multiple inheritance. The replicated
inheritance in the Rectangle class relation can be formalized
by 〈C, ∅, {(Rectangle, Shape), (Rectangle,Display)}〉.

Our tool creates an intermediate model for single and mul-
tiple inheritance, handling replicated and shared inheritance
where all classes are converted into structures and all methods
and attributes of its parent classes are joined. On the one hand,
this approach has the advantage of having direct access to the
attributes and methods of the derived class and thus allows
an easier validation, as the tool does not search for attributes
or methods from base classes on each access. On the other
hand, we replicate information to any new class, thus wasting
memory resources.

Fig. 5. Shape class hierarchy UML diagram

Another important feature from object-oriented program-
ming that we support is the concept of polymorphism, which
allows the creation of reusable code by changing only specific
features from the base class. Polymorphism allows variable
instances to be bound to references of different types according
to the structure of the inheritance hierarchy [8]. We thus
consider that two or more derived classes from the same base
class can invoke methods with the same signature but with
distinct behaviors, specialized for each derived class, using
for this one reference to each object of this base class type.
The decision of which method must be used cannot be made
at compile-time. One solution is the usage of virtual tables
(described below) that contains the object’s method address.
In this case, the method call will fetch the correct method
address from the object’s dispatch table at verification-time.

The intermediate representation of C++ programs in
ESBMC++ provides a model to handle polymorphism so that
we can simplify the class hierarchy, thus easing the access to
methods with the same name without ambiguity between base
and derived classes. As an example, our tool can easily handle
the polymorphic area method using this representation, as
shown in Formulas (1) and (2), using the background theories.

C :=

⎡
⎢⎢⎢⎢⎢⎢⎣

j1 = store(j0, vtable,Rectangle)
∧ j2 = store(j1,width, 10)
∧ j3 = store(j2, height , 10)
∧ j4 = store(j3, vtable, Square)
∧ j5 = store(j4,width, 10)
∧ return value1 =

select(j5,width)× select(j5,width)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (1)

P := [return value1 = 100] (2)

The classes Rectangle (which is the base class) and Square
(which is the derived class) each have a virtual method called

area(), which have the same signature. If we assume that the
example calls this method on a base class pointer, then the
actually executed function cannot be determined at compile-
time. To overcome this problem, we thus create a vtable to
contain the address of the object’s bound methods so that the
call to this method is fetched with the address from the vtable
at verification-time.

In addition, we also support indirect inheritance, where
a class inherits features from a derived class with one or
more classes not directly connected. In Figure 5, we have
Square ≤sr Rectangle and Rectangle ≤sr Shape . Thus, the
Square class can access features from the Shape class, but they
are not directly connected. We tackle this problem by looking
for the features using a depth search from the derived to base
classes and adding them to our intermediate representation if
necessary.

In OO programming, the use of shared inheritance is
very common. In contrast to other approaches (e.g., [12]),
ESBMC++ is able to verify this kind of inheritance. If a class
has pure virtual methods only, then this class does not contain
any implementation for these methods and they will thus be
implemented in the derived classes. Otherwise, if a class has
only virtual methods, it must contain an implementation for
them or the verification will fail with a “conversion error”.
ESBMC++ also handles virtual destructors successfully and
supports the default constructor creation. Currently, ESBMC++
supports dynamic cast between primitive types, same classes
and from a derived class to a base. ESBMC++ also handles
with cast to a reference type, verifying the correct use of
bad cast thrown by dynamic cast.

V. EXCEPTION HANDLING

One of the main features that C++ provides is exception
handling. The exception handling is split into three elements: a
try block, where an exception may occur; a catch block (also
called handler), where an exception can be handled; and a
throw expression to connect both blocks. Figure 6 shows a
C++ code example with exception handling.

1 i n t main () {
2 / / t r y b l ock
3 t r y {
4 throw 20 ; / / throw e x p r e s s i o n
5 }
6 / / c a t ch b l ock
7 c a t c h (i n t i) {
8 /∗ e r r o r hand l i ng f o r i n t e x c e p t i o n s ∗ /
9 }
10 c a t c h (f l o a t f) {
11 /∗ e r r o r hand l i ng f o r f l o a t e x c e p t i o n s ∗ /
12 }
13 re turn 0 ;
14 }

Fig. 6. Try-catch example: Throwing an integer exception.

In ESBMC++, the exception handling happens in two steps,
during the type-checking and the symbolic execution phases.
In the type-checking phase, an AST is built based on the code
inside the try block, but with a few modifications: before the try

151

block, a CATCH instruction with an empty map (which will be
filled later during type-checking) is inserted, followed by the
respective code inside the try block. Here, another CATCH
instruction (to represent the end of the try block and the
beginning of the catch block) is inserted together with a GOTO
instruction, which points to the code after the catch block.
This GOTO instruction will only be modified if an exception is
thrown; otherwise it will remain the same. After type-checking
the try block, ESBMC++ type-checks the handler, which might
contain one or more catch blocks. Again, the AST will be
created based on the code inside the catch blocks, but with
one modification: a GOTO instruction is inserted at the end
of each catch block, which points to the code after the catch
blocks. Each catch block will thus be assigned a label so that
ESBMC++ can decide which catch should be called during
the symbolic execution phase if an exception is thrown. At
the end of the catch block, the map of the first CATCH
instruction is inserted before the try block code is filled with
the label created for each catch mapped on the type of the
exception. Figure 7 shows the internal flow of ESBMC++ for
the exception handling of the code shown in Figure 6.

1 . . .
2 CATCH s i gn ed in t −>1, f l o a t −>2
3 THROW 20
4 $TARGET = 3 ;
5 i f (THROW TYPE == s i gn ed i n t)
6 $TARGET = 1
7 e l s e i f (THROW TYPE == f l o a t)
8 $TARGET = 2
9 CATCH
10 GOTO $TARGET
11 1 : i n t i ;
12 /∗ e r r o r hand l i ng f o r i n t e x c e p t i o n s ∗ /
13 GOTO 3
14 2 : f l o a t f ;
15 /∗ e r r o r hand l i ng f o r f l o a t e x c e p t i o n s ∗ /
16 3 : re turn 0 ;

Fig. 7. Try-catch conversion to goto functions.

During the symbolic execution phase, when the first
CATCH instruction is found, the catch map is stacked for later
usage. The idea behind the use of a stack is that we may have
try-catch blocks inside other try-catch blocks and ESBMC++
should always handle the most internal first. Following the
symbolic execution for the code that is inside the try block,
ESBMC++ will continue to execute the code until it finds a
THROW expression. When it happens, ESBMC++ looks at the
map for a valid catch for the exception thrown; if it finds a
valid catch, then the label will now be saved, but it will only be
handled later; if it is unable to find an exception, then an error
will be thrown. ESBMC++ will also ignore any other THROW
or GOTO instruction after the first THROW is found, but it
will continue to verify all the try block code. When the second
CATCH is found, which means that the try block ended, the
catch map is unstacked for memory efficiency and the GOTO
instruction is thus updated (if needed).

A. Throwing and Catching an Exception

In addition to explicitly throwing an exception, several
situations in C++ code can also implicitly cause an exception

to be thrown: (a) the operator new can throw a bad alloc ex-
ception; (b) the operator dynamic cast can throw a bad catch
exception; and (c) the function typeid can throw a bad typeid
exception. In the C++ standard [1], several rules are defined
of how any exception thrown is connected to a catch block.
In summary, every time when an exception is thrown and one
of the following rules is true, the code jumps from the throw
expression to the catch block as follows:

1) The handler that catches the exception is the first
catch with a matching type; we thus maintain a list
with the order of catches and get the catch with the
lowest value.

2) A handler will catch an exception thrown if the type
thrown and the type of the handler are the same
(ignoring const-volatile qualifiers): Here, we simply
look for the type of the exception in the catch map
and then update the GOTO instruction accordingly
if we find a match, or we simply return an error
otherwise.

3) Throwing exceptions of types “arrays of type T” and
“functions returning type T” will be caught by han-
dlers with “pointer to type T” and “pointer to function
returning type T” types: Here, the conversion is made
on the type-checking and the throw expression throws
two exceptions: “array of type T” and “pointer of type
T”, and “function returning type T” and “pointer to
function returning type T”, respectively. The handler
that catches the exception thrown is determined by
the first rule in cases of multiple matches.

4) The handler will catch an exception of type T if the
handler type is an unambiguous public base class
of T: The conversion is similar to the previous rule,
but here several exceptions may be thrown: the type
of the object and the type of its bases. Again, the
handler will be determined by the first rule in cases
of multiple matches.

5) The handler will catch an exception of type pointer T
if T’s type can be converted to the type of the handler,
either by qualification conversion or standard pointer
conversion: Similar to the previous rules, on the type-
checking phase the possible conversions based on the
catches types will be thrown with the original pointer
type, with the handler being determined by the first
rule in cases of multiple matches.

6) If the exception thrown is a pointer, then a handler
with type void* or nullptr t can catch it: during the
symbolic execution, if no match is found in the map
and the exception thrown is a pointer, we simply look
for a void* or nullptr t catch and then update the
GOTO instruction. If the exception had a match, then
this rules is ignored.

7) A handler of type ellipsis (...) will catch any thrown
exception, and shall be the last handler on the catch
block: This is similar to the previous rule, but here
it works for every type; if no match is found,
ESBMC++ looks for a handler of type ellipsis and
updates the GOTO instruction accordingly if one
exists.

8) If the throw has no arguments, then it should rethrow
the last thrown exception: we always keep a reference
of the last thrown exception and then update a rethrow

152

if this reference is not NULL.

B. Exception Specification

The exception specifications define which exceptions a
function or method (including constructors and destructors)
can throw. For each method or function declaration the ex-
ception specification lists the exceptions that can “escape” the
respective function or method, i.e., are not guaranteed to be
handled within. Note that an exception can still be handled
inside a try-catch block inside the function or method even if
it is not listed in the exception specification.

The exception specification is handled by ESBMC++ by
inserting a THROW DECL instruction after the declaration of
each function or method. In the symbolic execution phase,
the exception specification is stacked and removed in the
END FUNCTION instruction at the end of every function or
method. The idea for stacking the exception specification is
the same as for catch maps, ESBMC++ may find function
calls to other function and they may also have their own
exception specifications. Finally, when an exception is thrown,
ESBMC++ checks whether there is an exception specification
currently in force and, if so, whether the exception thrown is
allowed to be thrown outside the function. If it is allowed, the
exception handling follows and tries to look for an match on
the catch map; otherwise it will return an error.

VI. EXPERIMENTAL EVALUATION

This section is split into three parts. The setup is described
in Section VI-A while Section VI-B describes a comparison
between ESBMC++ [3] and LLBMC (Low-Level Bounded
Model Checker) [4] using a set of standard C++ benchmarks.
Some details about LLBMC are also given in Section VI-B.
In our experiments, we also tried to use the CBMC model
checker [16], but since it has failed in most of our benchmarks
(as reported previously by Merz et al. [24]), we do not report
any results. In Section VI-C, we describe the results of veri-
fying a commercial application from the telecommunications
domain using ESBMC++.

A. Experimental Setup

The benchmarks that are used in our comparison consist of
1113 C++ programs. Around 290 programs are extracted from
Deitel’s textbook [19], 16 programs are taken from the NEC
benchmark suite [6], 16 programs are taken from the LLBMC
benchmark suite [27], and the others were developed by us
to test all the features that the C++ language provides. The
benchmarks are split into eleven suites, as follows: algorithm
contains test cases for methods that involve the algorithm li-
brary; cpp contains general test cases of the C++ language that
involve the general libraries, multi-threading, and templates.
Additionally, it also contains the LLBMC benchmarks and
most of the Deitel benchmarks. The categories deque, list,
queue, stack, stream, string, and vector contain test cases for
the respective STL container structures. Finally, inheritance
contains test cases related to inheritance and polymorphism
while try catch contains test cases related to exception han-
dling; the NEC test cases are located in this suite.

All the experiments were conducted on an otherwise idle
Intel Core i7-2600, 3.40 GHz with 24 GB of RAM running

Ubuntu 64-bits. For all test suites the individual time limit
and memory limit for each test has been set to 900 seconds
and 24 GB (22 GB of RAM and 2 GB of virtual memory),
respectively. The times given were measured using the time
command.

B. Comparison to LLBMC

This subsection describes the evaluation of ESBMC++
against LLBMC, another C++ BMC tool developed by Merz
et al. [24]. Table I summarizes the results. Here, N is the
number of C++ programs, L is the total lines of code of each
suite, Time is the total verification time of each suite, P is the
number of correct positive results (i.e., the tool reports SAFE
correctly), N is the number of correct negative results (i.e., the
tool reports UNSAFE correctly), FP is the number of false
positive results (i.e., the tool reports SAFE incorrectly), FN
is the number of false negative results (i.e., the tool reports
UNSAFE incorrectly), Fail is the number of internal errors
during the verification of each suite, TO represents the number
of time-outs (i.e., the tool was aborted after 900 seconds), and
MO represents the number of memory-outs.

We invoked both tools using two scripts: one for
ESBMC++, that reads the parameters from a file and calls
the tool,1 and another for LLBMC that first compiles the
code to bytecode using CLANG [5],2 reads the parameters
from a file and calls the tool.3 The bound set for both tools
(value of B) depends of each test case. LLBMC currently does
not support exception handling and all the bytecodes were
generated without exception support (flag -fno-exceptions)
while verifying with LLBMC. Enabling exceptions resulted
in LLBMC aborting in most of the cases.

As we can see in Table I, LLBMC times out in 24
programs in the algorithm suite and runs out of memory in
two programs. If we carefully analyze those test cases, most
of them use iterators, which might be causing the slow down in
the verification process; this is a situation that also happens in
other suites. In the deque, vector, and list suites, the slowdowns
still happen but with small values. The suite that had the most
unsuccessful verification results was the list suite, and most of
the errors were related to the container size (e.g., assertions
if the container is empty or if it has a particular size). In
ESBMC++, most of the errors on those suites are due to a
missing operational model of the libraries, which are currently
under development.

In the queue suite, LLBMC fails in a program that uses
the size of a list as constructor parameter while in the stack
suite all programs are correctly verified. In ESBMC++, all the
programs in both suites are successfully verified.

In the stream suite, most of the errors are related to asser-
tions on the size of the stream (using the method gcount ())
and to internal flags (such as ios::hex and iostream::hex). In
ESBMC++, most of the error are related to a bad operational
model of the internal flags. In the string suite, the errors are
related to assertions in the string itself, usually if the string

1esbmc --unwind B --no-unwinding-assertions -I /libraries/ –timeout 15m
2/usr/bin/clang++ -c -g -emit-llvm *.cpp -fno-exceptions

/usr/bin/llvm-link *.o -o main.bc
3llbmc --ignore-missing-function-bodies

--no-max-loop-iterations-checks --max-loop-iterations=B

153

ESBMC++ LLBMC
Testsuite N L Time P N FP FN Fail TO MO Time P N FP FN Fail TO MO

1 algorithm 130 3376 996 63 38 16 13 0 0 0 22964 53 45 1 5 0 24 2
2 deque 43 1239 238 19 20 0 4 0 0 0 8585 16 17 0 0 1 9 0
3 vector 146 6853 2714 95 37 3 11 0 0 0 7234 91 38 1 3 4 6 3
4 list 70 2292 3928 25 25 3 17 0 0 0 2562 5 26 5 30 0 0 4
5 queue 14 328 177 7 7 0 0 0 0 0 45 6 7 0 1 0 0 0
6 stack 12 286 82 6 6 0 0 0 0 0 45 6 6 0 0 0 0 0
7 inheritance 51 3460 311 28 17 1 2 3 0 0 122 32 12 1 3 3 0 0
8 try catch 67 4743 45 17 41 7 2 0 0 0 4 0 1 0 0 66 0 0
9 stream 66 1831 1892 51 13 0 2 0 0 0 11 17 13 0 35 1 0 0
10 string 233 4921 46186 100 112 5 16 0 0 0 37 6 121 4 102 0 0 0
11 cpp 343 26624 1817 269 38 7 25 4 0 0 3260 235 24 10 56 15 2 1

1175 55953 58386 680 354 42 92 7 0 0 44869 467 310 22 235 90 41 10
TABLE I. RESULTS OF THE COMPARISON BETWEEN ESBMC++ V1.20 AND LLBMC V2012.2A.

is equal to another string. In the inheritance suite, LLBMC
reports incorrect errors about memory writing and instantiation
of virtual methods (that do not contain implementation). It
also does not support some expressions in the SMT back-end
(e.g., “Op % (nondef) found”). ESBMC++ fails to verify test
cases related to the use of the dynamic cast (as described in
Section IV).
In the try catch suite, LLBMC failed in most of the tests

due to the fact that the tool is missing support to exception
handling. ESBMC++ was able to verify most of the cases.
The errors that occur are related to a missing implementation
of exception specifications when using classes constructors.
And lastly, in the cpp suite, which has test cases involving
all the other suites (but are not redundant), most of the errors
presented were already seen during the verification of other
suites.
ESBMC++ verified all suites in 58386 seconds (approxi-

mately 16 hours) and gave the right results for 1034 out of
1175 programs (88%) while LLBMC verified all suites in
44869 seconds (approximately 12 hours) and gave the right
results for 777 out of 1175 programs (66%). We can see that
LLBMC is slower than ESBMC++ on most of the containers
and algorithm suites, while it is faster on stream and string
suites but looses on successfully verified test cases. In the
inheritance suite, the results of both tools are essentially the
same. In the try catch suite, ESBMC++ is able to verify almost
all programs, something that LLBMC cannot due to its lack of
support of exception handling. In the cpp suite, ESBMC++ is
able to successfully verify more programs than LLBMC. Note
that ESBMC++ does runs out of memory or time in any suite.

C. Verifying the Sniffer Code
This section describes the results of the verification process

using the ESBMC++ and LLBMC model checkers against the
sniffer code provided by Nokia Institute of Technology (INdT).
The sniffer code is responsible for capturing and logging traffic
passing over a network that supports the Message Transfer Part
Level 3 User Adaptation Layer (M3UA); it enables the trans-
port of Signaling System 7 (SS7) protocol’s user parts and it
uses the services provided by the Stream Control Transmission
Protocol (SCTP). The sniffer code contains approximately 20
classes, 85 methods, and 2800 lines of C++ code.

The following properties were verified using the customer
version of the sniffer code: array bounds violations, division
by zero, and arithmetic under- and over-flow. Due to con-
fidentiality issues, we were able to model check 50 out of
85 methods (since we did not have access to some external
classes that the sniffer code requires). In the remaining code
base, ESBMC++ was able to identify five bugs that are mostly
related to arithmetic under- and over-flow while LLBMC was
able to identify only three of them. Note that all bugs were
reported to the developers and confirmed by them.

As an example of the bugs that were found, Figure 8
shows a code fragment of the method getPayloadSize from the
class PacketM3UA. Here, an arithmetic over-flow might occur
on the typecast operation since the method ntohs returns an
unsigned integer, but the method getPayloadSize is expected
to return an integer data-type. One possible way to fix this bug
is to change the return type of the method getPayloadSize to
unsigned integer to avoid the typecast over-flow.

1 i n t PacketM3UA : : g e t P a y l o a dS i z e () {
2 re turn n t ohs (m3uaParamHeader−>paramSize)
3 − (M3UA PROTOCOL DATA HEADER SIZE
4 + M3UA PARAMETER HEADER SIZE) ;
5 }

Fig. 8. Arithmetic over-flow on the typecast operation of the getPayloadSize.

VII. RELATED WORK

The application of SMT-based BMC to software is gaining
popularity in the software engineering community mainly due
to the advent of sophisticated SMT solvers built over efficient
SAT solvers [10], [14], [18]. Previous work related to SMT-
based BMC for software addresses the problem of verifying C
programs that use bit operations, floating-point arithmetic, and
pointers [16], [9], [20], [17]. However, there is only little work
that addresses the problem of model checking C++ programs
that make use of templates, containers, and exception handling.

Prabhu et al. [27] present an interprocedural exception
analysis and transformation framework for C++ that records
the control-flow created by the exceptions and creates an
exception-free program. The exception-free program creation

154

starts by generating a modular interprocedural exception
control-flow graph (IECFG). The IECFG is refined using an
algorithm based on a compact representation for a set of types
called the Signed-TypeSet domain and the result is used to
generate the exception-free program. Finally, the exception-
free program is verified using F-SOFT [21]. The verification
is focused on two properties: “no throw”, the percentage of
the code that does not raise an exception and “no leak”, the
number of memory leaks on try-catch blocks [27].

Jing Yang et al. present a translation tool called Class Hi-
erarchy Representation Object Model Extension (CHROME)
that is targeted towards making static program analyzers for
C++ easier to write and provide more precise results [30].
CHROME makes a source-to-source transformation from a
C++ program with inheritance into a semantically equivalent
program without inheritance by treating the inheritance with
separate memory regions that are linked to each other via
additional base class and derived class pointer fields. This
transformation comprises a clarifier, which makes implicit C++
features explicit. This approach was also implemented with F-
SOFT [21]. CHROME has a different memory behavior from
the original program and therefore does not allow the use
of low-level primitives (e.g, memset). The CHROME-lowered
C program is three to five times bigger than the size of the
original C++ program.

Blanc et al. describe the verification of C++ programs
that use the STL containers via predicate abstraction [12].
They make use of abstract data types for the STL usage
verification rather than the actual STL implementation and
behavior. Blanc et al. show that it suffices to verify correctness
using an operational model by proving that the pre-conditions
on operations in the model imply the pre-conditions guaranteed
by the language definition for those operations; similarly, the
post-conditions given by the standard imply the strongest post-
conditions for the operational model. This approach is efficient
in finding trivial errors in C++ programs, but it lacks on a
deeper search for bugs and misleading operations (i.e, when it
involves internal modeling of the methods).

Merz et al. describe the LLBMC tool, which also applies
BMC to the verification of C++ programs [24]. However,
they use the LLVM compiler to convert C++ programs into
LLVM’s intermediate representation, which thus looses high-
level information about the structure of the C++ programs (i.e.,
the relationship between the classes). Similarly to ESBMC++,
Merz et al. also apply SMT solvers to check the verification
conditions that are generated from the C++ programs. In con-
trast to our approach, however, they do not handle exceptions,
which thus make it difficult to verify realistic C++ programs
(e.g., programs that depend on the STL library).

Java PathFinder is an explicit-state model checker for Java
programs, but Pasareanu and Visser [25] also developed a
symbolic execution framework for it. However, due to the
considerable differences between Java and C++ it is difficult
to compare this to ESBMC++.

VIII. CONCLUSIONS

In this work, we have investigated SMT-based verification
of C++ programs by focusing on the major features that
the language offers. We have described an implementation

of an operational model of the sequential STL containers as
well as novel approaches to handle inheritance, polymorphism,
and exception handling (in particular, exception specification,
which is a feature that is not supported by other BMC tools).
Our experiments contain C++ programs with most of the
features that the C++ language has to offer. Additionally,
we have verified a commercial application of medium-size
used in the telecommunications domain. The results show
that ESBMC++ outperforms LLBMC for the verification of
C++ programs. In particular, ESBMC++ is able to verify
most of the C++ programs; we are able to verify programs
with exceptions enabled (a missing feature of LLBMC that
decreases the verification accuracy of C++ programs). In
addition, ESBMC++ was able to find undiscovered bugs in
the sniffer code that were later confirmed by developers. For
future work, we intend to extend the operational model of STL
containers to support not only sequential containers, but also
mapped ones (e.g., map and multimap).

ACKNOWLEDGMENT

The development of ESBMC++ is funded by the Royal
Society and by Nokia Institute of Technology (INdT).

REFERENCES
[1] Working draft, Standard for Program-

ming Language C++, http://www.open-
std.org/JTC1/SC22/WG21/docs/papers/2012/n3376.pdf, 2012.

[2] Reference of the C++ Language Library,
http://www.cplusplus.com/reference/, 2012.

[3] Efficient SMT-Based Context-Bounded Model Checker,
http://esbmc.org/, 2012.

[4] The Low-Level Bounded Model Checker, http://llbmc.org/, 2012.
[5] LLVM Tools, http://llvm.org/releases/, 2012.
[6] NEC, http://www.nec-labs.com/research/system/, 2012.
[7] SMT-LIB, http://combination.cs.uiowa.edu/smtlib, 2009.
[8] R. T. Alexander, J. Offutt, and J. M. Bieman. Fault Detection Capabilities

of Coupling-based OO Testing In ISSRE pp. 207–2002, 2002.
[9] A. Armando, J. Mantovani, and L. Platania. Bounded model checking

of software using SMT solvers instead of SAT solvers. In STTT, vol. 11
(1), pp. 69–83, 2009.

[10] C. Barrett and C. Tinelli, CVC3. In CAV, LNCS 4590, pp. 298–302,
2007.

[11] A. Biere. Bounded model checking. In Handbook of Satisfiability, pp.
457–481. 2009.

[12] N. Blanc, A. Groce, and D. Kroening, Verifying C++ with STL
containers via predicate abstraction. In ASE, pp. 521–524. 2007.

[13] A. R. Bradley and Z. Manna. The Calculus of Computation: Decision
Procedures with Applications to Verification. Springer, 2007.

[14] R. Brummayer and A. Biere, Boolector: An efficient SMT solver for
bit-vectors and arrays. In TACAS, LNCS 5505, pp. 174–177, 2009.

[15] A. Cimatti et al. Verifying SystemC: a software model checking
approach. In FMCAD, pp. 121–128, 2010.

[16] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In TACAS, LNCS 2988, pp. 168–176, 2004.

[17] L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-based bounded
model checking for embedded ANSI-C software. In IEEE Trans.
Software Eng., v. 38, n. 4, pp. 957–974, 2012.

[18] L. M. de Moura and N. Bjørner, Z3: An efficient SMT solver. In TACAS,
LNCS 4963, pp. 337–340, 2008.

[19] P. Deitel and H. Deitel. C++ How to Program. Prentice Hall, 5th
Edition, 2006.

[20] M. K. Ganai and A. Gupta. Accelerating high-level bounded model
checking. In ICCAD, pp. 794–801, 2006.

155

[21] F. Ivancic et al. Model Checking C programs using F-Soft. In ICCD.
pp. 297–308, 2005.

[22] N. Joseph and K. Hee. Basic Posets. World Scientific Pub Co Inc, First
Edition, 1999.

[23] J. McCarthy. Towards a mathematical science of computation. In IFIP
Congress. North-Holland, pp. 21–28, 1962.

[24] F. Merz, S. Falke, and C. Sinz. LLBMC: Bounded Model Checking
of C and C++ Programs Using a Compiler IR. In VSTTE, pp. 146–161,
2012.

[25] C. Pasareanu and W. Visser, Verification of Java Programs Using
Symbolic Execution and Invariant Generation. In SPIN, LNCS 2989,
pp. 164–181, 2004.

[26] W. Visser and P. Mehlitz Model Checking Programs with Java
PathFinder. In SPIN, LNCS 3639, pp. 27, 2005.

[27] P. Prabhu et al. Interprocedural Exception Analysis for C++. In ECOOP,
pp. 583–608. 2011.

[28] R. L. Sites. Some thoughts on proving clean termination of programs.
Stanford, CA, USA, Tech. Rep., 1974.

[29] C. Wintersteiger. Compiling GOTO-Programs,
http://www.cprover.org/goto-cc/, 2009.

[30] J. Yang et al. Object Model Construction for Inheritance in C++ and
its Applications to Program Analysis. In CC, LNCS 7210, pp. 144–164,
2012.

156

