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Abstract: A common approach to combine the object-oriented and logic programming

paradigms is to formulate a set of inference rules for an object logic. We show how resolution

is expressed using the full feature logic. In contrast to similar approaches we do not only

exchange the underlying term universe but discard the predicate calculus completely. We

demonstrate that an untyped resolution violates a closed world assumption and introduce

a type discipline to solve this problem. To integrate inheritance into this framework we

introduce polymorphic types and rules.

1 Introduction

Object-oriented programming (OOP) and logic programming (LP) are two well-known pro-

gramming paradigms. In the last few years, a number of approaches emerged which try to

integrate them (see [Alex93] or [McCa92] for a survey.) These approaches vary greatly in

scope and strategy: implementing LP in OOP and vice versa, constraint LP, or modelling

state by modal logic for example.

A couple of approaches|including our own|follows a very general, common integration

scheme. They formulate a set of inference rules for an object description language or object

logic. Depending on the applied rules and logic this may result in a deductive object-oriented

database (e. g. [KLW90]) or in a LP language in the Prolog tradition (e. g. Login [AKN86],

LIFE [AKP91].)

This report shows how a resolution procedure for the full feature logic including disjunction

and negation ([Smol92]) works. We then show some preliminary concepts for a LP language

�a la Prolog based on this resolution procedure.

The di�erence to other approaches which follow the same integration scheme results from

the applied object logic. The terms of the feature logic constitute a Boolean algebra, the

�
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feature term algebra. Since clauses may be represented as implications in feature logic they

are feature terms as well. Hence, object level (i. e. terms) and meta level (i. e. formulas)

coincide. In contrast to other approaches which just exchange the underlying term universe

we reformulate the resolution algorithm within the object logic and discard the predicate

calculus completely.

A couple of advantages results from this method. First, an object logic as expressive as

feature logic eases the description of complex objects. Second, feature resolution answers

not only the questions explicitly posed by a query. It also yields information which is not

directly related to the query but also relevant to the user. Third, the equivalence of object

and meta level results in a more natural formulation of meta-information. Consequently,

such generic information may easily be used during deduction.

In the sequel we introduce feature logic by means of examples and sketch its application

to software engineering within the NORA project. For a formal treatment see [Fisc93].

Section 4 deals with a modi�ed resolution algorithm. We then take care of the problem

that this \na��ve" modi�cation does not preserve the closed world assumption and show

�nally how inheritance �ts into this framework.

2 Feature Logic by Examples

Feature logic is an extension of predicate calculus. Its roots lie in computational linguis-

tics where it is applied in uni�cation-based grammar formalisms (see [Kay79]), knowledge

representation (frame-based languages), and logic programming.

Features are (slot, value)-pairs which are considered to be partial object descriptions. A

term

[os:msdos]

consisting of a single feature is thus interpreted as an object whose os-property has the value

msdos. No other properties of this object are known. Using the operators of propositional

calculus we can combine features and simple values to complex object descriptions. A

conjunction of feature terms yields a list of properties which hold simultaneously. Thus

[os:msdos, arch:486]

describes an object whose os- and arch-properties are known. Similarly, a disjunction

describes a list of alternative properties or values where at least one of the alternatives

holds. So

farch:386, arch:486g

describes all 386-based and 486-based systems. Variables denote sets of ground instances.

As usual, they are capitalized.

There exist two special feature terms, top, represented as > or [], and bottom, represented

as ? or fg. Top denotes no speci�c or void information. It may be interpreted as an empty

conjunction.The bottom element indicates inconsistent information. Inconsistency results

from a property of features called functionality. It roughly says that each property of an

object can have just one, unique value.
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Let us for example assume that msdos and bsd are di�erent atomic values. Then the term

[os:msdos, os:bsd]

is inconsistent. In other words, there exists no object which matches this partial description,

no matter which other properties it might have.

Exploiting a close resemblance to Boolean algebra we also use u for conjunction, t for

disjunction, and : for negation. We then inductively de�ne the set F

�(X)

of all feature

terms over a �xed set F of feature symbols, a �xed set 
 of operator symbols, and a set X

of variables as follows:

� T


(X)

� F

�(X)

, (ordinary terms)

� p : t 2 F

�(X)

8p 2 F; t 2 F

�(X)

, (features)

� t

1

u t
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(logical connectives)
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�(X)
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The feature terms do not constitute a 
at universe but are ordered by subsumption. Sub-

sumption (denoted by v) combines the notions of instantiation and extension and orders

terms by the amount of information they represent. A more general term subsumes a more

speci�c. That is, t

1

subsumes t

2

either if t

2

is an instance of t

1

or if t

2

\has more" slots than

t

1

. We have for example:

[os:msdos, arch:486] v [os:msdos] v [os:X]

Subsumption is de�ned by the following relation:

� �(t) v t i� t 2 T


(X)

�X
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; x 2 X
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v t

1
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1
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Let v

�

be the transitive, re
exive closure of v. We say that t

1

subsumes t

2

i� t

2

v

�

t

1

. For

the following, we will abbreviate v

�

by v.

Subsumption may be used to explain the meaning of a feature term more formally. Let F

C

�

denote the set of conjunctive ground terms, i. e. the set of all terms which contain neither

disjunction nor negation nor variables. A feature term t then represents all terms in F

C

�

which are subsumed by t, i. e.

[[ t ]] = ft

0

2 F

C

�

j t

0

v tg

This interpretation re
ects the idea that feature terms are partial object descriptions. Since

we do not know anything about the aspects not mentioned explicitly we consider all possible

extensions via subsumption. Thus the interpretation of a term
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[os:msdos, arch:486]

which may denote a compiler

[os:msdos, arch:486, language:modula2]

as well as an actual computer

[os:msdos, arch:486, graphic:multicolor]

contains both extensions, compiler and computer.

The central operation on feature terms is the uni�cation of two terms. Its purpose is to

combine the partial descriptions given by the operands into a new, more speci�c description.

E. g. the uni�cation of two component descriptions

[arch:386, os:fbsd,sysv,aixg, lang:modula2]

and

[arch:X, os:fmsdos,mvs,aixg, target arch:X]

yields a description of the resulting system architecture:

[arch:386, os:aix, lang:modula2, target arch:386].

Uni�cation may also be explained in terms of subsumption. A uni�er is a term which is

subsumed by both operands. Since ? v t for all t the uni�er always exists but we will call

two terms uni�able if their uni�er is not ?. A term t is called most general uni�er of t

1

and

t

2

or mgu(t

1

; t

2

) if it subsumes any other uni�er of t

1

and t

2

. Apart from variable renaming

and simpli�cations, feature uni�cation is unitary. I. e. for each pair of feature terms just

one mgu exists.

We now have introduced all concepts which are necessary to formulate a resolution algorithm

for feature logic.

3 An overview of NORA

The work described here originated in the context of software engineering and is part of

the NORA

1

project. Its goal is the development of inference-based tools for software-

engineering. We thus try to apply techniques from automated deduction to \real world"

problems.

NORA consists

2

of a network of independent agents which are placed around a library of

reusable components. Agents are specialists for tasks like

� interface control and checking [GS93],

� component retrieval, or

� con�guration management.

1

NORA is NO Real Acronym.

2

See [SZ93] for a detailed description of NORA's architecture, [SGS91] for a discussion of the general

ideas.
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The current implementation focusses on Modula-2 but NORA is intended to be language

independent. Language-speci�c information is just an additional parameter for agents.

Throughout this project we apply feature logic as a means for knowledge representation

and inter-agent communication as the following scenario illustrates.

� The interface agent infers an interface description for component that is used but not

declared, for example

[push:proc(X,int),

top :fproc(X,int), proc(Y,Z)g].

� This description is extended by control information

[search-for:[interface:[...]]]

and|via a central dispatcher|sent to the component retrieval.

� The retrieval agent checks the library against the interface description and �nds a list

of matching components. This list is sent to an interactive variant editor.

� Finally the user may select one implementation, based on the provided interface and

additional component properties.

The coinciding representation of data and meta-data (i. e. control information) facilitates

meta-reasoning. Thus, even control tasks like message dispatching can be done uni�cation-

based, taking into account an arbitrary network of agents. This in turn allows a dynamic

reorganization and extension of the agent network. Hence, NORA can easily be adopted to

new tasks.

4 Feature Resolution

We now show how resolution translates into feature logic. The algorithm may at �rst remain

basically unchanged. Only some minor changes are necessary to cope with the new term

structure. Of course, the uni�cation procedure is exchanged.

As already mentioned, implications in feature logic, e. g.

[mood:happy] :- [likes:X, got:X].

serve as clauses. The meaning of such an implication is given by subsumption. Any term

which is subsumed by the premise is also subsumed by the conclusion. We may thus infer

from

[name:"Peter", likes:ice, got:ice]

that Peter is happy, i. e.:

[name:"Peter", mood:happy, likes:ice, got:ice].

A program PRG is considered to be the disjunction of all its clauses, i. e. PRG =

t

C

i

.

Obviously, PRG is also a feature term. A goal may consist of several subgoals which are
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connected by conjunctions, i. e. G =

u

G

i

. As usual we then try to show that the program

and the negated goal are inconsistent, PRG u:G

:

= ?. That is, we try to derive the bottom

element which clearly is the equivalent of the empty clause.

Each deduction step results in a state (:[G

1

; : : : ; G

n

]; R), a feature term tuple. Its �rst

component is a conjunction of the remaining intermediate goals G

i

. The second component

is the (intermediate) result R. Since feature uni�ers are terms and cannot be replaced

by substitutions, we have to resort to terms to collect the result. The initial state of the

algorithm is (:G;>).

A resolution step takes as input a state

(:[G

1

; : : : ; G

n

]; R)

and an appropriate clause

P:- Q

1

u : : :u Q

m

.

We assume that P is uni�able with some subgoal, say P u G

1

= T 6= ?. As usual, G

1

is

replaced by the body of the clause. The result and each remaining goal are then uni�ed

with T .

3

Thus, the next state is given by

(:[T u Q

1

; : : : ; T u Q

m

; T u G

2

; : : : ; T u G

n

]; T uR).

As usual, we have to backtrack if there is no appropriate clause. Additionally, a proof

attempt fails prematurely if the state is of the form (:[G

1

; : : : ; G

k

];?). That is, we still

have goals to resolve but the intermediate result is already inconsistent. This situation

arises when the program contains inconsistent information.

The proof is completed if we succeed in deriving the bottom element, that is to reach a state

(:?; R) where ? is the single remaining goal. Then R is a consequence of the program.

Since uni�cation is monotone with respect to subsumption, R is also subsumed by the initial

goal, R v G.

Figure 1 shows an example program in feature logic. The numbers in parentheses are only

for reference. It consists solely of facts,

4

rules, and (type) declarations like

grade = fa,b,c,d,eg.

We temporarily consider them as mere constant declarations. Thus, each occurrence of

the identi�er grade will be replaced by the term fa,b,c,d,eg. Their real purpose will be

shown in section 5. Any \real program" would of course contain some of the usual non-

logical constructs as the cut or expression evaluation.

5

We will however concentrate on the

logical constructs.

We may now, for example, ask for the names of happy people and submit the query

? [name:X, mood:happy].

to an interpreter. Applying the above abbreviations we have

G

1

= [name:X]

3

Of course, the uni�cations need not to take place immediately but may be deferred until we try to resolve

that goal or complete the deduction.

4

We adopt the usual convention that facts are considered to be implications with an empty premise.

5

Our experimental implementation FRoM supports cut and arithmetics.

6



(1) grade = {a,b,c,d,e}.

(2) goodgrade = {a,b}.

(3) badgrade = {c,d,e}.

(4) goodthing = goodgrade.

(5) [name: "Peter", got: c, likes: [name: "Mary"]].

(6) [name: "Paul", got: e].

(7) [name: "Mary", got: a].

(8) [mood: happy] :- [likes: X, got: X].

(9) [mood: happy] :- [likes: [got: goodthing]].

(10) [likes: goodthing].

Figure 1: A simple program

and

G

2

= [mood:happy].

To prove G

1

, the interpreter scans the program top-down. Fact (5) is suitable and we get

P = R = [name:"Peter", got:c, likes:[name:"Mary"]]

and thus Peter's existence as �rst intermediate result. It remains to show that he is happy.

Rule (8) is appropriate but fails in the next step since the interpreter cannot verify that

Peter got what he likes. Thus, we have to backtrack and check out rule (9). We replace

G

1

u P by the term

[name:"Peter", mood:happy, got:c,

likes:[name:"Mary", got:goodthing]].

The single subterm not yet veri�ed is

[name:"Mary", got:goodthing]

which yields our next subgoal. We have to demonstrate that Mary got a goodthing. Since

goodthing via goodgrade is an abbreviation for fa, bg, fact (7) su�ces. Our �rst result

is thus

[name:"Peter", mood:happy, got:c, likes:[name:"Mary", got:a]].

The interpreter then backtracks and tries to prove G

1

applying fact (6). But neither rule

(8) nor rule (9) apply for Paul. So the interpreter backtracks again and uses the next fact

(7) to show G

1

. By rules (8) and (10) it then infers that Mary is happy, too, because she

got a goodthing which everyone likes:

[name:"Mary", mood:happy, got:a, likes:a].

The query is then answered since the example program contains no other appropriate clause.
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5 On the closed world assumption

In this section we are going to settle the question when a clause is suitable to resolve a

goal. According to Prolog we might expect that uni�ability of the goal and the clause head

su�ces. However, due to the accumulating behavior of feature uni�cation, this yields some

at least unexpected results.

Suppose a program consisting of the single fact

[name:"John", age:25].

The query

? [name:X].

then yields

[name:"John", age:25]

as expected whereas we might be astonished about the result of

? [name:X, mood:happy].

Instead of returning with no answer the interpreter readily infers that John is happy:

[name:"John", age:25, mood:happy].

This obviously violates a kind of closed world assumption. The program itself gives no

particular reason to assume that John is happy. In general, it gives no hint about John's

mood at all. This behavior results from a property of feature uni�cation. The second query

introduces a \prejudice" or assumption into the deduction process, namely the mood:happy-

feature. It is no consequence

6

of the program but neither it is a contradiction. Since feature

uni�cation accumulates information until a contradiction appears, the resolution fails to

detect that mood:happy is an assumption and just echoes it back.

In a third query,

? [name:"Joe", mood:happy].

however, the contradiction occurs early enough and thus inhibits the assumption from prop-

agating to the answer. We thus get the expected result.

We inhibit the introduction of assumptions by imposing a type discipline on the applicable

rules. Suppose a (negated) goal G and a clause head P . P is applicable if its type is a

subtype of G's type. This is a suitable generalization of the usual claim that goal and clause

head are uni�able and complementary literals. In our setting, we demand that P and G are

complementary terms, i. e.

P u :G = ?

) [[P ]] \ [[:G]] = ;

) [[P ]] \ (F

C

�

� [[G]]) = ;

) [[P ]] � [[G]]

) P v G

6

Consequence in an informal meaning.
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and thus get the above type restriction.

To incorporate such a type discipline into programs we need the type de�nitions. Types

are represented by type terms. They closely resemble feature terms but are built on top of

another set of operator symbols called sorts or basic types . Replacing each sort by the set

of its instances yields all instances of a type.

Thus, the typed equivalent of the above example is

person = [name:string, age:int].

person[name:"John", age:25].

Since subtyping is subsumption of type terms we can easily see that

[name:string, age:int] 6v [name:string, mood:moodtype]

and thus both, the second and third query produce no result.

6 Inheritance

We are now going to deal with inheritance which|besides objects|is usually considered

to be one of the key concepts of object-oriented programming. Despite its importance,

inheritance has no de�nition generally agreed upon. In our opinion, inheritance results

from two simpler concepts, classi�cation and delegation.

Classi�cation orders objects into a usually hierarchical structure. All equivalent (w. r. t.

classi�cation) objects form a class. It thus covers the taxonomic aspect of inheritance.

Delegation denotes the mechanism to pass a method invocation to another object or class.

It thus allows di�erent classes to share method implementations and facilitates reuse.

The combination of both concepts into a new one, inheritance, ensures a consistent and clean

system structure. Delegation may only take place along the lines given by classi�cation:

only more speci�c objects may delegate method calls to objects of more general classes.

Because classi�cation takes the implemented methods into account success of delegation

may be checked statically.

In our setting a class comprises a type de�nition, all known facts of that type (instances)

and all rules whose head is of that type (methods), e. g.

class person = [name:string, age:int]

instances [name:"John", age:25].

Since feature logic originates in knowledge representation, the taxonomic aspect of inher-

itance naturally translates into our framework. Single inheritance is just subtyping as for

example in

class student = person u [subject:string].

This de�nition extends person by a subject-feature and thus de�nes student as a subtype

of person. This mechanism naturally extends to multiple inheritance if applied to di�erent

named types:

class foreigner = person u [nation:string]

class foreign student = foreigner u student
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The delegation behavior of inheritance is much harder to model. We have seen in the last

section that a rule (i. e. method) is applicable only if it is subsumed by the goal to be

resolved. Thus, delegation would proceed in the wrong direction, that is upwards. A more

special method is inherited by a more general object.

Consequently, we need another concept to model inheritance right. This concept must

respect the closed world assumption and thus be compatible with our type discipline.

Our solution is inspired by the polymorphic types and functions of functional languages.

Similarly, we use type schemes . A type scheme is a type de�nition which contains a free

variable or type parameter . A scheme like

class moody(X v person) = X u [mood:fhappy,angry,sadg]

may be considered to be a polymorphic class de�nition. The type parameter is instantiated

along the lines of the taxonomic hierarchy. This scheme is thus expanded to e. g.

class moody student = [name:string, age:int, subject:string,

mood:fhappy,angry,sadg]

Since the instantiation of the type variables may be restricted to a part of the hierarchy (in

this example to person and its subtypes) we actually have some kind of bounded polymor-

phism.

A method scheme is a method for a type scheme. That is, its clause head has the scheme

type as for example in

moody(X v person) u [mood:happy] :- X u [likes:[got:goodthing]].

Method schemes are expanded in the same way as type schemes. Thus, after expansion this

rule reads as

moody student u [mood:happy] :- student u [likes:[got:goodthing]].

This ensures that an appropriate rule exists for each type which specializes the type param-

eter, i. e. person. Hence, the method is correctly inherited.

7 Conclusions

We have shown how resolution translates into feature logic, an expressive object logic.

Since its terms constitute a Boolean algebra, predicate calculus becomes redundant and is

discarded. Slots then take the role of the predicate symbols. We have demonstrated that a

straightforward translation of the resolution algorithm violates a closed world assumption

and we have introduced a type discipline which solves this problem. Uni�ability and type

constraints together guide the selection of applicable rules. Finally, we have integrated

inheritance into that framework.

Our e�orts yield a language which integrates logic programming and object-oriented pro-

gramming. To summarize (and to contribute a new slogan), it can be characterized by

inheritance = subtyping + bounded polymorphism.
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A prototypical implementation called FRoM is currently in progress [Brau93].

Our �rst intended application of the feature resolution is an enhanced make facility for

maintaining large software systems. It will be able to cope with incomplete and ambiguous

information. This will ease the construction of multi-version systems.

We currently investigate the relations between our type structure and that of Haskell

[HJW92, NS91]. In Haskell, polymorphism may be combined with overloading. The func-

tions introduce equivalences on types called type classes. Type classes and type templates

over disjunctive types seem to be closely related.

Up to now, we have just transplanted the syntax-driven resolution algorithm into a new

logical structure. Another crucial point is thus an appropriate de�nition of entailment.

This also includes further investigations about the relation between inheritance and the

existential queries. The work of Smolka and Treinen [ST92] seems to be a good starting

point.
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