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Abstract

Reuse by contract is the application of formal methods to software reuse: software compo-

nents are associated with contracts|formal models of their functional behaviour|and admin-

istered, retrieved, and reused by these. We argue that reuse by contract is necessary for safe

reuse in a formal process model, but is helpful even for more traditional software development.

We discuss some obstacles against the use of formal component speci�cations, and propose some

solutions in order to make reuse by contract practical.

Keywords: formal methods, reuse, software component retrieval, speci�cation matching, au-

tomated deduction.

Workshop Goals: Discuss the design of reusable component libraries; discuss ways to mitigate

acceptance problems; discuss tool architectures; study relation with OO design methods; study

combination with structural code reuse mechanism (e.g., patterns or functors.)
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1 Background

Reuse by contract is the application of formal methods to software reuse: software components

are associated with contracts|formal models of their functional behaviour|and administered,

retrieved, and reused by these.

Similar approaches have been proposed before (e.g., [KRT87, RW91, MM91]) but without convinc-

ing success. The goal of our project NORA/HAMMR
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[FKS95c, FKS95b, FKS95a] is thus to make

reuse by contract practical. We investigate

� scalable and e�cient architectures for reuse by contract,

� reuse-friendly speci�cation techniques,

� library organization techniques based on contracts,

� deductive component retrieval,

� its interaction with formal software development processes, and

� the integration of reuse by contract and conventional reuse mechanisms.

Our long-term goal is to build a system which smoothly integrates component design, implementa-

tion, and veri�cation with the systematic reuse of a fully speci�ed and veri�ed component library.

Our work on NORA/HAMMR started in 1994. Our main topic so far has been the application

of automated deduction techniques to solve the proof tasks emerging from deductive component

retrieval. A large number of experiments done in collaboration with colleagues from the German

joint research project on deduction show that current theorem provers are capable to solve enough

of the emerging tasks. Our implementation is tailored towards these experiments. It uses VDM as

contract language but can generate proof tasks for di�erent theorem provers. We currently work

on an improved library organziation and the integration of a program veri�cation system.

2 Position

2.1 What is Reuse by Contract really?

B. Meyer has coined the phrase design by contract [Mey92] to denote a software development style

which emphasises the importance of formal speci�cations and interleaves them with actual code.

Reuse by contract is an attempt to lift this style to code reuse. Its basic idea is to turn the contracts

into the actual medium by which client and provider can negotiate reuse:

� The client states his side of the contract as a pair of granted pre- and required postcondition.
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NORA is no real acronym; HAMMR is the highly-adaptive multi-method retrieval tool. This work has been

sponsored by the DFG under grant Sn11/2-3.
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� The provider formalizes his bid (i.e., each library component) the other way round, as a pair

of required pre- and granted postcondition.

� Negotiation is de�ned in terms of the contract: an o�ered component is suited for reuse if

the involved pre- and postconditions satisfy a well-de�ned logical relation.

The negotiation process, also called deductive component retrieval, is the most important technical

problem to be solved and as such sometimes identi�ed with reuse by contract. In our opinion,

however, only its integration into a formal software development process will lead to signi�cant

reuse e�ects and thus justify the name \reuse by contract." In a formal setting, the contracts

arise naturally (e.g., from re�nements) and do not impose any extra work on the developers.

Consequently, reuse can be built into program design from the very beginning.

On the other side, design by contract is not per se reuse by contract as the existence of a library

does not automatically imply its re-use. The di�erence is in the roles the contracts play. In the

design approach, contracts are passive and con�ned to the library. They do not only describe the

components properties but are also their possessions. The reuse approach removes this asymmetry

and \activates" the contracts for prospective clients. It is a way to exploit the full power of

contracts.

2.2 Proof Tasks and Code Reuse

Components can be reused if they bridge the gap between the clients stated pre- and postcondition.

Proof tasks formalize this relation; their exact nature determines form and e�ects of reuse.

The most e�cient form of reuse takes place if the gap between the client's o�er (the precondition)

and his wishes (the postcondition) is bridged completely. A component c can be plugged in and

thus close the gap if it has a weaker pre- and a stronger postcondition than the client requires in

his query q. This ideal situation is usually formalized in the following condition, or proof task:
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This proof task is however not adequate if q is a partial function but not c. If we want c to match

q even if its results on the extended domain do not �t the original query, we must restrict the

implication between the postconditions on the domain given by pre

q
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This so-called plug-in compatibility supports safe reuse. The retrieved components may be consid-

ered as black boxes and may be reused \as is", without further proviso or modi�cation.

Another, weaker form of the proof tasks emphasizes the clients postcondition and retrieves all

components which satisfy it at least on their own domain:

pre

c

^ post

c

) post

q

(3)
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Actually, the proof tasks are universally closed wrt. the formal input and output parameters of the component

and the query and also contain equations relating the parameters. Likewise, the pre- and postconditions are of course

logical functions of the respective parameters. However, to improve the legibility, we use this traditionally abbreviated

formulations.
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Generally, code reuse based on this conditional compatibility is potentially unsafe because the client

has to satisfy the open obligation pre

c

. In a formal framework, however, (3) is justi�ed because it

describes a normal re�nement step: the client trades his own open contract post

q

against the usually

simpler pre

c

by re-using c. Note that (3) is also more e�cient to check, as only one implication has

to be proven.

To increase the recall, conditional compatibility can be relaxed further by again taking the client's

precondition into account. But in contrast to (2) it is now added to the premise:

pre

c

^ pre

q

^ post

c

) post

q

(4)

Hence, partial compatibility retrieves all components which do \the right thing" at least on a domain

restricted by pre

c

^ pre

q

. By varying pre

q

, clients can control recall and granularity of reuse. The

stronger it is, the more components are retrieved but the smalller is their respective bene�t, simply

because pre

q

acts as an additional open obligation.

2.3 Signi�cance

The investigation [Lio96] of the recent Ariane 5 disaster revealed that it was caused by the reuse

of an unmodi�ed Ariane 4 software component which led to an uncaught exception crashing the

software and hence the spacecraft. In [JM97], however, J�ez�equel and Meyer argue that the ultimate

reason for the crash was the components failure to state its assumptions, i.e., the absence of a

contract. They conclude

\There is a more simple lesson to be learned from this unfortunate event: Reuse without

a contract is a sheer folly. From CORBA to C++ to VisualBasic to ActiveX to Java,

the hype is on software components. The Ariane 5 blunder shows clearly that na��ve

hopes are doomed to produce results far worse than a traditional, reuse-less software

process. To attempt to reuse software without Ei�el-like assertions is to invite failures

of potentially disastrous consequences."

We share this conclusion as motivation for our work.

2.4 Bene�ts

For the users, the biggest visible bene�t is of course the ability to retrieve components which

provably match their needs. Provably matching components increase the overall quality of the

software. They also improve the software process, the productivity and other aspects of software

development. Depending on the kind of compatibility used (plug-in, conditional or partial), several

bene�ts can be identi�ed.

Plug-in compatibility { and, to a smaller extent, conditional compatibility { are most useful in

a formal development process. Here, it can be used for the safe composition of components. A

component which satis�es a proof task is guaranteed not to compromise the overall correctness.

This is true even for conditional compatibility, if { as is often the case { the re�nement process can

generate the component's precondition. Safe composition prevents reuse disasters like the Ariane

4



case. Safe composition is a must for any safety-critical software project which wants to utilize

component reuse, and reuse by contract is the only available technology.

In some cases software composition from formally speci�ed components can be done automatically.

By means of constructive type theory, a formal speci�cation can be transformed into executable

code which may also contain calls to (formally speci�ed) library components. Needless to say, the

resulting code is provably correct.

Once a new piece of software has been constructed by safe composition, automatically or not,

it can be added to the library. Hence the basis for reuse is increased, without any additional

overhead: in a formal process, the speci�cation of a new component or subsystem must be supplied

anyway. Furthermore, reuse by contract o�ers additional support for a formal development process.

Development steps are larger, and an actual implementation for subsystems can be obtained early,

thereby supporting vertical prototyping. If new components are added to the library, a positive

feedback is obtained which encourages the use of formal speci�cations and dedicated technology

and tools (e.g. veri�ers) for a formal development process.

In a less formal software process, reuse by contract still improves software development. In such a

context, partial compatibility will be most useful. Partial compatibility has highest recall, but may

require manual checks or even component modi�cations in order to match the components precon-

dition. For a software developer whose primary interest is to �nd reusable components, this is not

an obstacle. If the primary goal is to reuse code, the developer will be ready to provide the stronger

precondition needed for conditional compatibility, or even extend the component's functionality in

order to utilize partial compatibility. Still, use of a formal postcondition considerably increases the

precision of component search, that is, reduces the probability of �nding irrelevant components.

Reuse by contract is attractive even for those who prefer commercial success over safety or improved

component retrieval. Today's libraries (for example, the Standard Template Library for C++) are

not formally speci�ed. If di�erent vendors o�er the same library, there will be subtle di�erences

between implementations. As a consequence, a user will not be able to switch from one library

implementation to another { enabling library monopolies and preventing innovative vendors with

small market share from commercial success. Hence market transparency requires that there is

an implementation-independent speci�cation { a standard { for a component library. Today, such

standards have been established in other software and hardware areas; usage of formal speci�cations

as standards for libraries will result in better return on investment for independent library vendors.

2.5 Obstacles

There are a couple of problems which make a successful implementation of reuse by contract a

hard task. The major impediment is the general acceptance problem of formal methods. As one

colleague put it: \If I need a sort routine, I say grep sort!"

Without a formal software development process, the up-front costs become fairly high. Program-

mers are not used to contracting and may consider it merely as an additional burden which remains

without any bene�t as long as there are no or not enough speci�ed libraries to be reused. Library

construction, however, is time-consuming and expensive, especially when it is not supported by

the feed-back described above. Worst of all, due to the general indi�erence in formal methods, the

market o�ers only very few speci�ed libraries to begin this process with.
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The \look and feel" of a reuse system also can impair its usefulness. If the end user has to deal with

complicated parameter settings for the prover, specify details he considers irrelevant, or provide

postconditions in some cryptic prover language, reuse by contract will not be successful.

Another source of problems is the computational complexity of deductive component retrieval. Long

response times due to insu�cient deductive power can easily render the entire concept impractical;

this in particular a�ects scale-up for big libraries or complicated components. Contracts for larger

components which in turn promise larger pay-o�s may become too large or too complicated. A

more technical aspect may lead to even more complicated proof tasks. If provider and client use

di�erent mathematical concepts (e.g., sets and lists) the resulting \view mismatch" can only be

solved if the prover deduces the necessary mappings.

In a non-formal software process, the use of formal speci�cations can even hamper the retrieval

abilities. The reason is that recall may su�er from the overwhelming precision of formal speci�-

cations. If there is a component which di�ers only slightly from what the user wants, it will not

be found, because the proof obligation can not be ful�lled (\near miss"). Theorem provers do not

have a notion of an \almost provable" statement, and it is this sharp distinction between true and

false statements which may back�re in a reuse context. Note that in a formal process, this problem

does not occur as partial or \fuzzy" contract ful�llment is not acceptable.

2.6 Possible Solutions

There is no medicine for people who reject formal methods. The only argument which might appeal

to them is that reuse by contract is not going to replace existing, established retrieval methods,

but to augment them. For all the other problems, solutions can be outlined as follows.

First of all, a retrieval system based on formal speci�cations must hide the deductive machinery

completely. Any details for setting prover parameters, synchronizing parallel-running provers, gen-

erating prover input etc. must be invisible to the user. Instead, the retrieval tool should o�er

an interface which utilizes the end user's language and concepts; in particular, it should also o�er

access to more traditional retrieval algorithms. As somebody has to take care of preprocessing and

tuning the formal speci�cations and tune the deductive engine, we propose that this is done by an

expert. The end user must not be bothered by this.

In order to tackle the performance and scale-up problems, we utilize two mechanisms: abstraction

and incrementality. Abstraction means that not always a traditional formal speci�cation will be

needed, somtimes a more compact component description is su�cient. Multiple layers of speci�-

cations can be used to separate the core functionality from non-functional implementation aspects

as e. g. structure sharing [PH95]. This can be achieved by a domain-speci�c logic which would not

only improve the deductive abilites of the system but would also be bene�cial for the end user.
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Incrementality means that several processes must cooperate in order to achieve an increasing re-

duction of the problem space. NORA/HAMMR uses a �lter chain in order to reduce the burden

of the theorem prover. The chain consists of a series of �lters of increasing power, the prover is

only the last element in the chain. Chain con�guration may vary; a typical �lter chain includes

signature matching and model checking. Signature matching selects components according to a
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It is technically easy to create a domain-speci�c extension of a speci�cation language: this only requires that a

set of prede�ned function and predicate names is de�ned, whose meaning is given by some additional axioms.
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speci�cation of their interface alone. Model checking is used in order to discover non-theorems: if a

counterexample in some small model can be found, the proof obligation is considered a non-theorem

and the component rejected. Both techniques may negatively a�ect recall as well as precision, as

a counterexample in a �nite model of, say, the integers may be invalid, and demanding identical

interfaces is too restrictive.

4

But they greatly reduce the burden of the prover, as only a small

number of proof obligations survives the preliminary �lters.

Signature matching can also help with the view mismatch problem. It identi�es the structural

similarities between the types in question which in turn can be used to construct some of the

abstraction functions automatically.

In order to reduce the risc of not �nding components due to overspeci�cation or \near misses"

of the prover, we again propose abstraction and incrementality. The user interface must allow to

incrementally sharpen the postcondition (or weaken the precondition), thereby incrementally �lter-

ing the set of surviving components. Furthermore, use of a domain-speci�c speci�cation language

o�ers the appropriate abstractions to the user; near misses due to erroneous low-level speci�cation

details are avoided.

3 Comparison

Most work on library design (e.g., [MS96, Knu93]) follows the traditional style of informal or stylized

descriptions and reference implementations. The industrial-strength example of a contract-based

library design we know of is Meyer's work [Mey94]. There is, however, some more research work, e. g.

the RESOLVE project [SW94]. Both [JC93] and [MMM94] use formal speci�cations to determine

a subsumption relation between components and structure their libraries accordingly. Similarly,

[LW94] de�ne the notion of behavioral subtype as an extended means to organize class libraries and

[Lea91] has developed techniques to support the speci�cation and veri�cation of object-oriented

programs.

Deductive component retrieval has also been investigated by [RW91] which used �Prolog to specify

the components and its built-in higher-order uni�cation as retrieval mechanism. Moorman Zaremski

and Wing [MW95] were the �rst to explore di�erent match relations; our own work (cf. section 2.2)

expands on their results. They also introduced the use of a \real" speci�cation language (Larch/ML)

for component description. With the exception of [Ste91] which works with algebraic speci�cations,

most other approaches now also use languages which are some sugared variant of �rst order logic.

However, while [MW95] applies the associated interactive LarchProver to solve the proof tasks,

their sheer number requires an automated theorem prover as e.g., Otter [MMM94] or SETHEO

[FS97] to make it practical.

A more pragmatic approach to deductive retrieval is to use the components types as their speci�-

cations (e.g., [Rit91].) This signature matching allows the application of more e�cient reasoning

mechanisms (e.g., order-sorted theory uni�cation) but also a very concise query formulation. It

is thus a successful tool for functional languages which o�er rich type structures. The behavioral

abstraction which is inherent to types makes an unmodi�ed type-based retrieval unsuited for reuse

by contract but it can still be used as a fast pre-�lter.
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In fact, the latter problem can be tackled by use of additional axioms which allow e.g. interchanges of parameters,

and for the former we propose the use of abstract model checking.
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There has also been some earlier work to integrate deductive retrieval into software development

environments. The PARIS system [KRT87] supported the semi-automatic construction of programs

over a library of so-called schemes, i.e., program fragments which are enriched by assertions about

their combination and instantiation possibilites. The construction process then generated proof

tasks which were solved by the Boyer-Moore theorem prover. The Inscape system [Per87] aimed

at the development of large software systems based on speci�cations; it also o�ered some retrieval

support. However, both systems worked with severely restricted logics and inference mechanisms

and never left the prototype stage.

Lowry et al. [LP

+

94] utilized a formally speci�ed library which contains functions for celestial

mechanics and spaceship course computations. After providing a formal speci�cation of e.g. a space

vehicle's destination point and time, the system automatically composes a program consisting of

calls to appropriate library routines, which compute the ight data. Lowry's system uses a domain-

speci�c logic, which in turn is hidden from the user by a sophisticated graphical user interface.

4 Research Topics

Although speci�ed component libraries are a necessary requirement for any code reuse mechanism

working with formal methods and not only for reuse by contract, they are a nearly extinct species.

We think that the community should take up the lead of Meyer and work towards realistic, formally

speci�ed libraries which must also cover non-functional aspects of components which traditionally

matter for the users, e. g. structure sharing. This work should also include the development of

appropriate domain-speci�c logics.

Larger bene�ts are expected from reusing components of a much coarser granularity than simple

functions (\megaprogramming", [WWC92].) Scaling-up speci�cation methods to such megacompo-

nents requires a lot of further research. First of all, exible components are parameterized (generic

packages, C++ templates etc). Thus even signature matching requires higher-order uni�cation.

A next step could be an investigation about speci�cations of design patterns or parameterized

modules/functors. Having a fully speci�ed pattern library would be a nice argument.

Scale-up also concerns deductive retrieval. First of all, the provers must be adapted to reect a

situation where there are thousands of simple proof obligations, and almost all of them are non-

theorems. Furthermore, methods have to be developed for fast rejection of non-theorems which do

not compromise recall. One promising candidate is abstract model checking [Jac94]. Probably the

combination of behavioural subtyping and signature matching also works to this end.

Finally, to increase the number of reuse opportunites, the strict compatibilities de�ned in 2.2

could by relaxed by introducing some approximate reasoning. However, this requires appropriate

automatic component adaption mechanisms to maintain the integrity of reuse by contract.
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