
Synthesizing Certified Code

Michael Whalen†, Johann Schumann‡, and Bernd Fischer‡

†Department of Computer Science and Engineering
Univ. of Minnesota, Minneapolis, MN 55455

whalen@cs.umn.edu
‡RIACS / NASA Ames, Moffett Field, CA 94035

{schumann|fisch}@email.arc.nasa.gov

Abstract. Code certification is a lightweight approach for formally de-
monstrating software quality. Its basic idea is to require code producers
to provide formal proofs that their code satisfies certain quality prop-
erties. These proofs serve as certificates that can be checked indepen-
dently. Since code certification uses the same underlying technology as
program verification, it requires detailed annotations (e.g., loop invari-
ants) to make the proofs possible. However, manually adding annotations
to the code is time-consuming and error-prone.
We address this problem by combining code certification with automat-
ic program synthesis. Given a high-level specification, our approach si-
multaneously generates code and all annotations required to certify the
generated code. We describe a certification extension of AutoBayes,
a synthesis tool for automatically generating data analysis programs.
Based on built-in domain knowledge, proof annotations are added and
used to generate proof obligations that are discharged by the automated
theorem prover E-SETHEO. We demonstrate our approach by certifying
operator- and memory-safety on a data-classification program. For this
program, our approach was faster and more precise than PolySpace, a
commercial static analysis tool.
Keyword: automatic program synthesis, program verification, code cer-
tification, proof-carrying code, automated theorem proving.

1 Introduction

Code certification is a lightweight approach to formally demonstrate software
quality. It concentrates on aspects of software quality that can be defined and
formalized via properties, e.g., operator safety or memory safety. Its basic idea
is to require code producers to provide formal proofs that their code satisfies
these quality properties. The proofs serve as certificates which can be checked
independently, either by the code consumer or by certification authorities.

Code certification is an alternative to other, more established validation and
verification techniques. It is more formal than code inspection and can show
stronger properties than static analysis. In contrast to testing, code certification
demonstrates that the properties of interest hold for all possible execution paths
of the program. It also complements software model checking, which works on a

different set of properties (typically liveness properties such as absence of dead-
locks). Moreover, model checking does not produce explicit certificates: while
it can produce counter-examples if a property is violated, validity follows only
indirectly from the claim of an exhaustive search through the state space that
cannot be checked independently.

In essence, code certification is a more tractable version of traditional ax-
iomatic or Hoare-style program verification. It uses the same basic technology:
the program is annotated with an axiomatic specification, the annotated pro-
gram is fed into a verification condition generator (VCG) which produces a
series of proof obligations, the proof obligations are proven or discharged by
an automated theorem prover (ATP). The difference, however, is in the details:
the certified properties are much simpler and much more regular than full be-
havioral specifications. Both aspects are crucial: Since the properties are much
simpler, the resulting proof obligations are much simpler as well. Consequently,
discharging them is also much easier; in many cases, all proof obligations can
be shown fully automatically. Since the properties are much more regular, the
annotations can be derived schematically from an explicitly formulated safety
policy. Consequently, the specification effort—which can become overwhelming
in traditional verification—is also much smaller.

However, code certification shares not only the underlying technology with
Hoare-style program verification but also a fundamental limitation: in order to
certify non-trivial programs or non-trivial properties, auxiliary annotations (e.g.,
loop invariants) are required. Since these annotations describe program-specific
properties, the VCG cannot derive them automatically from the safety policy;
instead, they must be provided manually by the software designer. This severe-
ly limits the practical usability of current certification approaches like proof-
carrying code (PCC) [26].

In this paper we address this problem by combining code certification with
automatic code generation from high-level specifications. Our idea is to use the
high-level domain information “known” to the code generator to generate not
only code but also all annotations required to certify that code. We believe
that this idea is generally applicable to template-based code-generation systems
through embedding additional properties into code templates. We demonstrate
this embedding process for a particular program synthesis system, showing that
the system formalizes enough high-level domain knowledge to generate all nec-
essary annotations required to satisfy safety policies for complex programs. This
domain knowledge cannot be recovered from the program by a certifying compil-
er as used in PCC. We further illustrate that state-of-the-art automated theorem
provers can solve the verification conditions arising from the certification of such
automatically synthesized annotated code. Moreover, we demonstrate that our
approach can improve on conventional certification technology based on static
program analysis.

This work represents an important step towards our long-term goal of ex-
tending a program synthesis system such that all generated programs can be
certified completely automatically, thus relieving the users from having to anno-

tate their code. This combination of program synthesis and program verification
offers some unique benefits:

– It provides independent verification that automatically generated programs
are safe.

– It can certify properties that are too “low-level” to be practically verified by
the usual correct-by-construction arguments of the synthesis approaches.

– It can certify more complex properties and larger programs than certifying
compilers.

– It can be tailored to provide proofs that function as audit trails for spe-
cific properties that are required for safety-critical software by regulatory
agencies.

The remainder of the paper is organized as follows. In Section 2, we briefly
describe methods and techniques underlying our approach: property verification,
proof carrying code, and program synthesis. Section 3 contains a detailed archi-
tectural description of the certifying synthesizer. We specifically focus on how
the safety-policy is reflected in extended Hoare-rules and how the annotations
are produced and propagated during the synthesis process. We furthermore give
a short description of the automated prover E-Setheo and discuss results from
processing the generated verification conditions. Section 4 covers related work
and compares our approach to a conventional certification approach based on
static analysis techniques. In Section 5 we conclude and sketch out future work.

2 Background

2.1 Property Verification

Traditionally, program verification has focused on showing the functional equiv-
alence of (full) specification and implementation. However, this verification style
is very demanding, because of the involved specification and proof efforts, re-
spectively. Therefore, more recent approaches concentrate on showing specif-
ic properties that are nevertheless important for software safety. For example,
model checking has been used successfully to verify liveness and safety aspects
of distributed software systems [36]. We extend this property-oriented verifica-
tion style in two key aspects. First, we use automated theorem provers for full
first-order logic that do not require abstractions and that produce the necessary
“real” proofs that can be checked independently. Second, we investigate how this
approach can be extended towards a broader set of properties.

While many mechanisms and tools for verifying program properties have
been published, especially for distributed systems, relatively little attention has
been paid to the properties themselves. The related work in this area is usually
concerned with computer security [32]; we are interested in all “useful” proper-
ties. To help guide our research, we have created an initial taxonomy of verifiable
aspects of programs.

We first distinguish between functional and property-based verification. Func-
tional verification is necessary to show that a program correctly implements a

high-level specification. Typically, these proofs are performed by showing that
a program is equivalent to, or a refinement of, some higher-level specification.
Property-based verification, on the other hand, ensures that the programs have
desirable features (e.g., absence of certain runtime errors), but does not show
program correctness in the traditional sense. These properties are often much
simpler to verify than full functional correctness; however, functional verification
and property-based verification are not fundamentally different—in fact, many
of the properties are necessary to show functional correctness.

These properties can be grouped into four categories: safety, resource-limit,
liveness, and security properties. Safety properties prevent the program from
performing illegal or nonsensical operations. Within this category, we further
subdivide into five different aspects of safety:

Memory safety properties assert that all memory accesses involving arrays and
pointers are within their assigned bounds.

Type safety properties assert that a program is “well typed” according to a type
system defined for the language. This type system may correspond to the
standard type system for the language, or may enforce additional obliga-
tions, such as ensuring that all variables representing physical quantities
have correct and compatible units and dimensions [21].

Numeric safety properties assert that programs will perform arithmetic correct-
ly. Potential errors include: (1) using partial operators with arguments out-
side their defined domain (e.g., division by zero), (2) performing compu-
tations that yield results larger or smaller than are representable on the
computer (overflow/underflow), and (3) performing floating point operations
which cause an unacceptable loss of precision.

Exception handling properties ensure that all exceptions that can be thrown
within a program are handled within the program.

Environment compatibility properties ensure that a program is compatible with
its target environment. Compatibility constraints specify hardware, operat-
ing systems, and libraries necessary for safe execution. Parameter conven-
tions define constraints on program communication and invocation.

Resource limit properties check that the required resources (e.g., stack size)
for a computation are within some bound. Liveness/progress properties are used
to show that the program will eventually perform some required activity, or will
not be permanently blocked waiting for resources. Security properties prevent
a program from accidental or malicious tampering with the environment. Se-
curity policies regulate access to system resources, and are often enforced by
authentication procedures, which determine the identity of the program or user
involved.

Clearly, there is overlap between these categories; for example, many security
flaws are due to safety violations. Our list also includes many properties that
are difficult or impossible to automatically verify in the general case; we plan to
extend and clarify this taxonomy in future work. For this paper, we have chosen

to investigate two safety properties: array bounds checks and numeric partial
operator/function domain errors.

2.2 Proof-Carrying Code

Proof-carrying code [26, 1] is a certification approach especially suited for mobile
code. Many distributed systems (e.g., browsers, cellular phones) allow the user
to download executable code and run it on the local machine. If, however, the
origin of this code is unknown, or the source is not trustworthy, this poses a
considerable risk: the dynamically loaded code may not be compatible with the
current system status (e.g., operating system version, available resources), or the
code can destroy (on purpose or not) critical data.

The concept of proof-carrying code has been developed to address the prob-
lem of showing certain properties (i.e., a safety policy) efficiently at the time
when the software is downloaded. The developer of the software annotates the
program which is subsequently compiled into object-code using a certifying com-
piler. Such a compiler (e.g., Touchstone [6]) carries over the source code anno-
tations to the object-code level. A verification condition generator processes the
annotated object code together with the public safety policy and produces a large
number of proof obligations. If all of them are proven (by a theorem prover),
the safety policy holds for this program. However, since these activities are per-
formed by the producer, the provided proofs are not necessarily trustworthy.
Therefore, the annotated code and a compressed copy of the proofs are pack-
aged together and sent to the user. The user reconstructs the proof obligations
and uses a proof checker to ensure that the conditions match up with the proofs
as delivered with the software. Both the local VCG and the proof checker need
to be trusted in this approach. However, since a proof checker is much simpler in
its internal structure than a prover, it is simpler to design and implement it in a
correct and trustworthy manner. Furthermore, checking a proof is very efficient,
in stark contrast to finding the proof in the first place—which is usually a very
complex and time-consuming process.

A number of PCC-approaches have been developed, particularly focusing on
the compact and efficient representation of proofs (e.g., using LCF [26] or HOL
[1]). However, as mentioned earlier, all of these approaches are in practice re-
stricted to very simple properties. More intricate properties require the producer
of the program to provide elaborate annotations and to carry out complicated
formal proofs manually.

2.3 Program Synthesis

Automated program synthesis aims at automatically constructing executable
programs from high-level specifications. Although a variety of approaches ex-
ist [19], we will focus in this paper on a specific system, AutoBayes [11].
AutoBayes generates complex data analysis programs (currently up to 1200
lines of C++ code) from compact specifications. Throughout this paper, we will

use a simple but realistic classification example to introduce the application
domain and to describe the main features of the underlying synthesis process.

Assume our task is to analyze spectral data measurements, e.g., from a star.
Our instrument registers photons and their energy. All we know is that a photon
originates from one of M different sources which emit photons at different energy
levels. The energy of each photon is not defined sharply but described by a
normal distribution with a certain mean value and standard deviation. However,
we do not know the mean and standard deviation for each source, nor do we
know their relative strength (i.e., the percentage of photons coming from each
individual source). Figure 1 shows an example data set for M = 3 (see [4] for
the physical background).

A statistical model can be written down easily and in a compact way. For
the measurements x0, ..., xN−1 we know that each point is normal (Gaussian)
distributed around the mean value µ with a standard deviation σ for the class
(individual source) ci to which the photon belongs, i.e., xi ∼ N(µci

, σ2

ci
) These

class assignments ci and the relative class percentages φ are not known. All we
know is that all photons belong to one of the classes, i.e.,

∑M

i=1
φi = 1, and that

summing up the class assignments results in the desired percentages. These four
formulas comprise the core of the problem specification.

290.5

291

291.5

292

0 500 1000 1500 2000

bi
nd

in
g

en
er

gy
 [e

V
]

measurement no

data points

Fig. 1. Example spectral data for three sources (M = 3). The parameters are µ1 =
290.7, σ1 = 0.15, φ1 = 0.61, µ2 = 291.13, σ2 = 0.18, φ2 = 0.33, and µ3 = 291.55, σ3 =
0.21, φ3 = 0.06 (modeled after the spectrum of NH3 molecules; cf. [4])

AutoBayes takes a specification similar to the formulas above (a total of
19 lines including all declarations, see [11] for details) and generates executable
C++ code of roughly 380 lines (including comments but not annotations) in
less than a second on a 1000 MHz. SunBlade workstation. The implementation

requires an iterative numerical algorithm1 which approximates the values of the
desired variables µ, σ, and φ.

AutoBayes synthesizes code by exhaustive, layered application of schemas.
A schema consists of a program fragment with open slots and a set of applica-
bility conditions. The slots are filled in with code pieces by the synthesis sys-
tem calling schemas in a recursive way. The conditions constrain how the slots
can be filled; they must be proven to hold in the given specification before the
schema can be applied. Some of the schemas contain calls to symbolic equation
solvers, others contain entire skeletons of statistical or numerical algorithms.
By recursively invoking schemas and composing the resulting code fragments,
AutoBayes is able to automatically synthesize programs of considerable size
and internal complexity.

schema(max P (U |V) wrt V,Code fragment↑) :-
. . . (* applicability constraints *)

→ Code fragment =
begin
〈guess values for c[i]〉 (* Initialize *)
for i:=1 to N do for j:=1 to M do q[i,j] := 0;
for k:=1 to M do q[k,c[k]] := 1;
while-converging(V) do

〈 max P ({q, U}|V) wrt V 〉 (* M -step *)
q[i,j] := 〈. . .〉 (* E-step: calculate P (q |{U, V }) *)

end (* end while-converging *)
end

Fig. 2. EM-Schema (Fragment)

Let us consider the schema which is automatically selected as the core to
solve our example. This schema, presented in a Prolog notation in Figure 2
above, solves the task to estimate the desired parameters (φ, µ, σ in our example)
by maximizing their probability with respect to certain random variables (for a
detailed description of the statistical background see [12]).

This task description is provided as a formal input parameter to the schema
in Figure 2. The output parameter Code fragment↑ returns the synthesized code.
After checking that the schema can be applied, the parts of the EM-algorithm
are assembled. First, we generate a randomized initialization for the array q,
then the iteration code starts. As in most numerical optimization algorithms (cf.
[15, 29]), we update the local array q until we have reached our desired accuracy
(abbreviated as while-converging). The code fragments for the initialization
of q and to calculate the updates (M-Step and E-Step) are constructed by re-
cursively calling schemas on the respective subproblems. In Figure 2, these parts
are included in 〈. . .〉. Text set in typewriter font denotes code fragments in the
target language; underlined words (like max) are keywords from AutoBayes’s
specification language.

1 Currently, an EM (expectation maximization) algorithm is generated.

While we cannot present details of the synthesis process here, we want to
emphasize that the code is assembled from building blocks which are obtained by
symbolic computation or schema instantiation. The schemas clearly lay out the
domain knowledge and important design decisions. As we will see later on, they
can be extended in such a way that the annotations required for the certification
are also generated automatically.

2.4 Why Certify Synthesized Code?

Program synthesis systems are usually built on the notion of “correctness-by-
construction.” This means that the systems always produce code which correctly
implement the user’s specifications. Hence, the idea of explicitly certifying the
synthesized code appears to be redundant. However, in practice, the notion of
correctness-by-construction has two major problems which are mitigated by our
approach.

First, the correctness-by-construction argument relies on only a single
certificate—the synthesis proof. This proof is often extremely large and filled
with artifacts from the domain theory. However, regulatory agencies overseeing
the development of critical software systems describe very specific safety proper-
ties which need to be verified or tested [31]. Trying to extract the specific (sub-)
proofs of these properties is difficult, if they are at all captured by the synthesis
proof. Our approach allows a separation of proof concerns: any number of ex-
plicit and much smaller proofs can be generated, tailored towards the required
safety properties.

Second, the validity of correctness-by-construction hinges on the correctness
and consistency of the underlying synthesis engine and the domain theory. The
synthesis engine is concerned with assembling schemas in a way that satisfies
the constraints of the domain theory; thus, it ensures that the fragments of the
program are correctly assembled. However, the code included in or constructed
by the schemas for each fragment is not directly verified by the synthesis proof,
so coding errors that are contained in the domain theory may be propagated
through the synthesis process. Thus, users must in practice “trust” schemas
to produce correct code, without independent verification of correctness. For
safety/security sensitive code, e.g., for navigation/state estimation [39], this level
of trust is not acceptable. Our approach provides an automatic and independent
verification path for important properties of the generated code.

3 System Architecture

The architecture of our certifying synthesis system is somewhat similar to a
typical proof-carrying code architecture. However, since we are currently not
dealing with proof validation aspects, we only have three major building blocks
(see Figure 3): the synthesis system AutoBayes (which replaces the certify-
ing compiler), the verification condition generator Mops, and the automated

theorem prover E-Setheo. All system components used in certification will be
described in more detail below.

The system’s input is a statistical model which defines the data analysis task
as shown above. This specification need not be modified for certification—the
process is thus completely transparent to the user. AutoBayes then attempts to
synthesize code using the schemas described above. These schemas are extended
appropriately (cf. Section 3.3) to support the automatic generation of code anno-
tations. AutoBayes produces Modula-2 code2 which carries the annotations as
formal comments. Annotations and code are then processed by the verification
condition generator Mops. Its output is a set of proof obligations in first order
predicate logic which must be proven to show the desired properties. In order to
do so, a domain theory in form of an axiom set defining all operations and func-
tions in the proof tasks must be added to the formulas. Finally, these extended
proof obligations are fed into the automated theorem prover E-Setheo.

For our prototype implementation, we added several small “glue” modules
which convert the syntactical representation between all components. These are
implemented in lex/yacc, awk, and Unix shell sh.

forall I : int &
 asize(mu) = N
 and ...

E-SETHEO

Mops Verification CG
Safety
policy

Domain
theory

input specification

annotated Modula-2 code

first order logic

x ~ N(mu,sigma)
max pr(x | mu..

Annotation Propagation

AutoBayes
Synthesis System

FOR i:=1 TO N
 mu[i] := ...
(* POST ...

Fig. 3. AutoBayes system architecture, extended for code certification

3.1 Safety Policy

The first step in certification is to define precisely what constitutes safe behavior
for the programs. In our case, we must define notions of memory and operator
safety as predicates within a logic. Then a mechanism must be defined to trans-
form a program into a series of verification conditions that are valid if and only if
the safety properties are satisfied. In the sections below, we formulate the safety
properties and describe the mechanism for creating the verification conditions.

2 We extended AutoBayes to generate the Modula-2 code used by Mops. Usually,
AutoBayes synthesizes C++/C programs for Octave [25] and Matlab [23].

Hoare rules [40] form the foundation of our approach. Hoare rules are triples
of the form {P} C {Q} where C is a statement in an imperative program-
ming language, and P and Q are predicates. The statement acts as a predicate
transformer, that is, it describes how predicate P is transformed into predicate
Q by the execution of C. Our idea, following Dijkstra’s well-defined expression
predicate Def [8], is to strengthen the preconditions of the Hoare rules by adding
explicit memory- and operator-safety constraints. The rules for our policy are
shown in Figure 4.

Array Bounds Safety Policy To show array bounds safety, we need to define
variables within the assertion language that represent the notion of array bounds.
Given these variables, we can test that each subscript expression within a state-
ment is within the appropriate dimension for the array. More concretely, we
assume that given an array x of dimension n+1, all array dimensions 0 ≤ k ≤ n
have the lower bound zero, and a size that is represented by ASIZE(x, k). The
ASIZE(x, k) notation is used to denote the unique variable representing that
array size.

We can then determine what it means for an expression to be array-bounds
safe. Given an expression E, we say that it is array bounds safe if every ar-
ray subscript expression for variable x in dimension k is between zero and
ASIZE(x, k) − 1. To check, we define a function ArrayRefs(E) that returns
a set of pairs of the form (x, 〈e0, e1, . . . , en〉). Each pair describes an array
reference, where x is the array variable and 〈e0, e1, . . . , en〉 is the sequence of
subscript expressions used to access the array. Then, a safe array reference
SafeRef (x, 〈e0, e1, . . . , en〉) is:

SafeRef (x, 〈e0, e1, . . . , en〉) ≡ ∀a : 0..n • 0 ≤ ea < ASIZE(x, a)

From this predicate, we can define expression safety w.r.t. the array bounds
safety policy as follows:

SafeExprA(E) ≡ ∀(x, seq) ∈ ArrayRefs(E) • SafeRef (x, seq)

These two predicates state that, for each array reference, every subscript expres-
sion is within bounds.

Unfortunately, the SafeRef and SafeExprA predicates are higher-order, as
they quantify over expressions in the program syntax. Since ArrayRefs(E) yields
a finite set, we can expand these quantified predicates over variables and expres-
sions into a sequence of first-order predicates. For example, given the statement:

q[k, c[k]] := 1/v; (1)

SafeExprA(E) yields the following safety predicate, once expanded:

0 ≤ k ∧ k < ASIZE(q, 0) ∧ 0 ≤ c[k] ∧ c[k] < ASIZE(q, 1)∧

0 ≤ k ∧ k < ASIZE(c, 0)

By checking that all array subscripts are within bounds for each array ref-
erence for each expression, we can determine array bounds safety for the entire
program.

Operator Safety Policy To show operator safety, we only need to show that
all divisors are different from zero. All other partial operators, such as square
root, are implemented as standard library functions, and not as programming
language language constructs. The domain constraints on these functions are
enforced by the respective procedure pre- and post-conditions.

To check for zero divisors, a function divisors(E) is defined. This function
returns the set of subexpressions of an expression E that are used as divisors.
From this function, we can define expression safety with respect to the operator
safety policy as follows:

SafeExprO(E) ≡ ∀e ∈ divisors(E) • e 6= 0

So, given the statement (1), SafeExprO(E) yields the safety predicate v 6= 0,
once expanded.

Extended Hoare rules Given definitions for operator and array bounds safety
for expressions, we can extend the Hoare rules with respect to these policies.
First, we define SafeExpr(E) as:

SafeExpr(E) ≡ SafeExprA(E) ∧ SafeExprO(E)

Then the Hoare rules can be formulated as shown in Figure 4.
The first rule applies to array declarations. As described earlier, we create

a variable ASIZE(x, k) to refer to the size of array x at dimension k. The
declaration of an array is an assignment of values to these variables. The rule
works by replacing instances of ASIZE(x, k) in the postcondition of a statement
with the variable declaration expression. For example, given an array declaration

var c : array[nclasses] of REAL

and a postcondition ASIZE(x, 0) = nclasses, this rule generates the precondi-
tion nclasses = nclasses which is obviously true.

The second rule, assignment of scalars, is the same as the standard Hoare
assignment rule, except that it has a strengthened precondition that checks that
the assignment expression is safe w.r.t. our safety policies.

The third rule describes assignment of array cells. Unlike scalar assignment,
array cell assignment cannot be handled by simple substitution, because of the
possibility of aliasing of array cells. Instead, we think of the array as describing
a mapping function from cells to values. An assignment to a cell is an update
of the mapping function, written as x{(e0, e1, . . . , en) → e}. This approach is
the standard extension of the Hoare calculus to handle arrays and is described
fully in [22]. We strengthen the precondition of this rule to ensure that both the

Array Declaration:

P [e0/ASIZE(x, 0), . . . , en/ASIZE(x, n)]∧

SafeExpr(e0) ∧ SafeExpr(e1)∧

...

SafeExpr(en)

var x : array[e0, . . . , en] of Y {P}

Scalar Assignment: {P [e/x] ∧ SafeExpr(e)} x := e {P}

Array Assignment:

P [x{(e0, . . . , en) → e}]∧

SafeExpr(e)∧

SafeExpr(x[e0, . . . , en])

x[e0, . . . , en] := e {P}

Conditional Stmt:
{P ∧ b ∧ SafeExpr(b)} c {Q} (P ∧ ¬b ∧ SafeExpr(b) =⇒ Q)

{P ∧ SafeExpr(b)} if b then c {Q}

While Loop:
{P ∧ b ∧ SafeExpr(b)} c {P ∧ SafeExpr(b)}

{P ∧ SafeExpr(b)} while b do c {P ∧ ¬b ∧ SafeExpr(b)}

For Loop:

P ∧ e0 ≤ x ≤ e1

∧ SafeExpr(e0)

∧ SafeExpr(e1)

C

{

P [(x + 1)/x] ∧ SafeExpr(e0)

∧ SafeExpr(e1)

}

{

P [e0/x] ∧ SafeExpr(e0)

e0 ≤ e1 ∧ SafeExpr(e1)

}

for x := e0 to e1 do C

{

P [(e1 + 1)/x] ∧ SafeExpr(e0)

∧ SafeExpr(e1)

}

Sequence:
{P} s0 {R} {R} s1 {Q}

{P} s0; s1 {Q}

Rule of Conseq:
P ′ =⇒ P {P} C {Q} Q =⇒ Q′

{P ′} C {Q′}

Fig. 4. Hoare rules with safety policy extensions

subscript expressions in the left-hand side and the assignment expression are
safe.

The next three rules describe conditional and loop statements. They are
the same as the standard Hoare rules, with strengthened preconditions to show
that their expressions are safe. Finally, we define the standard Hoare rule of
consequence, which states that we can always legally strengthen the precondition
or weaken the postcondition of a statement. Soundness of all rules is obvious.

3.2 The Verification Condition Generator

In practical proof-carrying code approaches, the safety policy is hardcoded into
the VCG component of the certifying compiler. In our approach all required
annotations are generated so that any VCG can be used. For our experiments,
we used the VCG of the Modula Proving System Mops [17]. Mops is a Hoare-
calculus based verification system for a large subset of the programming language
Modula-2 [41], including pointers, arrays, and other data structures. The veri-
fication of REAL-arithmetics is idealized and ignores possible round-off errors.
Mops supports the verification of arbitrary program segments and not only
procedures or modules. The verification segments can be nested to break large
proofs into manageable pieces.

Mops uses a subset of VDM-SL [7] as its specification language; this is in-
terpreted here only as syntactic sugar for classical first-order logic. All annota-
tions are written as Modula-2 comments enclosed in (*{. . . }*). Pre- and post-
conditions start with the keywords pre and post, respectively, loop invariants
with a loopinv, and additional assertions with an assert (cf. Figure 5.)

3.3 Annotations and their Propagation

Annotating the large programs created by AutoBayes requires careful attention
to detail and many annotations. There are potentially dozens of loops requiring
an invariant, and nesting of loops and if-statements can make it difficult to deter-
mine what is necessary to completely annotate a statement. The schema-guided
synthesis mechanism of AutoBayes makes it easy to produce annotations local
to the current statement, as the generation of annotations is tightly coupled to
the individual schema. For this reason, we split the task of creating the state-
ment annotations into two parts: creating local annotations during the run of
AutoBayes, and propagating the annotations through the code.

Local Annotations The local annotations for a schema describe the changes
in variables made by the schema, without needing to describe all of the global
information that may later be necessary for proofs.

During synthesis (i.e., at the time when the schemas are instantiated), the
annotations are produced locally for each statement. Each loop is annotated with
a schematic invariant and schematic pre- and postconditions describing how it
changes variables within the program. The specific form of the invariants and
assertions depends on the safety policy supported by the synthesis system. For
example, the precondition in lines 1–3 in Figure 5 is required to show memory
safety, more specifically, the safety of the nested array access in line 26. The
fact that this precondition is actually required is part of our domain knowledge
and thus encoded within the schema. Obviously, a modification or extension of
the supported safety policy requires corresponding modifications or extensions
of the schemas.

01 (*{ pre
02 (forall a: int &
03 (0 <= a and a < N) => 0 <= c[a] <= M) }*)
04 (*{ loopinv
05 0 <= i and i <= N - 1 and
06 0 <= j and j <= M - 1 and
07 (forall a,b : int &
08 ((0 <= a and a < i) and (0 <= b and b < j))
09 => q[a,b] = 0.0) }*)
10 FOR i := 0 TO N - 1 DO
11 FOR j := 0 TO M - 1 DO
12 q[i,j] := 0.0;
13 END;
14 END;
15 (*{ assert
16 i = N and j = M and
17 (forall a,b : int &
18 ((0 <= a and a < N) and (0 <= b and b < M))
19 => q[a,b] = 0.0) }*)
20 (*{ loopinv
21 0 <= k and k <= N - 1 and
22 (forall a, b: int &
23 ((0 <= a and a < N) and (0 <= b and b < M))
24 => 0 <= q[a,b] and q[a,b] <= 1.0) }*)
25 FOR k := 0 to N - 1 DO
26 q[k,c[k]] := 1.0;
27 END
28 (*{ post
29 (forall a,b : int &
30 ((0 <= a and a < N) and (0 <= b and b < M))
31 => 0 <= q[a,b] and q[a,b] <= 1.0) }*)

Fig. 5. Code fragment with annotations for the initialization of the intermediate arrays
(q and c) as defined in the schema in Figure 2.

Propagation of Annotations Unfortunately, these local annotations are in
general insufficient to prove the postcondition at the end of a larger code frag-
ment. For example, at line 26 in the code (cf. Figure 5), we do not necessarily
know what invariants hold prior to the loop. To overcome this problem, we prop-
agate any unchanged information through the annotations. Because program
synthesis restricts aliasing to few, known places, the test for which statements
influence which annotations can be accomplished easily without full static anal-
ysis of the synthesized program.

In our example, we propagate the initial condition about the vector c (lines
1–3) and add it to the loop invariant and post-assertion for the first loop (lines
15–19). Since the second loop does not change variable c, this condition is prop-
agated forward into invariant and post-condition of the second loop.

The propagation algorithm (shown in Figure 6) works on a tree. The tree
nodes are initially labeled with the AutoBayes-generated local annotations.
The tree edges describe the locations of the annotations relative to one another
in the code according to a lexicographic ordering which obeys the nesting of the
language constructs. Each node may have many children in two categories: one
sibling node and zero or more child nodes, corresponding to the lexical placement

of the annotations in the code. The edges are labeled by the set of variables that
have been assigned between the annotations.

procedure propagate(root : Vertex, inherited : predicate set)
annotation(root) := annotation(root) ∪ inherited;
forall c in children(root)

c inherits := {};
vars := vars assigned(edge(root,c));
forall a in annotations(root)
if variables(a) ∩ vars = {}

c inherits := c inherits ∪ a;
propagate(c,c inherits);

Fig. 6. The annotation propagation algorithm

The algorithm starts from the top of the tree and performs a recursive depth-
first traversal. The parameters to the algorithm are the current root node of
the tree (root) and the set of inherited formulas (inherited). The algorithm
first updates the annotations associated with the root node, annotation(root),
to include the parent-node formulas. Then, for each child, it creates a set of
inherited predicates (c inherits) and calls itself recursively. The set c inherits
is a set of all predicates from annotation(root) that do not contain variables
modified by the intervening code. This information is extracted from the labeling
of the edge between the root node and node c.

3.4 The Automated Prover

For our experiments we used the automated theorem prover E-Setheo, version
csp01 [5]. E-Setheo is a compositional theorem prover for formulas in first
order logic, combining the systems E [33] and Setheo [20, 24]. The subsystems
are based on the superposition, model elimination, and semantic tree calculi.
Depending on syntactic characteristics of the input formula, an optimal schedule
for each of the different strategies is selected. These different schedules have
been computed from experimental data using machine learning techniques [35].
Because all of the subsystems work on formulas in clausal normal form (CNF),
the first order formula is first converted into CNF using the module Flotter [38].
E-Setheo is one of the most powerful ATP systems available as has been shown
in recent international theorem proving competitions [5].

Out of the 69 proof tasks of our example, E-Setheo initially could solve 65
automatically with a run-time limit of 120 seconds on a 1000 Mhz. SunBlade
workstation. The remaining four proof tasks required some relatively simple
preprocessing (splitting up the formula into two separate proof tasks) before
they could be proven automatically. Most of the tasks could be solved in about
one second, but several tasks took up to 20 seconds. The overall proof time of
323 seconds indicates that our approach is feasible.

4 Related Work

We are not aware of any other work to automatically extract knowledge about the
program under construction from the synthesis process, whether for certification
or for other purposes. However, there is a large number of different approaches
which share either techniques or goals with our work.

The approach most closely related to ours is proof-carrying code which has
already been discussed in Section 2.2. However, due to its focus on mobile code,
PCC covers many aspects we are (currently) not interested in, e.g., efficient proof
representation and proof checking. It also works on the level of object code
or typed intermediate languages (e.g., Flint [34]) and is thus complementary
to our approach. Certifying compilers as Touchstone [6] or Cyclone [16] could
consequently be used to show that the safety policy established on the source
code level is not compromised by the compilation step.

Lowry et al. [21] present an approach for certifying domain-specific proper-
ties which is based on abstract interpretation. They check programs for frame
safety, an extended type safety property. Other safety properties can also be
encoded in extended type systems and then checked via (extended) type infer-
ence algorithms. Such approaches have been used to show, for example, unit and
dimensional safety [30, 18] and memory safety [42]. However, these approaches
usually also require additional annotations, e.g., type declarations. Moreover,
most of them are restricted to a specific safety policy and thus less general than
proof-based certification approaches.

Many reverse engineering approaches try to recover formal specifications from
code. Gannod and Cheng [14] use a strongest postcondition predicate trans-
former to support different reverse engineering tasks but their approach still re-
quires additional manual annotations (e.g., loop invariants). Ernst et al. [9] try to
infer such invariants dynamically, using a generate-and-test approach: potential
invariants are generated from a set of patterns and checked against previously
collected run-time trace information. However, the inferred predicates are not
proven to be actually invariant so that the approach is not suitable for certifi-
cation purposes. Flanagan and Leino [13] describe a similar system, Houdini, to
support their ESC/Java verification system. Houdini also uses a generate-and-
test approach but the test phase relies on ESC/Java to prove the invariants.
However, Houdini does not use domain knowledge in the generate phase and is
thus restricted in the kind of invariants it can recover.

Obviously, our research is also related to standard program verification. How-
ever, program verification concentrates on showing full functional equivalence or
refinement between specifications and programs. This is true especially for in-
tegrated development/proof environments as for example the KIV system [37],
and SPARK Ada [2]. Unlike our approach, program verification systems usually
offer no support to find and formalize the functional specifications and auxiliary
annotations. Our work could be used as a front-end, providing the necessary
annotations for safety properties to these kinds of systems.

It is sometimes possible to encode aspects of the safety policy into the logic
used in a program verification system. For example, if VDM is not interpreted

as mere syntactic sugar for classical logic but as notation for the three-valued
logic of partial functions (LPF) [3], a partial correctness proof in Mops already
gives operator safety. Partial operators provide a uniform notion applicable for
several safety properties, but they also preclude our ability to create small, sep-
arate proofs for different partial operator properties and require additional tool
support.

Certification tools based on static analysis techniques try to show which
parts of the code are safe with respect to a (usually hard-wired) safety policy.
All necessary information is extracted from the code; hence, no annotations or
domain knowledge are required. In order to compare our approach to static
analysis, we analyzed the equivalent C-version of our example program with
the tool PolySpace [28]. PolySpace was capable of declaring most of the code
safe with respect to memory/operator safety. However, it could not clear several
important parts of the code, most notably the nested indexing (q[k,c[k]], see
line 26 in Figure 5) and the initialization of some variables in the main loop.
In these cases, certification requires annotation propagation as it is done in our
work; PolySpace does not require or support annotations. On the other hand,
PolySpace detected a possible integer overflow error of a loop counter in the
synthesized code, something that our safety policy does not (yet) check. The
runtime of PolySpace for this example (about one hour of wall-clock time on the
same machine as used for our experiments) demonstrates that our approach can
be competitive to commercial tools.

5 Conclusions

In this paper, we have described a novel combination of automated program
synthesis and automated program verification. Our basic idea is to generate the
program together with detailed formal annotations which are required for a fully
automatic correctness proof. This approach is facilitated by the knowledge of the
domain and the program under construction which are formalized in the program
synthesis system. Since it is virtually impossible to re-generate this information
from the synthesized program only, our approach is much more powerful and
“smarter” than a certifying compiler and allows us to certify complex properties
for mid-sized programs fully automatically.

We have demonstrated the feasibility of our approach by certifying operator
safety and memory safety for an automatically generated iterative data classifi-
cation program. The synthesized program consists of roughly 380 lines of code,
90 of which are auto-generated comments to explain the code. With all annota-
tions (including propagated annotations), it grows to 2,116 lines of code—a clear
indication than manual annotation is out of question. The annotated program
induces 69 proof tasks in first-order logic. After some minor preprocessing steps,
all these tasks can be solved automatically in relatively short time, using the
theorem prover E-Setheo. In contrast, certification of this program using the
commercial tool PolySpace took approximately one hour and was incomplete
with respect to our chosen safety policy.

Our long-term goal is to extend AutoBayes such that all generated pro-
grams can be certified completely automatically. We are confident that our ap-
proach can also be extended to other program synthesis systems, because they
generally encode enough abstract knowledge about the domain and the pro-
gram under construction. We see a number of benefits from this combination
of program synthesis and program verification. For the user of such a certifying
synthesis system, the major benefit is obviously the additional verification of
(important aspects of) the synthesized code; moreover, it comes at no cost for
the user, and it can be double-checked independently.

This independent verification complements the notion of “correctness-by-
construction” generally built into program synthesis systems. This notion means
that the system always produces code which correctly implements the user’s
specification. However, its validity depends on the correctness and consisten-
cy of the underlying synthesis engine and the domain theory. Because these
are large and complex artifacts—comparable to a compiler—current technology
cannot guarantee their correctness. Thus, a user must in reality “trust” that
the synthesis system produces correct code. Our approach provides a tool and
methodology to demonstrate important properties of the code in an automatic
and independently re-checkable way.

Our system is still a prototype; the certification extension covers only those
parts of the domain theory required to generate EM-variants. However, we see
no fundamental obstacles in extending the approach to the entire (still growing)
domain theory. Also, the safety-policy is hard-coded in the way the annotations
are generated within the synthesis schemas. We will work on ways to explicitly
represent safety policies (e.g., using higher-order formulations) and use this to
tailor the annotation generation in AutoBayes. Our propagation algorithm can
be viewed as a mechanism for managing proof context information. We are inves-
tigating more complex proof frameworks, such as program window inference [27]
that provide rules for managing this information, making the propagation step
of our approach unnecessary. Our architecture also relies on the correctness of
E-Setheo. We are planning to extend our system to incorporate a small and
verified proof checker which is able to give us the certainty that the proofs pro-
duced by E-Setheo are indeed correct. Furthermore, we plan to implement a
small and trustworthy verification condition generator.

Acknowledgements. We would like to thank the reviewers for their detailed
and helpful comments. This work is supported by the NASA, grant 749–10–
11 (Thinking Systems / Program Synthesis); M. Whalen was supported by the
RIACS SSRP program.

References

1. A. W. Appel and A. P. Felty. A semantic model of types and machine instructions
for proof-carrying code. In Proc. 27th ACM Symp. Principles of Programming

Languages, pp. 243–253. ACM Press, 2001.
2. J. Barnes. High Integrity Ada: The SPARK Approach. Addison-Wesley, 1997.

3. H. Barringer, J. H. Cheng, and C. B. Jones. A logic covering undefinedness in
program proofs. Acta Informatica, 21(3):251–269, Oct. 1984.

4. J. Berkowitz. Photoabsorption, Photoionization, and Photoelectron Spectroscopy.
Academic Press, 1979.

5. CASC-JC theorem proving competition. http://www.cs.miams.edu/~tptp/CASC/JC.
6. C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and K. Cline. A certifying

compiler for Java. ACM SIGPLAN Notices, 35(5):95–107, 2000.
7. J. Dawes. The VDM-SL Reference Guide. Pitman, London, 1991.
8. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
9. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering

likely program invariants to support program evolution. IEEE Trans. Software

Engineering, 27(2):1–25, Feb. 2001.
10. M. S. Feather and M. Goedicke (eds.) Proc. 16th Intl. Conf. Automated Software

Engineering, IEEE Comp. Soc. Press, 2001.
11. B. Fischer and J. Schumann. AutoBayes: A system for generating data analysis

programs from statistical models. J. Functional Programming, 2002. To appear.
Preprint available at http://ase.arc.nasa.gov/people/fischer/.

12. B. Fischer, J. Schumann, and T. Pressburger. Generating data analysis programs
from statistical models (Position Paper). In W. Taha (ed.), Proc. Intl. Workshop

Semantics, Applications, and Implementation of Program Generation, Lect. Notes
Comp. Sci. 1924, pp. 212–229. Springer, 2000.

13. C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java.
In J. Oliveira and P. Zave (eds.), Proc. Intl. Symp. Formal Methods Europe 2001:

Formal Methods for Increasing Software Productivity, Lect. Notes Comp. Sci. 2021,
pp. 500–517. Springer, 1997.

14. G. C. Gannod, Y. Chen, and B. H. C. Cheng. An automated approach for sup-
porting software reuse via reverse engineering. In D. F. Redmiles and B. Nuseibeh
(eds.), Proc. 13th Intl. Conf. Automated Software Engineering, pp. 79–86. IEEE
Comp. Soc. Press, 1998.

15. P. Gill, W. Murray, and M. Wright. Practical Optimization. Academic Press, 1981.
16. L. Hornof and T. Jim. Certifying compilation and run-time code generation.

Higher-Order and Symbolic Computation, 12(4):337–375, 1999.
17. T. Kaiser, B. Fischer, and W. Struckmann. Mops: Verifying Modula-2 programs

specified in VDM-SL. In Proc. 4th Workshop Tools for System Design and Verifi-

cation, pp. 163–167. 2000.
18. A. Kennedy. Programming Languages and Dimensions. PhD thesis, University of

Cambridge, Apr. 1996. Published as UCCL TR391.
19. C. Kreitz. Program synthesis. In W. Bibel and P. H. Schmitt (eds.), Automated

Deduction - A Basis for Applications, Vol III, pp. 105–134. Kluwer, 1998.
20. R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A high-performance

theorem prover. J. Automated Reasoning, 8(2):183–212, 1992.
21. M. Lowry, T. Pressburger, and G. Rosu. Certifying domain-specific policies. In

Feather and Goedicke [10], pp. 118–125.
22. D. C. Luckham and N. Suzuki. Verification of array, record, and pointer operations

in Pascal. ACM Trans. Programming Languages and Systems, 1(2):226–244, 1979.
23. C. B. Moler, J. N. Little, and S. Bangert. PC-Matlab Users Guide. Cochituate

Place, 24 Prime Park Way, Natick, MA, USA, 1987.
24. M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and K. Mayr.

The model elimination provers SETHEO and E-SETHEO. J. Automated Reason-

ing, 18:237–246, 1997.

25. M. Murphy. Octave: A free, high-level language for mathematics. Linux Journal,
39, July 1997.

26. G. C. Necula and P. Lee. Efficient representation and validation of logical proofs.
In Proc. 13th Annual IEEE Symp. Logic in Computer Science, pp. 93–104. IEEE
Comp. Soc. Press, 1998.

27. R. Nickson and I. J. Hayes. Supporting contexts in program refinement. Science

of Computer Programming, 29(3):279–302, 1997.
28. PolySpace technologies. http://www.polyspace.com, 2002.
29. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical

Recipes in C. Cambridge Univ. Press, Cambridge, UK, 2nd. edition, 1992.
30. M. Rittri. Dimension inference under polymorphic recursion. In Proc. 7th

Conf. Functional Programming Languages and Computer Architecture, pp. 147–
159, ACM Press, 1995.

31. Software Considerations in Airborne Systems and Equipment Certification. Radio
Technical Commission for Aeronautics, 1992.

32. F. B. Schneider. Enforceable security policies. Computer Science Technical Report
TR98-1644, Cornell University, Computer Science Department, September 1998.

33. S. Schulz. System abstract: E 0.3. In H. Ganzinger (ed.), Proc. 16th Intl. Conf. Au-

tomated Deduction, Lect. Notes Artificial Intelligence 1421, pp. 297–301. Springer,
1999.

34. Z. Shao, C. League, and S. Monnier. Implementing typed intermediate language.
In Proc. 1998 ACM SIGPLAN Intl. Conf. Functional Programming, pp. 313–323.
1998.

35. G. Stenz and A. Wolf. E-SETHEO: Design configuration and use of a parallel the-
orem prover. In N. Foo (ed.), Proc. of the 12th Australian Joint Conf. on Artificial

Intelligence, Lect. Notes Artificial Intelligence 1747, pp. 231–243. Springer, 1999.
36. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In

P. Alexander and P. Flener (eds.), Proc. 15th Intl. Conf. Automated Software En-

gineering, pp. 3–12. IEEE Comp. Soc. Press, 2000.
37. W. Reif. The KIV Approach to Software Verification. In M. Broy and S. Jähnichen

(eds.), KORSO: Methods, Languages and Tools for the Construction of Correct

Software, Lect. Notes Comp. Sci. 1009, pp. 339–370. Springer, 1995.
38. C. Weidenbach, B. Gaede, and G. Rock. Spass and Flotter version 0.42. In M. A.

McRobbie and J. K. Slaney (eds.), Proc. 13th Intl. Conf. Automated Deduction,
Lect. Notes Artificial Intelligence 1104, pp. 141–145. Springer, 1996.

39. J. Whittle, J. Van Baalen, J. Schumann, P. Robinson, T. Pressburger, J. Penix,
P. Oh, M. Lowry, and G. Brat. Amphion/NAV: Deductive synthesis of state esti-
mation software. In Feather and Goedicke [10], pp. 395–399.

40. G. Winskel. The Formal Semantics of Programming Languages: An Introduction.
The MIT Press, 1993.

41. N. Wirth. Programming in Modula-2. Springer, 4th edition, 1988.
42. H. Xi and F. Pfenning. Eliminating array bound checking through dependent types.

In Proc. ACM Conf. on Programming Language Design and Implementation 1998,
pp. 249–257. ACM Press, 1998. Published as SIGPLAN Notices 33(5).

