
VCR: A VDM-based software component retrieval

tool

B. Fischer M. Kievernagel W. Struckmann

TU Braunschweig, Abteilung f�ur Softwaretechnologie

Gau�stra�e 17, D-38092 Braunschweig, Germany

ffisch,mkiever,struckg@ips.cs.tu-bs.de

Abstract

We present a tool which allows implicit VDM speci�cations to be used as

search keys for the retrieval of software components. A preprocessing phase

utilizes signature matching to �lter promising candidates out of a component

library. The actual speci�cation matching phase builds proof obligations from

the speci�cations of key and candidates and feeds them into a theorem prover.

Validated obligations denote matching components. First experiments clearly

demonstrate the feasibility of this approach. We thus get a high-precision

retrieval tool which helps programmers in locating components which exactly

match their needs.

Keywords: formal methods, software component retrieval, signature match-

ing, speci�cation matching, theorem proving, model searching.

1 Introduction

E�ective software component retrieval methods play a key role in reuse. Most meth-

ods grew out of classical information retrieval (e. g. [11, 8]) but recently semantic-

based methods have gained more attention.

As opposed to the former, which rely on an external classi�cation scheme, the

latter use semantic information which is intrinsic to the components like for example

type schemes [12, 14] or axiomatic speci�cations [13]. Such semantic-based methods

also allow the automatic addition of components to a library and do not require the

overhead of manual classi�cation of most text-based methods.

Using type schemes as search keys (also called signature matching) is well un-

derstood, but its application has been restricted to functional languages. Work on

speci�cations as search keys is, however, much rarer. In this paper we show how

implicit VDM speci�cations may be used as search keys for the retrieval of software

components. Figure 1 sketches our general concept. It is based on a large software

component library. The components are implemented in some imperative language

and annotated with implicit VDM speci�cations.

Signature matching

Specification matching

Type signature

VDM specification

type(k) =?
E type(c)

pre(c)

post(k)

=>?

=>?post(c)

pre(k)

Component library C

type(k)

pre(k), post(k)

Search key k

for each c in C:
type(c), pre(c), post(c)

pre(k)
V

Figure 1: Search concept

Our test library [7] consists of about 50 modules implementing several variants

of typical abstract data types like stacks, queues, graphs, and trees using generic

items. It provides approx. 1000 procedures with 120 di�erent type signatures. Since

the four most frequent signatures already cover a third of the procedures, signature

matching alone is not su�cient to identify a procedure adequately.

Remaining components pass through further �lters which match them against

parts of the key. Figure 1 depicts our speci�cation matching program as second

�lter. It builds proof obligations from the pre- and postconditions of the search key

and the components and feeds them into a theorem prover. Each validated pair

denotes a match.

The successive �ltering of components o�ers two main advantages. It allows free

combination of di�erent retrieval methods|including text-based methods. More-

over, since intermediate results can be inspected at every stage, the overall running

time is not critical to the performance of the tool. As we will show, results of

acceptable precision are ready for inspection early in the process.

This concept has been implemented in VCR|a VDM-based Component Re-

trieval tool. It is a high-precision retrieval tool which helps programmers in locat-

ing components which exactly match their needs. VCR has been developed in the

NORA/HAMMR-project, which is part of the inference-based software development

environment NORA[16, 3, 6].

2 Search keys and signature matching

Figure 1 has already sketched the main parts of VCR. Since speci�cation matching

and library organization will be discussed in subsequent sections, we will concentrate

here on search keys and signature matching.

The search keys, through which a user mainly communicates with VCR, consist

of a type signature and a speci�cation, as the example of a push operation for stacks

shows:

PROCEDURE x(i:I, s:S) : S

pre true

post s = tl x and i = hd x

The type signature is essentially a Modula-2 type de�nition extended by type vari-

ables (I and S) to abstract naming of types. The speci�cation is written in VDM-SL

[2], but some naming conventions are applied to refer to parameters and result.

The main characteristic of signature matching is the equivalence E on types.

Some equational theories have been investigated for functional languages [12, 14, 13]

to increase recall, i. e. the number of interesting objects found (see also [15]). These

include for example axioms to handle currying and di�erent argument orders. We

extended this to cover imperative features like VAR-parameters as well. Thus, VCR is

able to match the procedure Push(VAR st:STACK; it:ITEM) against the sample

key.

Besides its use as a preprocessor signature matching is also necessary in order

to identify corresponding variables in the speci�cations. The actual speci�cation of

Push looks like this:

operations Push (st : Stack; it : Item) res : Stack

pre true

post res = [it] ^ st

Hence, the names st, it and res have to be bound to s, i and x in the key, respectively.

The proof obligations pre(k)) pre(c) and pre(k) ^ post(c)) post(k) express

that a candidate component c matches the given search key k i� it simultaneously

has a weaker precondition and a stronger postcondition than the key. The special

form of the second condition additionally allows to match components realizing a

less partial function than the key. In other words, any found component is ready

\to be plugged in" since it requires less than speci�ed but grants more.

3 Speci�cation matching

In this section we will explain how VCR checks a speci�cation against the �ltered

library components. The crucial step during this phase is to employ some kind of

proof procedure to check the resulting proof obligations. We decided not to hard-wire

a special proof procedure for VDM but to integrate the general purpose theorem

prover OTTER[10] and the associated model �nder anldp[9]. OTTER is based

on the resolution principle and can handle formulas of the non-sorted �rst order

fragment of predicate calculus with equality. This design eases experimentation

with the prover and also allows us to replace it, either by a more advanced one or

even by a specially tailored proof procedure.

We divided speci�cation matching into four major steps as shown in �gure 2.

The translation step produces the sequence of proof obligations from the key and

the type matched components and turns these into OTTER syntax. It is based on

a multiple entry parser for VDM-SL, i.e. it is also able to parse single conditions.

pre(k)

post(k)

type matched

components

pre(c)

post(c)
Translation to OTTER

pre(k) => pre(c)

OTTER (Theorem Prover)

Problem splitting

Supply axioms

Set options

Construction
of OTTER
input files

Check in small model
(anldp)

pre(k) post(c)
=> post(k)

V

Figure 2: Speci�cation matching

The second step purges obligations which can easily be refuted by checking their

validity in a small fragment of the VDM-axiomatization. Its basic idea is to check

whether all assignments of small integers and small lists, resp., to program variables

evaluate the obligations to true. Obviously, this is a prerequisite for the obligations

to be provable in the full theory. The �lter thus extends each obligation by an axiom

set for integers and lists which has exactly one �nite model. anldp then tries to �nd

this designated model using a modi�ed �rst-order Davis-Putnam procedure (i. e.

enumeration of all �nite models.) If this fails the component is rejected. Otherwise,

since this �lter is not sound, the validity in the full theory still has to be tested.

The third step creates the problem description for OTTER and the full theory.

First the problems are split into independent subproblems in order to reduce the

search space. This is done by transforming the formula into disjunctive normal form

and combining every set of disjunctions with common variables into one subproblem.

Another reduction of the search space stems from the fact that we do not supply

each problem with the complete axiomatization of the full theory, but axiomatize

the problems independently, i.e. link them dynamically with an appropriate set of

axioms. The complete axiomatization consists of about 120 axioms and lemmata

and is based on [1] for sequences and on our earlier work in automatic program

veri�cation [5, 4] for arithmetic. The problems presented in this paper needed up

to 25 axioms from this set.

To complete the problem descriptions some options for OTTER have to be set

accordingly. Those regarding inference rules, especially the handling of equality,

vary with the chosen axiomatization, while some limits, for example the number of

demodulations per inference, vary with respective size properties of the problem.

Finally, OTTER is run on the generated problems and its output is analyzed.

An obligation denotes a match i� each of its split parts have been proven. The

matched components|�nal or intermediate results| are represented by their loca-

tion (module) and their name.

Our graphical user interface (see �gure 3) reects the idea of successive �ltering.

Additionally, inspectors grant easy access to components (VDM-SL speci�cation

and Modula-2 code) in intermediate results. This �lter-inspector-chain may easily

be customized by the user through an icon pad. The con�guration displayed below

corresponds to the sequence of �lters described in this paper and the picture is taken

from experiment 1 of the next section. The left part of the window is used to enter

the three parts of the search key while the right part displays the �nal retrieval

results.

Figure 3: Graphical user interface

The objective of the graphical user interface is to hide all details of prover usage

and VCR's internal structure from a user. The knowledge necessary for its use

is thus restricted to the speci�cation language (VDM-SL) and the target language

(Modula-2), which are prerequisites, anyway.

4 Practical experience

The experiments reported here are based on about half of Lins' library. We have

speci�ed all list-like structures from singly-linked lists to priority queues and deques

and the basic set-like data types set and bag. All speci�cations are based on the

structure of the Modula-2 implementation. We represent singly-linked structures

and arrays as VDM-sequences. The elementary types and the other structured

types are represented in VDM by their nearest counterpart.

The experiments described below used a rather liberal type equality relation

for signature matching. It creates a name binding as long as all parts of the type

key can also be found in the components' type. Type matched components are

purged automatically whenever the name binding is insu�cient to build the proof

obligations due to missing names in the key.

As already noted, the model checker tests the obligations in �nite models. We

have experimented with di�erent sizes and have obtained good results using a frag-

ment of the full theory only containing the objects nul and one = suc(nul) as

integers, nil and lnul = cons(nul,nil) as lists and inc denoting illegal terms.

We selected axioms and options for OTTER in a very strict way. In our experi-

ence larger axiom sets and options led to search spaces in which OTTER was easily

lost. Consequently, a proof for valid obligations may fail. But if this happens the

user can always rerun this �lter with more generous options.

The following table displays the �ltering e�ect of the three phases of VCR. The

left column gives a short description of the search key. The columns for the type

matcher and the model checker give counts for the successfully matched procedures

and the modules in which these are contained. The last column gives the results of

the respective OTTER runs which are either a successful proof (runtime in seconds

1

)

or there was no proof within a short time limit for a valid proof obligation (np+)

resp. an invalid proof obligation (np-).

description sig. match model check OTTER runs

1 Insert at head of seq. 25=14 7=4 4� 2s=3� np-

2 Seq. split at element 1=1 | np+ (48s)

3 Seq. split at position 1=1 1=1 1s

4 Member?-predicate 3=3 3=3 3� np+

5 Position of element in seq. 9=9 9=9 9� 1s

6 Remove from front of seq. 51=20 6=3 6� 2s

7 Remove from back of seq. 51=20 6=3 6� np-

1

All times were measured on a SPARC ELC-10.

Except for OTTER, there are no runtimes included in this table because some

syntax transformations and parts of the process control are not yet fully automated.

However, the signature matching �lter takes about 2{3 seconds for the whole library

depending on the generality of the type key and the number of matching components.

The model checker takes about 2{4 seconds per proof obligation varying with their

complexity. This time could be drastically reduced by a specialized program because

anldp needs 1.75 seconds to �nd the intended model from the axioms of the small

theory alone.

Most search keys only produce easy proof obligations which OTTER proves in a

few seconds each. Experiment 4 creates obligations for which it fails to �nd a proof

but at least the model checker successfully shows their validity in the small theory.

Another search key that caused some problems for OTTER and the model checker

is the "element-split" of experiment 2. anldp fails here, because it cannot handle

skolem functions of arity larger than four. OTTER is able to �nd a proof of the

resulting obligation but clearly exceeds the given time limit.

We will now show the speci�cation of the procedure Split and the given search

key as an example of a more complex retrieval experiment with an under-speci�ed

key.

Split(AList : List, AnItem : Item, ToList : List) OutLists : List � List

post ((8i 2 inds AList � AList(i) 6= AnItem)

) OutLists = mk-(AList; []))

^ (9i 2 inds AList � (8j 2 inds AList � (j < i) AList(j) 6= AnItem)

^ (j = i) AList(i) = AnItem))

) OutLists =mk-(AList(1; : : : ; i�1); AList(i; : : : ;len AList)))

The procedure Split leaves the input lists intact if the given item is not found

in AList and otherwise splits AList at the leftmost occurrence of AnItem whereas

the search key only speci�es the result for the case that AnItem is present in AList.

PROCEDURE x (VAR l1 : LIST; it : ITEM; VAR l2 : LIST)

post 9m 2 inds l1 � (8n 2 inds l1 � (m > n) l1(n) 6= it)

^ (m = n) l1(m) = it))

) (l1 = x1 ^ x3 ^ len x1 = m� 1)

The construction phase of the speci�cation matcher selects 12 axioms, which are

given in addition to the obligation to OTTER. Half of the axioms are not necessary

to complete the proof and especially one of them leads to a much increased search

space. If the axioms are selected by hand, OTTER is able to �nd a proof within

two seconds.

Finally, we want to comment on the adequacy of the found procedures. In ex-

periments 2{5 all relevant procedures are found though some of them cannot be

proved automatically to match the requirements, because speci�cation matching is

restricted of course by the undecidability of the problem in general and by the prov-

ing power of OTTER in particular. For the other experiments there are additional

procedures in the double-ended-queue (deque) modules. These are not found by the

signature matcher because the implementation uses an extra enumeration parameter

to distinguish operations at the front and the back of a deque.

The following table gives the classical retrieval measures of recall (R = retrieved

relevant components / all relevant components) and precision (P = retrieved relevant

components / all retrieved components) for the experiments at each �lter (average-2

is computed only from non-empty results.)

problem sig. match model check spec. match best �lter

R P R P R P R P

1 0:67 0:16 0:67 0:57 0:67 1 0:67 1

2 1 1 0 � 0 � 1 1

3 1 1 1 1 1 1 1 1

4 1 1 1 1 0 � 1 1

5 1 1 1 1 1 1 1 1

6 0:75 0:12 0:75 1 0:75 1 0:75 1

7 0 0 0 0 0 � 0 0

average 0:77 0:61 0:63 0:65 0:49 0:57 0:77 0:86

average-2 0:90 0:71 0:88 0:91 0:85 1 0:90 1

The table shows that when signature matching produced a result of low precision

the model check and speci�cation matching �lters increased the precision to 1. And

for two-thirds of the experiments VCR succeeded in proving retrieved components

to ful�ll the requirements.

5 Conclusions

Our �rst practical experience con�rmed our approach. VCR is able to locate soft-

ware components via matching of implicit VDM speci�cations. The computational

e�ort, however, is high. But due to the concept of successive �lters, VCR is able to

present acceptable intermediate results in short time. A specialized replacement of

anldp will even lead to better results. Another point where improvement is surely

possible is the selection of axioms. Parts of an axiomatization can be used to rewrite

obligations into a normalized form, which will only need a reduced axiom set to be

proven.

Once VCR's integration is completed we will assess its e�ect on reuse in a large

a programming project. We expect to �nd some positive e�ects especially regarding

the \�tness" of retrieved components and consequently a further reduced need of

testing.

Acknowledgements

G. Snelting originally proposed the idea of NORA/HAMMR. C. Lindig designed parts of

the user interface, J. Rhiemeier implemented the VDM-SL parser, P. Heise and C. v. Grone

speci�ed parts of Lins' library, and E. Gode implemented the �rst version of the signature

matching.

M. Kievernagel and B. Fischer were supported by DFG, grants Sn11/1-2 and Sn11/2-2.

References

[1] J. C. Bicarregui, J. S. Fitzgerald, P. A. Lindsay, R. Moore, and B. Ritchie. Proof in VDM: A

Practitioner's Guide. FACIT series. Springer, Berlin, 1993.

[2] J. Dawes. The VDM-SL Reference Guide. Pitman, London, 1991.

[3] F.-J. Grosch and G. Snelting. Polymorphic components for monomorphic languages. In

R. Prieto-Diaz andW. B. Frakes, editors, Proc. of the 2nd International Workshop on Software

Reusability, pages 47{55, Lucca, Italy, Mar. 1993. IEEE Computer Society Press.

[4] B. Hohlfeld and W. Struckmann. Einf�uhrung in die Programmveri�kation. Reihe Informatik.

BI Wissenschaftsverlag, Mannheim/Leipzig/Wien/Z�urich, 1992.

[5] M. Kievernagel. Auswahl und Installation eines Beweissystems. Master's thesis, Technical

University of Braunschweig, Germany, Feb. 1990.

[6] M. Krone and G. Snelting. On the inference of con�guration structures from source code. In

Proc. 16th ICSE, pages 49{57. IEEE Computer Society Press, May 1994.

[7] C. Lins. The Modula-2 Software Component Library. Springer Compass International.

Springer, Berlin, 1989.

[8] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An information retrieval approach for auto-

matically constructing software libraries. IEEE TOSE, SE-17(8):800{813, 1991.

[9] W. W. McCune. A Davis-Putnam program and its application to �nite �rst-order model

search: Quasigroup existence problems. Technical report, Argonne National Laboratory,

1994. Draft.

[10] W. W. McCune. Otter 3.0 user's guide. Argonne National Laboratory Report ANL-94/6,

1994.

[11] R. Prieto-Diaz. Classifying software for reusability. IEEE Software, 4(1), Jan. 1987.

[12] M. Rittri. Retrieving library identi�ers via equational matching of types. In M. E. Stickel,

editor, Proc. 10th CADE, LNCS 449. Springer, July 1990.

[13] E. J. Rollins and J. M. Wing. Speci�cations as search keys for software libraries. In K. Fu-

rukawa, editor, Proc. 8th ICLP, pages 173{187, Paris, June 24-28 1991. MIT Press.

[14] C. Runciman and I. Toyn. Retrieving re-usable software components by polymorphic type.

In Proc. 4th FPCA, 1989.

[15] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,

New York, 1983.

[16] G. Snelting, B. Fischer, F.-J. Grosch, M. Kievernagel, and A. Zeller. Die inferenzbasierte

Softwareentwicklungsumgebung Nora. Informatik|Forschung und Entwicklung, 9(3):116{

131, Aug. 1994.

