
ConceptCloud: A Tagcloud Browser for Software Archives

Gillian J. Greene and Bernd Fischer
Computer Science Division, University of Stellenbosch, South Africa

ggreene@cs.sun.ac.za, bfischer@cs.sun.ac.za

ABSTRACT
ConceptCloud is an interactive browser for SVN and Git reposito-
ries. Its main novelty is the combination of an intuitive tag cloud
interface with an underlying concept lattice that provides a formal
structure for navigation. This combination allows users to explore
repositories serendipitously, without predefined search goals and
along different navigation paths. ConceptCloud can derive differ-
ent lattice types for a repository and supports concurrent naviga-
tion in multiple linked tag clouds that can each be individually cus-
tomized, which allows multi-faceted repository explorations.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—abstracting methods; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—clustering, se-
lection process

Keywords
Browsing, Formal concept analysis, Tag clouds, Software reposito-
ries

1. OVERVIEW
Software archives such as SVN or Git repositories contain a

wealth of implicit information. The ConceptCloud browser makes
this information accessible to users. It allows them to explore a
repository’s meta-data and answer a variety of questions, e.g., “How
have the active developers changed over time?”, “Which topics has
this developer been working on?”, or “Which methods are often
changed together?”. Once users find an interesting aspect Concept-
Cloud allows them to drill down and investigate this further.

ConceptCloud uses a novel combination of informal tag clouds,
which provide an intuitive user interface, and formal concept lat-
tices [13, 6], which serve as underlying navigation structure. More
specifically, it constructs a formal context from the meta-data that it
extracts from the repository, and incrementally computes a concept
lattice from this. It supports different types of formal contexts (i.e.,
revision-, file-and change-based), which enables different types of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 November 16-22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

repository analyses. Users navigate through the underlying concept
lattice by selecting and deselecting tags in the clouds; each naviga-
tion step updates the displayed cloud. ConceptCloud derives the
tag clouds from the concepts corresponding to the selected tags,
more precisely, from the attributes of all objects in these concepts’
extents, together with the objects themselves. Each tag’s weight is
given by the number of objects that exhibit the respective attribute.
Tags are colored according to the category of information that they
represent (e.g. commit message, filename etc.).

Figure 1 shows ConceptCloud’s main interface with a tag cloud
derived for the JUnit project. The window shows on the left the list
of selected tags (“merge” and “request”, also shown in red in the
cloud, c.f 1(i)) and the implied tags (“pull” and “from”, c.f 1(ii)).
The tag clouds can be customized in several ways. The slider on
the left changes the minimum and maximum font sizes used in the
clouds (c.f 1(iii)). The buttons in the top left corner control which
tags are shown (c.f 1(iv)). For example, the view can be restricted to
certain categories (here directory and weekday tags are not shown),
to a given number of tags (here 200), or to tags with a minimum
number of occurrences. By default it shows a single tag cloud to
give a unified view; however, users can create multiple views that
can be customized independently; Figure 3 shows the main inter-
face with three additional views that display only file names, dates,
and authors, respectively. The views are linked, i.e., a tag selection
or de-selection in one view also updates all others, providing a mul-
tidimensional view similar to Crossfilter [1]. Users can also create
views with “sticky” tags that cannot be de-selected (cf. Figure 2,
sticky tags shown in red at the top of the panels).

ConceptCloud is implemented as a web-based tool (available at
www.conceptcloud.org) but it can also be run locally. It can
process local and remote Git and SVN repositories.

2. TOOL APPLICATIONS
ConceptCloud is not restricted to a fixed set of repository analy-

ses. Instead, it provides a uniform framework that allows users i.e,
developers and project managers, to analyze and display a repos-
itory’s meta-data in different ways. In the following we sketch a
few indicative applications.

Identifying Active Developers. We consider developers as active
in a given time period if they make at least one commit in that pe-
riod. With a revision-based context, ConceptCloud can then easily
be used to find the most active developers, because their tags will
be displayed biggest. It is also easy to break this down into dif-
ferent time periods, at different granularities (year, month or day).
For example, to create a view of developers by year (as shown for
the JUnit project in Figure 2), we only need to right click the tags
of the desired years to create additional views where the respective
years are sticky, and customize these views to show only authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’14, November 16–21, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2661676

759

Figure 1: ConceptCloud main interface, Top 200 view of JUnit (revision-based context, directories and weekdays not shown)

tags. In the perspective revealed in Figure 2 we can see how the
team evolved from a single developer in 2000, and how the combi-
nations of different developers and the number of changes they are
making of the project differ substantially from year to year.

Identifying Expertise. In a revision-based context, selecting tags
from commit messages reveals all other information from commits
that contain the selected words in their messages. This allows us
to identify developers who are experts in an area, by virtue of fre-
quently using certain words in their commit messages. For exam-
ple, the main view on the left of Figure 3 shows the tag cloud from
the iText project after selection of “findbugs” (c.f 3(i)); category-
specific views, such as the file (c.f 3(ii)), date (c.f 3(iii))and author
(c.f 3(iv)) views shown on the right, further elaborate different di-
mensions of the topic. Hence, we can easily see all developers
working on the topic “findbugs” and all files that have been changed
when this commit message was used.

Identifying Collaboration. If we assume that two developers col-
laborate by committing the same file in different revisions, then we
can see the collaboration between one given developer and all oth-
ers simply by opening the tag cloud from the file-based context, and
selecting the developer; the tag sizes of the other developers then
represent the number of files that both developers have worked on
and thus the strength of the collaboration. If we select a group of
developers, we see which other developers work with this core, and
what files they collaborate on (see Figure 4). We can also select a
file to identify which developers have collaborated on this file and
what else they have collaborated on (see Figure 5). Note how this
gives a different view on the same underlying meta-data.

Identifying Co-changed Methods. A change-based context from
a repository that contains Java files will produce a tag cloud that
also contains method signatures. Selecting one of the method sig-
natures in the cloud will then give us a view of all commits in
which that method has been changed. All the other large method
tags in that cloud are the frequently co-changed methods. On selec-
tion of method “allowText(TextRenderInfo)” from the JUnit project
we see a view that contains all developers that have changed that
method, all files in which the method has been located and all other
methods which have been changed at the same time.

Figure 2: Author views of JUnit, restricted to different years.

3. APPROACH
ConceptCloud uses concept lattices as an underlying navigation

structure and tag clouds to present the information that is available
in the lattice. We briefly sketch how we construct the concept lat-
tices from the repository, how we derive a tag cloud from the con-
cepts in the lattice, and how we drive the navigation in the concept
lattice via the tag cloud.

Formal Concept Analysis. Formal concept analysis [13, 6] applies
lattice-theoretic methods to investigate abstract relations between
objects and their attributes. Such contexts can be imagined as cross
tables where the rows are objects and the columns are attributes.
Concepts are pairs of objects and attributes which are synonymous
and so characterize each other. They are maximal rectangles (mod-
ulo permutation of rows and columns) in the context table. The ob-
jects (attributes) of a concept are called its extent (intent). Concepts
are partially ordered by inclusion of extents such that a concept’s
extent includes the extent of all of its subconcepts; a similar order
on intents follows by duality.

The basic theorem of formal concept analysis states that the struc-
ture induced by the concepts of a formal context and their order-
ing is always a complete lattice. Such concept lattices have strong
mathematical properties and reveal hidden structural and hierarchi-

760

Figure 3: Main view, and category-specific file, date and author viewers after selection of “findbugs”.

Figure 4: Author collaboration in JUnit.

Figure 5: Author collaboration on a specific file (After.java).

cal properties of the original relation. They can be computed au-
tomatically from any given relation between objects and attributes.
The greatest lower bound or meet and least upper bound or join can
also be expressed by the common attributes and objects.

Contexts from Repositories. ConceptCloud can construct dif-
ferent types of formal contexts, which enables different types of
repository analyses. In a revision-based context we interpret the
revisions as objects and the meta-data as attributes: each revision
is associated with its own meta-data (e.g., author, words from the
log message, or changed files) as attribute. Since the revisions re-
flect the project’s development over time, such contexts can give
us a historical overview of the project. In a file-based context we
interpret the files as objects but derive the attributes from the revi-
sions’ meta-data: each file receives all attributes from all revisions

Figure 6: Method selection with change-based context.

that involve the file. Such contexts are useful for collaboration- or
localization based analysis. In a change-based context we use pairs
of files and revisions as objects, and each revision’s changes to the
corresponding file as (additional) attributes. Such contexts allow us
to analyze the different individual changes to files that the different
revisions introduce.

Tag Clouds from Concepts. For the tag cloud interface we con-
struct a tag cloud from a set of concepts. For this we collect all
attributes of the defining concept of each object in the extent of the
focus concept; we also add the object itself, to allow navigation via
both attributes and objects. Note that each object is used only once,
even if it occurs in the extent of several concepts.

Navigating Concept Lattices with Tag Clouds. Our navigation
algorithm is refinement-based and the browser maintains a focus
concept, from which it renders the tag cloud as described above;
when the user selects (or deselects) a tag, the browser updates the
focus and re-renders the tag cloud. When the user selects a tag,
the browser updates the focus by computing the meet of that tag’s
defining concept and the old focus. After a tag deselection, the
browser re-computes the focus as the meet of the defining concepts
of the remaining selected tags.

761

Table 1: ConceptCloud results for open-source repositories.

Indexing Drawing
Project Rev. Type time (s) time (s) Tags
JUnit 1870 Git 37.5 1.0 7805
IText 5580 SVN 69.3 3.5 30824
JQuery 5618 Git 151.2 2.2 14048
JEdit 5765 SVN 232.4 6.2 18713
Bootstrap 9466 Git 441.1 4.2 19749
Valgrind 10716 SVN 102.8 8.4 39232
Django 18139 Git 353.0 50.9 56646
TortoiseSVN 22558 SVN 158.9 18.0 58389

4. IMPLEMENTATION
ConceptCloud is implemented in Java and uses the Play Web

MVC Framework to create a web interface. ConceptCloud’s main
components are metadata extraction from the archive, concept lat-
tice construction and tag cloud display from the resulting lattice.

Meta-data Extraction. ConceptCloud uses the SVNKit library to
read log information from SVN repositories and the JGit library to
clone a temporary copy and read from a Git repository. Concept-
Cloud performs basic lexical processing such as stop word removal
and stemming on the free text fields that it extracts. The Apache
Lucene Porter Stemmer implementation is used to handle the stem-
ming. Since root words are not usually dictionary words we use
the most common word that evaluates to a root word as the word’s
representation in the tag cloud.

Concept Lattice Construction. For the lattice construction, we
use a method based on the Colibri Java library [9] which constructs
concepts on the fly, so that we never need to compute the full lattice
and are able to render an initial tag cloud quickly.

Tag Cloud Display. The interface presents the tag cloud in a viewer
which can dynamically include and exclude certain categories of
tags (e.g. message, filename for a repository) and multiple viewers
can be displayed at the same time. Each tag is assigned a color
according to the category of information that it represents (e.g. all
filenames displayed in orange). In future we could also add links
to tags that allow the opening of the original file source or the de-
veloper’s GitHub page.

Evaluation. Table 1 shows details of applying ConceptCloud to
several repositories. The context construction takes less than a few
minutes on a standard laptop, even for larger repositories; note that
Git repositories are indexed locally and need to be cloned and all
times shown include network latency. Drawing the full tag cloud
(which is shown on start-up) typically takes a few seconds, with
slow-downs for larger clouds. However, cloud sizes quickly drop
during navigation, and refined clouds are rendered with no signifi-
cant delays. Moreover, we use caching to further improve the tool’s
reactivity, so that for example returning to the full cloud causes no
significant delays.

5. RELATED WORK
Formal Concept Analysis. Godin et al. [8] introduced the use
of concept lattices in information retrieval, including the construc-
tion of contexts over documents and keywords and the lattice-based
navigation which ConceptCloud uses, but use manual keyword as-
signments. Carpineto and Romano [3] demonstrated how concept
lattices can be built automatically from unstructured text documents.

Concept lattices have also been applied to software development
repositories, in particular component libraries, but mostly as re-

trieval tools [10, 11]. Browsing was introduced by our own prior
work [5], but that did not use tag clouds for navigation.
Mining Software Repositories. This field has produced many
techniques and tools to solve specific problems such as the visu-
alization of version histories. Codebook [2] is a social network
inspired toolset to analyze information implicitly contained in soft-
ware repositories. However unlike ConceptCloud, Codebook re-
quires explicit regular expression queries to extract information,
and does not directly support browsing. Hipikat [4] is another re-
trieval tool which also monitors multiple information sources (Bug-
zilla, CVS, email, newsgroups) and builds a uniform artifact data-
base. Poshyvanyk and Marcus [12] use a combination of latent
semantic indexing and concept lattices to find methods that are rel-
evant to a bug report. Girba et al. [7] use concept analysis to detect
co-change patterns in revision control systems.

6. CONCLUSIONS
Software archives contain a large amount of information about

software projects and their development process. This informa-
tion is however difficult to extract and there are a number of dedi-
cated tools that are able to report on specific aspects of an archive.
ConceptCloud presents software archive information in an intuitive
browsable format making the information easily accessible to users
and enabling them to investigate multiple aspects of the software
projects. ConceptCloud is an easily accessible, easy to use and ver-
satile tool for browsing software development archives.

7. REFERENCES
[1] http://square.github.io/crossfilter/.
[2] A. Begel, Y. P. Khoo, and T. Zimmermann. Codebook:

discovering and exploiting relationships in software
repositories. ICSE, pp. 125–134, 2010.

[3] C. Carpineto and G. Romano. Automatic construction of
navigable concept networks characterizing text databases.
Topics in Artificial Intelligence, LNCS 992, pp. 67–78, 1995.

[4] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth.
Hipikat: A project memory for software development. IEEE
Trans. Software Eng., 31(6):446–465, 2005.

[5] B. Fischer. Specification-based browsing of software com-
ponent libraries. Autom. Softw. Eng., 7(2):179–200, 2000.

[6] B. Ganter and R. Wille. Formal concept analysis -
mathematical foundations. Springer, 1999.

[7] T. Gîrba, S. Ducasse, A. Kuhn, R. Marinescu, and R. Daniel.
Using concept analysis to detect co-change patterns. IWPSE,
pp. 83–89, 2007.

[8] R. Godin, E. Saunders, and J. Gecsei. Lattice model of
browsable data spaces. Information Sciences, 40(2):89–116,
1986.

[9] D. N. Götzmann. Colibri/java, 2007.
http://code.google.com/p/colibri-java/.

[10] C. Lindig. Concept-based component retrieval. Working
Notes of the IJCAI-95 Workshop: Formal Approaches to the
Reuse of Plans, Proofs, and Programs, 1995.

[11] Y. Park. Software retrieval by samples using concept
analysis. J. Systems and Software, 54(3):179 – 183, 2000.

[12] D. Poshyvanyk and A. Marcus. Combining formal concept
analysis with information retrieval for concept location in
source code. ICPC, pp. 37–48, 2007.

[13] R. Wille. Restructuring lattice theory: an approach based on
hierarchies of concepts. In I. Rival (ed.), Ordered sets, pp.
445–470. Reidel, 1982.

762

