
Deduction-Based Software Component Retrieval

B. Fischer and M. Kievernagel and G. Snelting

TU Braunschweig, Abteilung f�ur Softwaretechnologie

Gau�stra�e 17, D-38092 Braunschweig, Germany

ffisch,mkiever,sneltingg@ips.cs.tu-bs.de

Abstract

We present a retrieval approach which allows

pre- and postconditions of software compo-

nents to be used as search keys. A com-

ponent quali�es, if it has a weaker precon-

dition and a stronger postcondition than the

search key. In contrast to previous work, our

tool NORA/HAMMR allows for con�gurable

chains of deduction-based �lters such as signa-

ture matchers, model checkers | which will

be our main subject here |, and resolution

provers; the latter can be run with dynamically

adjusted axiom sets and inference rules. Hence,

instead of feeding the search key and all com-

ponents' speci�cations to a theorem prover in a

batch-like fashion, NORA/HAMMR allows for

incremental narrowing of the search space along

the �lter chain, and interactive inspection of in-

termediate results.

Classi�cation: software component retrieval, formal

methods, speci�cation matching, model �nding, theorem

proving.

1 Introduction

The basic idea of deduction-based software component

retrieval is very simple:

1. for each component C in the library, provide a for-

mal speci�cation in form of pre- and postcondition

(pre

C

; post

C

),

2. allow pre- and postconditions (pre; post) as search

keys,

3. a component quali�es, if pre) pre

C

^ post

C

)

post.

This approach has been proposed several times (e.g.

[

Rollins and Wing, 1991

]

,

[

Manhart and Meggendorfer,

1991

]

), but without convincing success. First, some peo-

ple state that formal speci�cations are too di�cult to use

as search keys for ordinary programmers. Furthermore,

the approach turned out to produce proof obligations

which sometimes cannot be handled even with todays

most sophisticated theorem provers. Technically, both

weaknesses stem from a batch-oriented view of software

component retrieval: in previous approaches, a complete

speci�cation must be supplied, which will be matched

against all components (this includes proving the above

two obligations); �nally, the results are presented to the

user.

In order to overcome acceptance problems and insu�-

cient proving power, we propose a more incremental and

interactive retrieval approach. Instead of feeding the

complete search key into the retrieval system at once,

the user is allowed to incrementally sharpen the post-

condition (and weaken the precondition). Furthermore,

search keys are not processed by an all-purpose theorem

prover, but by a chain of �lters of increasing power.

The successive �ltering of components o�ers two main

advantages. It allows free combination of di�erent re-

trieval methods | including text-based or concept-based

methods

[

Lindig, 1995

]

. Moreover, since intermediate re-

sults can be inspected at every stage, the overall running

time is not critical to the performance of the tool. As we

will show, results of acceptable precision are ready for

inspection early in the process.

A typical �lter chain consists of the following phases:

1. signature matching,

2. model checking,

3. theorem prover.

After signature matching (which aims at high recall and

not at high precision) a lot of components has still sur-

vived, as the signature alone does not describe the com-

ponent precisely enough. The second step checks the

proof obligations in some small model (small integers

and short lists), which is already a rather sharp �l-

ter. Only for the few remaining candidates, a theorem

prover (OTTER

[

McCune, 1994b

]

or SETHEO

[

Letz et

al., 1992

]

) is invoked; in order to reduce the search space,

NORA/HAMMR tries to select a minimal set of axioms.

In this paper, we describe some details of our ap-

proach, especially the application of the model �nder

anldp in our model checking �lter. We conclude with our

experiences with NORA/HAMMR in making �rst exper-

iments. Our test library

[

Lins, 1989

]

consists of about

50 Modula-2-modules implementing several variants of

abstract data types like stacks, queues, graphs, and trees

using generic items. It provides approx. 1000 procedures

with 120 di�erent type signatures. A substantial part of

these procedures has been speci�ed manually in VDM.

2 Search keys and signature matching

The search keys, through which a user mainly communi-

cates with NORA/HAMMR, consist of a type signature

and a VDM part, as the example of a push operation for

stacks shows:

PROCEDURE x(i:I, s:S) : S

pre true

post s = tl x and i = hd x

The type signature encapsulates all language-speci�c as-

pects like the kind of the target object (in this exam-

ple PROCEDURE) or the names of the basic types such as

INTEGER. For convenience, we use a syntax which is ori-

ented at the target language. In the case of Modula-2 we

have just extended procedure types by type variables (I

and S) to search for a class of signatures and to abstract

naming of types. The VDM part is written in VDM-SL

[

Dawes, 1991

]

, but some naming conventions are applied

to refer to parameters and result.

In NORA/HAMMR, signature matching acts as the

�rst �lter in the chain. Its main characteristic is an

equivalence E on types. For functional languages, E

typically includes axioms to handle currying, pairing, ex-

tra arguments or di�erent argument orders

[

Rittri, 1990

]

.

Our current implementation | which aims at procedural

target languages | applies order-sorted AC1-uni�cation

for parameter lists in order to abstract the order of pa-

rameters. We will also add a "result currying" axiom

PROCEDURE p(x, VAR y:Y)

= PROCEDURE p(x, y:Y) : Y

to handle the equivalence of VAR-parameters and return

values. Thus, NORA/HAMMR matches the desired pro-

cedure even if it is implemented as

PROCEDURE StackSBMI.push

(VAR st:STACK; it:ITEM)

due to an application of the commutativity and result

currying axioms. As expected, the intermediate result,

a set of components with suitable type, is of poor preci-

sion. It not only contains StackSBMI.push but 87 more

procedures of Lins' library. Precision drops even further

if the library includes e. g. some mathematical routines

since I and S may be bound to REAL and thus the key

matches all binary operators.

3 Checking the proof obligations

We decided not to hard-wire a special proof procedure

for VDM but to integrate the general purpose theo-

rem prover OTTER

[

McCune, 1994b

]

and the associated

model �nder anldp

[

McCune, 1994a

]

. This design eases

experimentation with the prover and also allows us to

replace it, either by a more advanced one or even by a

specially tailored proof procedure.

The second �lter purges obligations which can easily

be refuted by checking their validity in a small fragment

of the VDM-axiomatization. Its basic idea is to check

whether all assignments of small integers and small lists,

resp., to program variables evaluate the obligations to

true. Obviously, this is a prerequisite for the obligations

to be provable in the full theory. We will show in the

next section how we use anldp in this �lter.

The third �lter tries to prove the remaining obligations

using OTTER and an axiomatization of the full theory.

The whole axiomatization mainly covers the �rst-order

properties of equality, sequences and integer arithmetic;

it consists of about 120 axioms and lemmata.

The search space for the prover is reduced by splitting

independent parts of a problem into subproblems. This

is done by transforming the formula into disjunctive nor-

mal form and combining every set of disjunctions with

common variables into one subproblem.

A further reduction of the search space is achieved by

axiomatizing each subproblem of an obligation indepen-

dently, i.e. linking it dynamically with an appropriate set

of axioms. The selection of axioms is based on the sym-

bols used in the problem. Axioms de�ning the required

domains are always given. For additional auxiliary sym-

bols the de�nitions in elementary terms and lemmata

stating relations between them are added to the axiom

set.

Some parts of the axiomatization can be used to trans-

form respective parts of a problem in a normalized form.

For example, all propositions using integer ordering re-

lations (<;�; >;�) can also be expressed using only `<'.

This normalizing part of the axiom set is always applied

in a preprocessing phase and never given to the prover.

Our graphical user interface (see �gure 1) reects

the idea of successive �ltering. Additionally, inspectors

grant easy access to any intermediate results. This �lter-

inspector-chain may easily be customized by the user

through an icon pad. The con�guration displayed be-

low corresponds to the chain of �lters described in this

paper. The left part of the window is used to enter the

three parts of the search key while the right part displays

the �nal retrieval results.

4 Model checking

We will now give a detailed description of the model

checking �lter and its use of anldp. To illustrate the

ideas we use the �rst experiment from Table 1 below,

Figure 1: Graphical user interface

which is based on the example search key for the push-

operation given in section 2.

First we will look at the intermediate result after sig-

nature matching. It consists of 25 procedures from 14

modules and contains the relevant procedures Push and

Insert from the stack resp. singly-linked list modules.

Also matched are procedures for head-assignment and

tail-insertion in the singly-linked list modules, insertion

and head-assignment in the doubly-linked list modules,

inclusion and exclusion in the set modules and insertion

and item-deletion in several kinds of queue modules.

Currently, the procedures from the doubly-linked list

modules and the priority queue modules are regarded

as unsuitable to build a proof obligation, because their

speci�cations use parts of the resp. datatype which have

no counterpart in the key and thus cannot be bound.

This removes 6 components, leaving 19 procedures from

12 modules. Alternatively, the unbound parts could be

included in proof obligations as free variables. Then a

constructive proof method is required, but it would en-

able NORA/HAMMR to inform the user about correct

instantiations of the unbound parts of a component.

For the remaining components the model checking �l-

ter checks if the resulting obligations are valid for small

integers and small lists. The method we use is based

on an axiom set for integers and lists which is restricted

to �nite domains and total functions and predicates. It

de�nes exactly one �nite model. The �lter adds an obli-

gation to the model de�nition and then runs the model

�nding program anldp on it to see whether it can still

�nd the designated model. anldp is based on a �rst-

order variant of the Davis-Putnam procedure (i.e. ex-

haustive enumeration of all �nite models.) If anldp fails

the component is rejected, because the corresponding

proof obligation contradicts the model de�nition. Oth-

erwise, the component matches, but the validity in the

full theory still has to be tested.

The domain sizes of the model inuence the precision

of the method. The larger they are, the more the �lter

behaves like a prover for the full theory. We have ex-

perimented with di�erent sizes and have obtained good

results using a fragment of the full theory containing

only the objects nul and suc(nul) as integers, nil and

cons(nul,nil) as lists and inc denoting illegal terms.

We will show now some parts of the model de�nition.

These �rst two parts de�ne the objects of the sorts nat

and seq and restrict the domains by introducing �x-

points in the constructor functions:

nat(nul).

nat(suc(nul)).

suc(nul) != nul.

suc(suc(nul)) = suc(nul).

seq(nil).

seq(cons(nul,nil)).

cons(nul,nil) != nil.

cons(nul,cons(nul,nil))

= cons(nul,nil).

Other functions are de�ned as usual except that the

domain limitations have to be taken into account:

hd(cons(nul,nil)) = nul.

tl(cons(nul,nil)) = nil.

len(nil) = nul.

len(cons(nul,nil)) = suc(nul).

concat(nil,nil) = nil.

concat(nil,cons(nul,nil))

= cons(nul,nil).

concat(cons(nul,nil),nil)

= cons(nul,nil).

concat(cons(nul,nil),cons(nul,nil))

= cons(nul,nil).

In order to remove any incomplete de�nitions an ob-

ject inc (inconsistent) is introduced. It is used to turn

partial functions into total functions. The following def-

initions are necessary to make the cons-function total:

cons(nil,x) = inc.

cons(cons(x,y),z) = inc.

cons(suc(nul),y) = inc.

-nat(x) | cons(y,x) = inc.

cons(inc,x) = inc.

cons(x,inc) = inc.

The computation of a basic model by anldp which is

su�cient for many obligations needs 0.50 sec. The com-

plete model for lists and basic integer arithmetic needs

1.56 sec to be computed.

The result of the computation is the obvious model.

anldp uses internal object names which can be assigned

to constants (here: 0 = nul, 1 = nil and 2 = inc.) The

other objects are assigned by anldp while the model is

constructed. In the following part of the model anldp

has assigned 3 to suc(nul) and 4 to cons(nul,nil):

nat: 0 1 2 3 4 seq: 0 1 2 3 4

--------------- ---------------

T F F T F F T F F T

suc: 0 1 2 3 4 len: 0 1 2 3 4

--------------- ---------------

3 2 2 3 2 2 0 2 2 3

Returning to our retrieval example there are e�ectively

three possible results for an obligation:

� It is valid and the model is found.

� It is not valid but the model is found.

� It is not valid and the model is not found.

Considering the list domain (nil and cons(nul,nil))

you can expect that model checking will be able to dis-

tinguish sequence insertions from deletions or changes

but not the location where an insertion takes place.

An example for a component which is �ltered out

by model checking is an assignment to the head of a

list. The following proof obligation (Otter format) for

ListSBM/SUM.SetItem is checked in less than 2 secs

(with no model found):

formula_list(usable).

(all st1 all it all st2

((seq(st1) & nat(it) & seq(st2)) ->

((st2 = cons(it,tl(st1)))

->

((tl(st2) = st1) & (hd(st2) = it))))).

end_of_list.

For the next two examples a model was found also

within two seconds. The �rst is a valid obligation while

the second is not valid in the full theory (giving only the

component speci�cation):

StackSBMI/SUMI.Push:

(st2 = cons(it,st1)).

QueueSBMI/SUMI.Arrive:

(st2 = concat(st1,cons(it,st1))).

The complete list of the seven matched components

is found in picture 1 in the second inspector window.

Thus model checking has eliminated most of the irrele-

vant components in this experiment.

5 Preliminary experiences

The experiments reported here are based on about half

of Lins' library. For e�ciency reasons, the informations

necessary for NORA/HAMMR are compiled from the

library and stored in a database. Each entry contains

the type signature and pre- and postconditions for the

matching process and references to the di�erent de�ni-

tions of a component. Also, some retrieval relevant inter-

mediate results like the binding of names generated by

the type matcher are stored there. The retrieval process

is considerably sped-up by an indexing scheme which is

based on the principal operators in the type signature.

This means that a large part of the components with

incompatible type is not even accessed.

Table 1 displays the �ltering e�ect of the three phases

of NORA/HAMMR. The left column gives a short de-

scription of the search key. The columns for the type

matcher and the model checker give counts for the suc-

cessfully matched procedures and the modules in which

these are contained. The last column gives the results of

the respective OTTER runs which are either a successful

proof (runtime in seconds

1

) or there was no proof within

1

All times were measured on a SPARC ELC-10.

description sig. match model check OTTER runs

1 Insert at head of seq. 25=14 7=4 4� 2s=3� np-

2 Seq. split at element 1=1 | np+ (48s)

3 Seq. split at position 1=1 1=1 1s

4 Member?-predicate 3=3 3=3 3� np+

5 Position of element in seq. 9=9 9=9 9� 1s

6 Remove from front of seq. 51=20 6=3 6� 2s

7 Remove from back of seq. 51=20 6=3 6� np-

Table 1: Experimental results

a short time limit for a valid proof obligation (np+) resp.

an invalid one (np-).

Most search keys only produce easy proof obligations

which OTTER proves in a few seconds each. Experi-

ment 4 creates obligations for which it fails to �nd a

proof but at least the model checker successfully shows

their validity in the small theory. Another search key

that caused some problems for OTTER and the model

checker is the "element-split" of experiment 2. anldp

fails here, because it cannot handle skolem functions of

arity larger than four. OTTER is able to �nd a proof

of the resulting obligation but clearly exceeds the given

time limit. Interestingly, we got the best results when

OTTER was allowed to choose its parameters itself (OT-

TER's so-called automode).

For the above experiments, overall recall was 0:49 and

overall precision was 0:86. As expected, precision is

very high. The rather poor recall comes from signature

matching: at the moment, the equivalence E on signa-

tures is too restrictive, excluding some relevant compo-

nents. Additional axioms for E will increase recall and

decrease precision of signature matching | but overall

precision is maintained by the model checker and theo-

rem prover.

6 Conclusions

Due to the concept of successive �lters, our retrieval sys-

tem NORA/HAMMR is able to present acceptable inter-

mediate results in short time. A specialized replacement

of anldp will even lead to better results. We will also

experiment with other �lters based on unsound proving

methods. The replacement of OTTER by other theo-

rem provers is another possibility for improvement. Re-

cent experiments with the SETHEO prover showed that

SETHEO is at least as suitable as OTTER.

Acknowledgements

NORA/HAMMR is part of the inference-based soft-

ware evelopment environment NORA

2

. Ch. Lindig devel-

oped the graphical user interface for NORA/HAMMR.

2

NORA is a play by the Norwegian writer H. IBSEN,

hence NORA is no real acronym. HAMMR stands for \higly

adaptive multi-method retrieval"

M. Kievernagel and B. Fischer were supported by DFG,

grants Sn11/1-2, Sn11/2-2, Sn11/3-1 and Sn11/4-1.

References

[

Dawes, 1991

]

John Dawes. The VDM-SL Reference

Guide. Pitman, London, 1991.

[

Letz et al., 1992

]

R. Letz, J. Schumann, S. Bayerl, and

W. Bibel. Setheo: A high performance theorem

prover. Journal of Automated Reasoning, 2(8):183{

212, 1992.

[

Lindig, 1995

]

C. Lindig. Concept-based component re-

trieval. In Proc. IJCAI Workshop on Reuse of Proofs,

Plans and Programs, 1995. to appear.

[

Lins, 1989

]

Charles Lins. The Modula-2 Software Com-

ponent Library. Springer Compass International.

Springer Verlag, New York Berlin Heidelberg, 1989.

[

Manhart and Meggendorfer, 1991

]

P. Manhart and S.

Meggendorfer. A knowledge and deduction based soft-

ware retrieval tool. In Proc. 4th International Sympo-

sium on Arti�cial Intelligence, pages 29{36, 1991.

[

McCune, 1994a

]

W. W. McCune. A Davis-Putnam pro-

gram and its application to �nite �rst-order model

search: Quasigroup existence problems. Technical re-

port, Argonne National Laboratory, 1994. Draft.

[

McCune, 1994b

]

W. W. McCune. Otter 3.0 user's

guide. Argonne National Laboratory Report ANL-

94/6, 1994.

[

Rittri, 1990

]

Mikael Rittri. Retrieving library identi-

�ers via equational matching of types. In Mark E.

Stickel, editor, Proc. 10th International Conference on

Automated Deduction, volume 449 of Lecture Notes in

Computer Science. Springer-Verlag, July 1990.

[

Rollins and Wing, 1991

]

Eugene J. Rollins and Jean-

nette M. Wing. Speci�cations as search keys for soft-

ware libraries. In Koichi Furukawa, editor, Proc. of the

Eighth International Conference and Symposium on

Logic Programming, pages 173{187, Paris, June 24-28

1991. MIT Press.

