
A Generic Annotation Inference Algorithm for the
Safety Certification of Automatically Generated Code

Ewen Denney
RIACS / NASA Ames

m/s 269-2, Moffett Field, CA 94035, USA
edenney@email.arc.nasa.gov

Bernd Fischer
School of Electronics and Computer Science

University of Southampton, England
B.Fischer@ecs.soton.ac.uk

Abstract
Code generators for realistic application domains are not directly
verifiable in practice. In the certifiable code generation approach
the generator is extended to generate logical annotations (i.e., pre-
and postconditions and loop invariants) along with the programs,
allowing fully automated program proofs of different safety prop-
erties. However, this requires access to the generator sources, and
remains difficult to implement and maintain because the annota-
tions are cross-cutting concerns, both on the object-level (i.e., in
the generated code) and on the meta-level (i.e., in the generator).

Here we describe a new generic post-generation annotation in-
ference algorithm that circumvents these problems. We exploit the
fact that the output of a code generator is highly idiomatic, so that
patterns can be used to describe all code constructs that require
annotations. The patterns are specific to the idioms of the target-
ed code generator and to the safety property to be shown, but the
algorithm itself remains generic. It is based on a pattern match-
er used to identify instances of the idioms and build a property-
specific abstracted control flow graph, and a graph traversal that
follows the paths from the use nodes backwards to all correspond-
ing definitions, annotating the statements along these paths. This
core is instantiated for two generators and successfully applied to
automatically certify initialization safety for a range of generated
programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification; I.2.2 [Artificial Intelligence]: Deduc-
tion and Theorem Proving; I.2.3 [Artificial Intelligence]: Auto-
matic Programming

General Terms Algorithms, Verification

Keywords automated code generation, program verification, soft-
ware certification, Hoare calculus, logical annotations, automated
theorem proving

1. Introduction
Automated code generation is an enabling technology for model-
based software development and has significant potential to im-
prove the entire software development process. It promises many

Copyright 2006 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by a contractor or affiliate of the U.S.
Government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
GPCE’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-237-2/06/0010. . . $5.00.

benefits, including higher productivity, reduced turn-around times,
increased portability, and elimination of manual coding errors.
However, the key to realizing these benefits is of course genera-
tor correctness—nothing is gained from replacing manual coding
errors with automatic coding errors.

Since the direct verification of generators is still unfeasible
with existing verification techniques, several alternative approaches
based on “correct-by-construction” techniques like deductive syn-
thesis [24] or refinement [23] have been explored. However, these
remain difficult to implement and to scale up, and have not found
widespread application. Currently, generators are thus validated
primarily by testing [25], but this quickly becomes excessive and
cannot guarantee the same level of assurance.

Our work follows an alternative approach that is based on the
principle that the correctness of the generator is irrelevant if instead
the correctness of the generated programs is shown individually.
In particular, we follow the same pragmatic approach as proof
carrying code (PCC) [20] and focus on the Hoare-style certification
of specific safety properties rather than showing full correctness
of the generated programs. This simplifies the task but it still
leaves us with the problem of constructing the appropriate logical
annotations (i.e., pre- and postconditions and loop invariants), due
to their central role in Hoare-style techniques.

In previous work [6, 7, 10, 27], we developed and evaluated the
certifiable code generation approach, in which the generator itself
is extended in such a way that it produces the necessary annotations
together with the code. This is achieved by embedding annotation
templates into the code templates, which are then instantiated and
refined in parallel by the generator. We have successfully used this
approach to certify a variety of safety properties for code generated
by the AUTOBAYES [13] and AUTOFILTER [28] systems. Howev-
er, it has two major disadvantages. First, it requires access to the ex-
isting sources: the developers need to modify the code generator in
order to integrate the annotation generation. Unfortunately, sources
are often not accessible, in particular for commercial generators.
Second, it is difficult to implement and to maintain: for each safety
property, the developers first need to analyze the generated code in
order to identify the location and structure of the required annota-
tions, then identify the templates that produce the respective code
fragments, and finally formulate and integrate appropriate annota-
tion templates. This is compounded by the fact that annotations are
cross-cutting concerns, both on the object-level (i.e., the generated
program) and the meta-level (i.e., the generator). In our case, ex-
tensions and modifications to the code generators have over time
thus led to a situation of “entropic decay” where the generated an-
notations have not kept pace with the generated code, and (safe)
programs fail to be proven safe.

Here we describe an alternative approach that uses a generic
post-generation annotation inference algorithm to circumvent these

problems. We exploit both the highly idiomatic structure of auto-
matically generated code and the restriction to specific safety prop-
erties. Since generated code only constitutes a limited subset of all
possible programs, the new “eureka” insights that are required in
general program verification remain rare in our case. Since safety
properties are simpler than full functional correctness, the required
annotations are also simpler and more regular. We can thus use
code patterns to describe all code constructs that require annota-
tions and templates to describe the annotations that are required at
the pattern locations. We can then use techniques similar to aspect-
oriented programming to add the annotations to the generated code:
the patterns correspond to (static) point-cut descriptors, while the
introduced annotations correspond to advice.

Similar to the certifiable code generation approach, we still
split the problem of certifying code into two phases: an untrusted
annotation construction phase, and a simpler but trusted verification
phase where the standard machinery of a verification condition
generator (VCG) and automated theorem prover (ATP) is used to
prove that the code satisfies the safety property. However, our new
algorithm concentrates annotation generation in one location and,
even more importantly, leaves the generator unchanged because it
can run completely separately from the generator.

The main contribution of this paper is the development of a
generic approach to extending code generators with a safety certifi-
cation capability. At the core of the algorithm are a pattern match-
er that is used to identify instances of the idioms and to build
build property-specific abstracted control flow graphs, and a graph
traversal that follows the paths from the use nodes backwards to all
corresponding definitions and annotates the statements along these
paths. The underlying annotation inference algorithm has been ap-
plied to certify initialization safety for code generated by the AU-
TOBAYES and AUTOFILTER systems. The focus in this paper is
on the inference algorithm and the core components, rather than
the subsequent generation and proof of verification conditions. We
use initialization safety as example property to illustrate the algo-
rithm, but the algorithm itself is generic with respect to the safety
property. In the next section, we briefly provide some background;
for more details we refer to [6, 7, 13]. We then introduce annota-
tion inference informally by a worked example in Section 3 before
we explain the technical details of the algorithm in Section 4. In
Section 5, we summarize the experiences and experimental results
with applying our algorithm to code generated by AUTOBAYES
and AUTOFILTER. The final two sections discuss related and fu-
ture work.

2. Background
Idiomatic Code Automated code generators derive lower-level
code from higher-level, declarative specifications. Approaches
range from deductive synthesis [24] to template meta-programming
[4] but for our purposes neither the specific approach nor the spec-
ification language matter, and we build on a template-based ap-
proach [5]. What does matter, however, is the fact that an automatic
code generator usually generates highly idiomatic code. Intuitively,
idiomatic code exhibits some regular structure beyond the syntax
of the programming language and uses similar constructions for
similar problems. Manually written code already tends to be id-
iomatic, but the idioms used vary with the programmer. Automated
generators eliminate this variability because they derive code by
combining a finite number of building blocks—in our case, tem-
plates. For example, AUTOBAYES and AUTOFILTER only use three
templates to initialize a matrix, resulting in either straight-line code
or one of two doubly-nested loop versions (Figure 1).

The idioms are essential to our approach because they (rather
than the templates) determine the interface between the code gen-
erator and the inference algorithm. For each generator and safety

A[1,1]:= a1,1;
. . .
A[1,m]:= a1,m;
A[2,1]:= a2,1;
. . .
A[n,m]:= an,m;

for i:= 1 to n do
for j:= 1 to m do
B[i,j]:= b;

for i:= 1 to n do
for j:= 1 to m do

if i=j then
C[i,j]:= c

else
C[i,j]:= c′;

Figure 1. Idiomatic matrix initializations in AUTOBAYES and
AUTOFILTER

property, our approach thus requires a customization step in which
the relevant idioms are identified and formalized as patterns. Note
that neither missed idioms nor wrong patterns can compromise the
assurance given by the safety proofs because the inferred annota-
tions remain untrusted. They can, however, compromise the “com-
pleteness” of the approach in the sense that safe programs can fail
to be proven safe, and in our experience, a few iterations can be
required to identify all patterns. Note also that the idioms can be
recognized from a given code base alone, even without knowing
the templates that produced the code. This gives us two additional
benefits. First, it allows us to apply our technique to black-box gen-
erators as well. Second, it also allows us to handle optimizations:
as long as the resulting code can be described by patterns neither
the specific optimizations nor their order matter.

Safety Certification The purpose of safety certification is to
demonstrate that a program does not violate certain conditions dur-
ing its execution. A safety property is an exact characterization
of these conditions based on the operational semantics of the lan-
guage. A safety policy is a set of Hoare rules designed to show
that safe programs satisfy the safety property of interest. Figure 2
shows the rules of the initialization safety policy as an example.
The rules are formalized using the usual Hoare triples P {c} Q,
i.e., if the condition P holds before and the command c terminates,
then Q holds afterwards. For example, the assert rule says that giv-
en an arbitrary incoming postcondition Q, we must first prove that
the asserted postcondition Q′ implies this. We then compute the
weakest precondition (WPC) of Q′ for c and show that the assert-
ed precondition P ′ implies this. The asserted precondition is then
passed on as the WPC of the annotated statement. See [19] for more
information about Hoare-style program proofs.

For each notion of safety the appropriate safety property and
corresponding policy must be formulated. This is usually straight-
forward; in particular, the safety policy can be constructed system-
atically by instantiating a generic rule set that is derived from the
standard rules of the Hoare calculus [6]. The basic idea is to extend
the standard environment of program variables with a “shadow”
environment of safety variables which record safety information
related to the corresponding program variables. The rules are then
responsible for maintaining this environment and producing the ap-
propriate verification conditions (VCs). This is done using a family
of safety substitutions that are added to the normal substitutions,
and a family of safety conditions that are added to the calculated
WPCs. Safety certification then starts with the outermost (i.e., at
the end of the program) postcondition true and computes the weak-
est safety precondition (WSPC), i.e., the WPC together with all
applied safety conditions and safety substitutions. If the program is
safe then its WSPC will be provable without any assumptions.1

In this paper, we focus on initialization safety, which we use as
our running example here but a range of other safety properties,
including absence of out-of-bounds array accesses and nil-pointer

1 As usual for the Hoare approach, the calculus is only relatively complete,
so technically the derived WSPC will only be provable in a sufficiently
strong logic.

(assign)
Q[e/x, INIT/xinit] ∧ safeinit(e) {x := e} Q

(update)
Q[upd(x, e1, e2)/x, upd(xinit, e1, INIT)/xinit] ∧ safeinit(e1) ∧ safeinit(e2) {x[e1] := e2} Q

(if)
P1 {c1} Q P2 {c2} Q

(b ⇒ P1) ∧ (¬b ⇒ P2) ∧ safeinit(b) {if b then c1 else c2} Q

(while)
P {c} I I ∧ b ⇒ P I ∧ ¬b ⇒ Q

I ∧ safeinit(b) {while b inv I do c} Q

(for)
P {c} I[i + 1/i] I[INIT/iinit] ∧ e1 ≤ i ≤ e2 ⇒ P I[e2 + 1/i] ⇒ Q

I[e1/i] ∧ e1 ≤ e2 ∧ safeinit(e1) ∧ safeinit(e2) {for i := e1 to e2 inv I do c} Q

(comp)
P {c1} R R {c2} Q

P {c1 ; c2} Q
(skip)

Q {skip} Q
(assert)

P ′ ⇒ P P {c} Q′ Q′ ⇒ Q

P ′ {pre P ′ c post Q′} Q

Figure 2. Proof rules for initialization safety

dereferences, have already been formalized [6, 20] and can in prin-
ciple be used with our algorithm. Initialization safety ensures that
each variable or individual array element has been explicitly as-
signed a value before it is used. The safety environment consists of
shadow variables xinit that contain the value INIT after the variable x
has been assigned a value. Arrays are represented by shadow arrays
to capture the status of the individual elements. The rules can be
read backwards to compute the WSPCs. For example, the for-rule
says that for an arbitrary postcondition, Q, if c has WSPC P for the
postcondition I[i + 1/i], and if the two intermediate VCs are true,
then the WSPC of the loop is as shown. Only statements assign-
ing a value to a location affect the value of a shadow variable (i.e.,
the assign-, update-, and for-rules). However, all rules also pro-
duce the appropriate safety conditions safeinit(e) for all immediate
subexpressions e of the statements. Since the safety property de-
fines an expression to be safe if all corresponding shadow variables
have the value INIT, safeinit(x[i]) for example simply translates to
iinit = INIT ∧ (xinit[i]) = INIT.
VC Processing and Annotations As usual in Hoare-style verifi-
cation, the VCG traverses the annotated code and applies the rules
of the calculus to produce VCs. These are then simplified, com-
pleted by an axiomatization of the background theory and passed
to an off-the-shelf ATP. If all VCs are proven, the program is safe
with respect to the safety property. Note that the ATP has no access
to the program internals; hence, all pertinent information must be
taken from the annotations, which become part of the VCs. For full
functional verification, annotations are thus usually very detailed
and, consequently, annotation inference remains intractable for this
case. For safety certification, on the other hand, the Hoare rules of
the safety policy already have more internal structure and the safe-
ty conditions are regular and relatively small, so that the required
annotations are a lot simpler. For example, initialization safety just
requires that the logical annotations entail at each use of a variable
x that the corresponding shadow variable xinit has the value INIT. In
addition, the targeted safety property and policy are known at an-
notation inference time, which eliminates the need for any logical
reasoning in the style of the early inference approaches [26].
System Architecture Figure 3 shows the overall system archi-
tecture of our certification approach. At its core is the original (un-
modified) code generator which is complemented by the annotation
inference subsystem, including the pattern library and the annota-
tion templates, as well as the standard machinery for Hoare-style
techniques, i.e., VCG, simplifier, ATP, proof checker, and domain
theory. These components and their interactions are described in

the rest of this paper and in more detail in [6, 10, 27]. As in the
PCC approach, the architecture distinguishes between trusted and
untrusted components, shown in Figure 3 in red (dark grey) and
blue (light grey), respectively. Trusted components must be correct
because any errors in them can compromise the assurance provided
by the overall system. Untrusted components, on the other hand,
are not crucial to the assurance because their results are double-
checked by at least one trusted component. In particular, the assur-
ance provided by our approach does not depend on the correctness
of the two largest (and most complicated) components: the origi-
nal code generator, and the ATP; instead, we need only trust the
safety policy, the VCG, the domain theory, and the proof checker.
Moreover, the annotation inference subsystem (including the pat-
tern library and annotation templates) also remain untrusted since
the resulting annotations simply serve as “hints” for the subsequent
analysis steps.

3. A Worked Example
Before we describe the details of the inference algorithm, we illus-
trate it by means of a worked example. Figure 4(a) shows a simple
program that initializes two vectors A and B of size N with giv-
en but irrelevant values ai and b (see lines 2.1–2.n and 3.1–3.2,
respectively) and then computes and returns the sums s and t of
their respective elements as well as their dot-product d. It is derived
from and representative of the code generated by AUTOFILTER; in
particular it shows the same overall structure—a series of variable
definitions followed by a loop with variable uses. AUTOFILTER’s
target language is a simple imperative language with basic control
constructs (i.e., if and for) and numeric scalars and arrays as the on-
ly datatypes. However, the language also supports domain-specific
operations on entire vectors and matrices like matrix multiplication
or assignment, although these are not used in the example shown in
Figure 4.

The aim of the inference algorithm is to “get information from
definitions to the uses”, i.e., to annotate the program in such a
way that the VCG will have the necessary information to show
the program safe with respect to the given property as it works its
way back through the program. In the example therefore we need—
amongst others—an invariant for the loop at line 5.1 that ensures
that the shadow variables corresponding to the scalar variables s,
t, and d and to the arrays A and B have the value INIT.

Since the safety-relevant information is represented by the shad-
ow variables, the inference algorithm first scans the code for the
relevant corresponding program variables. For each relevant vari-

checker

trusted

untrusted

proofsproofs proof

certificate

rewrite
rules

axioms / lemmas

inference

code

VCs

annotated code

VCs

domain

theory

annotated codecode

spec.

problem annotation

simplifier

 code

safety

policy

annotation

library

pattern

 generator

 ATPVCG

schemas

Figure 3. System architecture

1.1
1.2
1.3

2.1

2.n

3.1

3.2

4.1
4.2
4.3

5.1

5.2
5.3
5.4

6

const N:= n;
var i,s,t,d;
var A[1:N],B[1:N];
A[1]:= a1;
. . .
A[n]:= an;

for i:=1 to N do

B[i]:= b;

s:=0;
t:=0;
d:=0;

for i:=1 to N do

s:=s+A[i];
t:=t+B[i];
d:=d+A[i]*B[i];

return s,t,d;

(a)

const N:= n;
var i,s,t,d;
var A[1:N],B[1:N];
A[1]:= a1;
. . .
A[n]:= an;

def(B[1:N]);

s:=0;
t:=0;
d:=0;

for i:=1 to N do

s:=s+A[i];
use(B);
use(B);

return s,t,d;

(b)

const N:= n;
var i,s,t,d;
var A[1:N],B[1:N];
A[1]:= a1;
. . .
A[n]:= an;

for i:=1 to N
inv ∀j∈{1: i − 1}·Binit[j]= INIT
do
B[i]:= b;

post ∀j∈{1:N}·Binit[j]= INIT

s:=0;
t:=0;
d:=0;

for i:=1 to N
inv ∀j∈{1:N}·Binit[j]= INIT
do

s:=s+A[i];
t:=t+B[i];
d:=d+A[i]*B[i];

return s,t,d;

(c)

block(A);

def(A[1:N]);

barrier(A);

block(A);

for i:=1 to N do

use(A);
block(A);
use(A);

block(A);

(d)

const N:= n;
var i,s,t,d;
var A[1:N],B[1:N];
A[1]:= a1;
. . .
A[n]:= an;
post ∀j∈{1:n}·Ainit[j]= INIT

for i:=1 to N
inv ∀j∈{1:n}·Ainit[j]= INIT
∧ ∀j∈{1: i − 1}·Binit[j]= INIT do
B[i]:= b;

post ∀j∈{1:n}·Ainit[j]= INIT
∧ ∀j∈{1:N}·Binit[j]= INIT

s:=0;
t:=0;
d:=0;

for i:=1 to N
inv ∀j∈{1:n}·Ainit[j]= INIT
∧ ∀j∈{1:N}·Binit[j]= INIT
∧ sinit = tinit =dinit = INIT do
s:=s+A[i];
t:=t+B[i];
d:=d+A[i]*B[i];

post sinit = tinit =dinit = INIT

return s,t,d;

(e)

Figure 4. (a) Original program (b) Abstraction for B (c) Annotations for B (d) Abstraction for A (using block- and barrier-patterns) (e) Fully
annotated program.

able, the algorithm then builds an abstracted control flow graph
(CFG) where irrelevant parts of the program are collapsed into sin-
gle nodes and follows all paths backwards from the variable’s use
nodes until it encounters either a cycle or a definition node for the
variable. Paths that do not end in a definition are discarded and
the remaining paths are traversed node by node. First the defini-
tions themselves are annotated, and then annotations are added to
all intermediate nodes that otherwise constitute barriers to the in-
formation flow.

For initialization safety all variables that are used on the right-
hand side of assignments (more precisely, in rvar-positions) are

relevant, but for this example we will restrict our attention to the
two array variables A and B, starting with B which is used in lines
5.3 and 5.4. Both uses are abstracted into use(B), in Figure 4(b).
The only assignment to B is in line 3.2; however, this is not the en-
tire definition—the algorithm needs to identify the for-loop (lines
3.1-3.2) as the definition for the entire array B and abstract it in-
to the definition node def (B[1:N]). The path search then starts at
line 5.4 and goes straight back up to the for-loop at line 5.1, where
it splits. One branch comes in from the bottom of the loop-body but
this immediately leads to a cycle and is therefore discarded. The
other branch continues through lines 4.1–4.3 and terminates at the

definition node at line 3.1. Since all branches have been exhausted,
there is only one path along which annotations need to be added.
The annotation process starts with the use and proceeds towards the
definition terminating the path. The form of all annotations is fully
determined by the known syntactic structure of the definition and
by the safety property. Since the definition is a (singly-nested) loop,
in this case, it needs a loop invariant as well as a postcondition.
Since the safety property is initialization safety, both invariant and
postcondition need to formalize that the shadow variable Binit cor-
responding to the current array variable B records the value INIT for
the already initialized entries. Note that the different upper bounds
for the quantifiers can both be constructed from the loop. The post-
condition is then pulled along the remaining path, i.e., added to all
nodes that require it. Every node needs to be inspected, but in this
case only the for-loop at line 5.1 requires an invariant. Figure 4(c)
shows the partially annotated program that results from this pass.

The next pass adds the annotations for A (Figure 4(d)). As be-
fore, its two uses in lines 5.2 and 5.4 are abstracted. A is initial-
ized using a different idiom—a sequence of assignments, lines 2.1–
2.n—which is again collapsed into a def -node; here, the initialized
range is taken from the first and last assignment, respectively. The
program is collapsed further by the introduction of barrier- and
block-nodes. These represent areas that do not need to be explored
because they cannot contain relevant definitions, thus in general
substantially reducing the number of paths. Both are also described
by property-specific patterns. However, barrier-nodes must be re-
expanded during the path traversal phase because they require an-
notations (line 3.1) while block-nodes remain opaque. Except for
this special handling, the algorithm proceeds as before, and Fig-
ure 4(e) shows the resulting fully annotated program.

4. Inference Algorithm
The example in the previous section shows that the set of idiomatic
coding patterns which are used is the key knowledge that drives the
annotation construction. Finding instances of these patterns in the
code is not a general program understanding problem, however: we
are not concerned with identifying general-purpose coding patterns
and cliches [22] but only the relevant definitions and uses. These
are specific to the given safety property, but the algorithm remains
the same for each policy. In the case of initialization safety, the def-
initions are the different initialization blocks as shown in Figure 1,
while the uses are statements which read a variable (i.e., contain an
rvar). In the case of array bounds safety, the definitions correspond
to the array declarations since the shadow variables get their val-
ues from the declared bounds, while the uses are statements which
access an array variable.

The structure of the inference algorithm closely follows the
outline in the previous section. The top-level function ann prog
(Figure 5) gets the safety property SP and the abstract syntax tree of
the program P as arguments and returns the overall result by side-
effects on P. It reduces the inference efforts by limiting the analysis
to certain program hot spots which are determined by the so-called
“hot variables” described in the next section.

ann prog first accesses the property-specific patterns for defi-
nitions, uses and barriers. It then calls compute hotvars to pass
through the program and to collect all hot variables and hot uses,
since annotations need to be constructed only for these. For each
hot variable it then computes the abstracted CFG and iterates over
all paths in the CFG that start with a hot use, before it finally con-
structs the annotations for the paths. This last step is broken into
two functions ann def and ann path that are described in more
detail in Section 4.4. Note that the hot variables are computed be-
fore the graph construction (and thus before the actual annotation
phase), in order to minimize the work in that and subsequent stages.

proc ann_prog(SP:Property, P:AST) =
var patterns : list Pattern;

var : Id;
uses : list Location;
use : Location;
cfg : CFG;
path,rest : list Node;
post : Formula;

begin
patterns := get_patterns(SP);
foreach (var, uses) in compute_hotvars(SP, P) do
cfg := compute_cfg(P, patterns, var);
foreach use in uses do

foreach path in compute_paths(cfg, use) do
(post, rest):=ann_def(path);
ann_path(var, use, rest, none, post);

end

Figure 5. Top-level Algorithm Structure

4.1 Hot Variables

As the VCG works its way backwards through the program, it grad-
ually constructs a WSPC and generates VCs whenever required by
the rules of the safety policy. These VCs will ultimately be dis-
charged in the context of the safety substitutions that accumulate
earlier in the program. If information about the content of a shad-
ow variable is missing from that context, it must be provided by an
annotation. Therefore, to figure out which annotations are required,
we need to know at which points variables are used with “missing”
information: we need a notion of availability.

We call a variable available (wrt. a safety property) at a program
location if there are no barriers on the control flow paths from the
variable’s definition nodes to the use node, i.e., if this location is
within reach of the variable’s definition. For example, immediately
after a scalar assignment, the assigned variable is available but it
becomes unavailable if there is an intervening loop. We say that a
variable use is hot if it unavailable, and call a variable a hot variable
(or hotvar for short) if at least one of its uses is hot.

The function compute hotvars used in Figure 5 maintains
a list of available variables, initially set to empty, and scans for-
ward through the program, deciding for each statement (and the
given property) how it affects the availability of the variables. For
example, we assume that scalar assignments add to the available
variables, but array assignments do not: because arrays are typi-
cally accessed indirectly using loops and variable indices, all uses
should be treated as hot. For each statement that matches the policy-
specific use pattern, the algorithm also checks if the used variable
is available; if it is not, that use is tagged as being hot.

The hot variables are approximated conservatively, i.e., we err
on the side of designating uses as hot and could even treat all
uses as hot. However, limiting the number of hot variables is an
important optimization to cut down the number of graphs to be
constructed (see Section 4.3).

4.2 Patterns and Pattern Matching

The algorithm uses patterns to capture the idiomatic code structures
and pattern matching to find the corresponding code locations.
Each pattern specifies a class of code fragments that are treated
similarly by the algorithm, e.g., because they require a similar
annotation.

The pattern language is essentially a tree-based regular expres-
sion language similar to XML-based languages like XPath [3]; Fig-
ure 6 shows its grammar. The language supports matching of tree
literals f(P1, . . . Pn) (if the signature Σ is given by the program-
ming language to be analyzed, we will also use its concrete syntax

P ::= x x ∈ X
| f(P1, . . . , Pn) f ∈ Σ
| | P? | P* | P+
| P1||P2 | P1 ; P2 | P1 <+ P2

| P1 ∈ P2 | P1 ∈/P2

Figure 6. Pattern Grammar

to formulate example patterns), wildcards () and the usual regular
operators for optional (?), list (*) and non-empty list (+) patterns,
as well as alternation (||) and concatenation (;) operators. <+ is
a committed choice operator, which is similar to alternation, but
tries the alternatives in a left-to-right order, and commits to the first
match, i.e., does not backtrack into the other alternatives. The lan-
guage also supports matching at arbitrary subterm positions (i.e.,
P1 ∈ P2 matches all terms that match P2 and have at last one sub-
term that matches P1; similarly, P1 ∈/ P2 matches all terms that
match P2 and have no subterm that matches P1). Matching arbi-
trarily nested terms of the form f(· · · f(x) · · ·)) is not required for
our purposes.

However, the main difference from XPath and similar lan-
guages is that we use meta-variable patterns x to introduce a
limited degree of context dependency. Like a wildcard, an unin-
stantiated meta-variable matches any term but, unlike a wildcard,
it becomes instantiated with the matched term and thus subse-
quently only in other instances of the instantiated pattern. For ex-
ample, the pattern ([]:=)+ matches the entire statement list
A[1]:=1;A[2]:=2;B[1]:=1 while the pattern (x[]:=)+
matches only the two assignments to A but not the final assign-
ment to B, due to the instantiation of x with A. Further context-
dependencies are introduced by multiple occurrences of the same
meta-variable in a pattern. For example, a pattern of the form
for i := to do [i, i]:= can be used to identify loops that
access only the diagonal elements of any matrix.

The match procedure traverses terms first top-down and then
left-to-right over the direct subterms. Meta-variables are instantiat-
ed eagerly (i.e., as close to the root as possible) but instantiations
are undone if the enclosing pattern fails later on. List patterns fol-
low the usual “longest match” strategy used in traditional regular
expression matching. The match procedure returns as result a set
of (Location × IN × Substitution)-triples where the first two argu-
ments are the root position and length of the match of the top-level
pattern.

4.3 Abstracted Control Flow Graphs

The algorithm follows the control flow paths from variable use
nodes backwards to all corresponding definitions and annotates the
statements along these paths as required (see the next two sections
for details). However, it does not traverse the usual control flow
graphs but abstracted versions, in which entire code fragments
matching specific patterns are collapsed into individual nodes.
Since the patterns can be parameterized over the variables, sep-
arate abstracted CFGs must be constructed for each given hotvar.
The construction is based on a straightforward syntax-directed al-
gorithm as for example described in [16].2 The only variation is
that the algorithm first matches the program against the different
patterns, using the algorithm described in the section above, and
in the case of a match constructs a single node of the class corre-
sponding to the successful pattern, rather than using the standard

2 Since the generators only produce well-structured programs, a syntax-
directed graph construction is sufficient. However, we could, if necessary,
replace the graph construction algorithm by a more general version that can
handle ill-structured programs with arbitrary jumps.

construction and recursively descending into the statements sub-
terms.

In addition to basic-nodes representing the different statement
types of the programming language, the abstracted CFG can thus
contain nodes of several different pattern classes. The algorithm
is based on the notions of use- and def -nodes and uses barrier-,
barrier-block- and block-nodes as optimizations. All of these rep-
resent code chunks that the algorithm regards as opaque (to differ-
ent degrees) because they contain no definition for the given vari-
able. They can therefore be treated as atomic nodes for the purpose
of path search, which drastically reduces the number of paths that
need be explored. barrier-nodes represent any statements that re-
quire annotations, i.e., principally loops. They must therefore be
re-expanded and traversed during the annotation phase of the algo-
rithm. In contrast, block-nodes are completely irrelevant to the hot-
var because they neither require annotations (i.e., contain no barri-
ers) nor contribute to annotations (i.e., in our running example they
contain no occurrence of the hotvar in an lvar-position). They can
thus also remain atomic during the annotation phase, i.e., are not
entered on path traversal. Blocks are typically loop-free sequences
of assignments and (nested) conditionals. barrier-blocks constitute
a further optimization by combining the other two concepts: they
are essentially barriers wrapped into larger blocks. Hence, they
must be re-expanded during annotation, like normal barrier-nodes.
The algorithm must further distinguish between reaching a (barri-
er) block from behind and from within. Coming from behind, it can
treat the block opaquely, as described above. Coming from within
(i.e., starting from the initial use), the algorithm must ignore the
block label, and regard the node as the underlying statement. This
means it has to keep track of the previous location as it navigates
along paths.

4.4 Annotation of Paths

For each hot use of a hot variable, the path computation in the
previous section returns a list of paths to putative definitions. They
have been identified by successful matches, but without the safety
proof we cannot tell which, if any, of the definitions are relevant. In
fact, it may be that several separate definitions are needed to fully
define a variable for a single use. Consequently, all paths must be
annotated. In a sense, the paths remain untrusted and trust is only
established by annotating (more precisely, by the resulting VCs
from) all barriers between the uses and definitions.

Paths are then annotated in two stages. First, unless it has al-
ready been done (during a previous path), the function ann def
used in Figure 5 annotates the definition at the end of the path and
removes it from the rest of the path. If the use is contained within
the definition then the path does not need to be continued because
the definition will already have been fully annotated “internally”,
and the rest will be set to nil. Second, the definition’s postcondition
(which has to hold at the use location and along the path as well) is
taken as the initial annotation and propagated along the path from
the use back to the definition. Since this must take control flow into
account, the current annotation is updated as the weakest precondi-
tion of the previous annotation. Both the computation of precondi-
tions and the insertion of annotations are done node by node rather
than statement by statement.

At each step, the path annotation function ann path (see Fig-
ure 7) gets as arguments the hot variable, the original use location,
the (rest of the current) path, the previous location, and the current
weakest precondition. The previous location is needed to compute
the precondition, and the hot variable and use location are used to
prevent duplicate annotations. It first checks whether the current
node is available. If so, or the current node is the last node before
the definition, then since there are no more barriers the VCG will
have all the information it needs from this point onwards and we

proc ann_path(var:Id, use:Location, path: list Node,
prv:Location, post:Formula) =

var cur,nxt : Location;
node : Node;
nodes : list Node;
pre : Formula;

begin
case path of
[] -> return
[node|nodes] ->

if available(node, nodes) or nodes = [_] then
return

else
cur := get_location(node);
nxt := get_location(head(nodes));
if is_annotated(cur, post, use, var) then

skip
else

if is_barrier(node) or is_opaque(node)then
if within(prv, cur) then

if is_loop(node) then
if within(nxt, cur) then
ann_node_loop(node, post, use, var)

else
ann_node_barrier(node, post, use, var)

else
skip

else
ann_node_barrier(node, post, use, var)

else
if is_loop(node) then

if within(nxt, cur) then
ann_node_loop(node, post, use, var)

else
ann_node_barrier(node, post, use, var)

else
skip;

pre := node_wpc(prv, post, node);
ann_path(var, use, nodes, cur, pre)

end

Figure 7. Path Annotation Algorithm

are finished. If not, we look to see if this node has already been
annotated, and skip to the next node.

Otherwise, we distinguish several cases, depending on whether
it is a loop or a barrier or an opaque node (i.e., a block or barrier-
block), whether the previous node is contained within the current
node, and whether the next node is within the current node. Once
we have dealt with a node, the weakest precondition of that node is
calculated, and we move on to the next node.

The WPC of a node is somewhat subtle and depends on whether
or not it is a barrier or opaque, the statement itself (for basic
blocks), and the previous location. In many cases the WPC does not
change. For those cases where it does, the new WPC needs to be
computed by looking at the statement. We distinguish atomic and
compound statements. Compound statements (series, if, for, while)
can only change the WPC if the previous location is after a loop, in
which case statement wpc(P, C) = end(C) ⇒ P , where P is
the incoming postcondition, C is the statement, and end(C) is the
termination condition for the loop, C. For while b do c, this is ¬ b,
and for for i := e1 to e2 do c, it is i > e2. In other words, the WPC
says “if the loop has terminated then P ”. For atomic statements
we compute the weakest precondition by calling the VCG (without
generating safety conditions and substitutions) and simplifying the
result.

4.5 Annotation of Nodes

The path traversal described above calls the actual annotation rou-
tines when it needs to annotate a node. Three classes of nodes need
to be annotated: definitions, barriers, and basic nodes which are al-
so loops.

The most important (and interesting) class is the definitions.
This is really the core of the whole system, and where the anno-
tation knowledge is represented in the form of annotation schemas,
which take a match (identifying the pattern and location), and use
meta-programming to construct and insert the annotations.

For example, each initialization block from Figure 1 is defined
by a separate pattern and has a corresponding annotation schema.
In each case, a final outer postcondition

∀i∈{1 :N}·∀j∈{1 :M}·xinit[i, j] = INIT

(where x is the matrix) is inserted, while 1(b) and 1(c) also get an
inner postcondition, as well as inner and outer invariants.

Note that even after a pattern has been successfully matched, an
annotation schema might still fail its preconditions. For example,
the binary assignment schema (Figure 1(a)) simply matches against
a sequence of assignments, but the schema further requires that the
indices of the first and last assignments are the low and the high,
respectively.

The annotation schemas can handle more complicated examples
than the “pure” definitions directly reflected by the patterns. A
common situation is for a barrier to appear within a definition.
Consider the following simple example:

for i:=1 to N do
a[i]:=0;
for j:=1 to M do . . .

The definition pattern is a single nested initialization, but the inner
for-loop means that an extra postcondition ainit[i] = INIT is needed
on the assignment to push the initialization through the body. How-
ever, if the for-barrier is before the assignment no extra annotation
is needed. In general, the schemas are able to deal with such cases
and maintain the “internal” flow of information within a definition.

5. Experiences
We have implemented the generic inference algorithm in about
4000 lines of Prolog code and instantiated it to certify initialization
safety for code generated by AUTOBAYES and AUTOFILTER. The
“declarative content” of the instantiation was surprisingly small: it
only required instantiations of the pattern library but no changes to
the algorithm itself.

5.1 AutoFilter

For AUTOFILTER, the definitions are given by two of the matrix
initialization idioms in Figure 1, along with the direct matrix as-
signment operation ::=. This is captured by the following pattern:

defAF(x) ::= x:= || x::=
|| (x[,]:=)+
|| for i := to do

for j := to do
if then x[i, j]:= else x[i, j]:=

Like all patterns here, this is parametrized over a hotvar x, so that
defAF(x) is the pattern of definitions for x, barrier(x) (see below)
is a barrier on a path from a use of x to its definition, and so on. Note
that i and j are “free” meta-variables that get instantiated by the
actual loop index variables. The patterns can also contain “junk”,
i.e., arbitrary code that can be interspersed with the match. This is
easily defined by a junk operator omitted here.

Barriers are defined as for-loops without any occurrence of
the hotvar. Loops with the hotvar are then simply treated by the

Spec. |P | |A | N Tgen TATP |A | N Tinf TATP
ds1 235 439 22 / - 16 41 494 19 / - 22 46
iss 523 441 27 / - 29 52 547 24 / - 46 49
segm 182 1278 105 / 6 22 628 1584 109 / - 54 202

178 1332 114 / 10 24 903 1643 108 / 5 54 556

Table 1. Annotation Generation vs. Annotation Inference

normal CFG-routines, i.e., not collapsed. Finally, blocks are either
conditionals whose branches are deemed “irrelevant”, which means
they have no occurrence of a barrier or hotvar, or loops with an
irrelevant body.

barrierAF(x) ::= x ∈/ (for := to do)

blockAF(x) ::= if (x ∈/) then irr(x) else irr(x)
|| for := to do irr(x)

Here irr(x) = (x || barrierAF(x)) ∈/ is an auxiliary pattern
blocking all occurrences of the hotvar or a barrier. We omit the
easy pattern for uses.

For the CFG construction, the above patterns are joined with the
committed choice operator, i.e., the construction matches against
the top-level pattern

defAF(x) <+ barrierAF(x) <+ blockAF(x).

Hence, the overlap between barriers and blocks is resolved deter-
ministically.

5.2 AutoBayes

AUTOBAYES has similar patterns to AUTOFILTER, for vectors in
addition to matrices, but does not need the ::=-pattern since it
does not generate direct matrix operations. It has several more
for-loop patterns, as well as two additional language constructs,
abort, which appears in the definition pattern, and while-loops,
which can form additional barriers. Blocks and uses are defined in
the same way as for AUTOFILTER, again extended to while-loops.
Finally, for the CFG-construction, the patterns are again joined via
committed choice.

defAB(x) ::= (x[]:=)+||(x[,]:=)+
|| for i := to do x[i]:=
|| for i := to do x[i, i ∈/]:=
|| for i := to do

for j := to do x[i, j]:=
|| for i := to do

for j := to do
if then abort else x[i, j]:=

barrierAB(x) ::= x ∈/ (for := to do)
|| x ∈/ (while do)

blockAB(x) ::= if (x ∈/) then irr(x) else irr(x)
|| for := to do irr(x)
|| while do irr(x)

5.3 Results

Table 1 compares the results achieved by the new algorithm to those
previously achieved in the certifiable code generation approach.
The first two examples are AUTOFILTER specifications. ds1 is tak-
en from the attitude control system of NASA’s Deep Space One
mission [28]. iss specifies a component in a simulation environ-
ment for the Space Shuttle docking procedure at the International
Space Station. segm describes an image segmentation problem for
planetary nebula images taken by the Hubble Space Telescope. For
this, AUTOBAYES synthesizes two different versions of an iterative
numerical clustering algorithm. For each example, the table lists

the size | P | of the generated program in lines of code, and then,
for each approach, the sizes |A | of the generated and inferred an-
notations, the numbers of generated and failed VCs, respectively,
as well as the runtimes and proof times in seconds.

For the two AUTOFILTER examples, both techniques prove to
be very similar. The inferred annotations are slightly larger (by 15–
25%) than the generated ones but, due to simplifications, they in-
duce fewer VCs. For both approaches, the programs are certifiable
fully automatically: all VCs are proven by the ATP. For the AU-
TOBAYES example, the situation is more complicated. Here, the
previous approach to annotation generation within the code gener-
ator has not kept up with ongoing development and the annotations
are now insufficient to prove the programs safe—even though they
are. With the patterns described above, annotation inference can,
in contrast, certify the first program but it too remains too weak
for the second program, as a required code pattern turns out to be
missing. However, this pattern could be easily added, and with sig-
nificantly less effort than modifying the generator itself. In both
cases, the inferred annotations are again slightly larger, with fewer
VCs induced.

Since it needs to build and traverse the CFGs, the inference
approach is (substantially) slower than the generation approach,
which only needs to expand templates. However, the introduction
of block- and barrier-nodes cuts down the size of the CFGs dra-
matically, and we expect further speed-up from an optimized im-
plementation. Moreover, the limiting factors overall are the proof
times which are comparable (modulo failed VCs) in all cases, indi-
cating that the inference does not introduce new complexity for the
ATP.

6. Related Work
Logical annotations were recognized early on as one of the bot-
tlenecks in program verification. Wegbreit [26] complained that
“completely specifying the predicates on loops is tedious, error
prone and redundant”, and claimed that “loop predicates can be de-
rived mechanically”. Like other early work [11, 17], his approach is
based on predicate propagation. Such methods use inference rules
similar to a strongest postcondition calculus to push an initial logi-
cal annotation forward through the program. Loops are handled by
a combination of different heuristics like weakening or strengthen-
ing and loop unrolling, until a fixpoint is achieved. However, these
methods still need an initial annotation, and unlike our approach,
the loop handling still induces a search space at inference time.
Moreover, the constructed annotations are often only candidate in-
variants and need to be validated (or refuted) during inference, be-
cause they increase the search space.

Abstract interpretation has been used to infer annotations in
separation logic for pointer programs [18] although the techniques
required there are fairly specialized and elaborate compared to our
patterns. The Coverity static analyzer [1] can be customized by
macros that are simple versions of our patterns.

Finally, generate-and-test methods have been applied to our
problem. Here, the generator phase uses a fixed pattern catalogue to
construct candidate annotations while the test phase tries to validate
(or refute) them, using dynamic or static methods. Daikon [12] is
the best-known dynamic annotation inference tool in this category.
Its tester accepts all candidates that hold without falsification but
with a sufficient degree of support over the test suite. In order to
verify the candidates, Daikon has also been combined [21] with
the ESC/Java static checker [15]. In some cases, this combination
even resulted in full safety proofs (wrt. the safety policy supported
by ESC/Java). In general, however, dynamic annotation generation
techniques remain incomplete because they rely on a test suite to
generate the candidates and can thus miss annotations on paths that
are not executed often enough (or not at all). Houdini [14] is a static

generate-and-test tool that uses ESC/Java to statically refute invalid
candidates. Since ESC/Java is a modular checker, Houdini has to
start with a candidate set for the entire program and then iterate
until a fixpoint is reached. This increases the computational effort
required, and in order to keep the approach tractable, the pattern
catalogue is deliberately kept small. Hence, Houdini is incomplete,
and acts more as a debugging tool than as a certification tool.

7. Conclusions and Future Work
The certification system based on annotation inference as described
here is much more flexible and extensible than the previous certi-
fication architecture [7]. Over time, extensions and modifications
to the code generators had led to a situation of “entropic decay”
where the generated annotations had not kept pace with the gener-
ated code. The new inference mechanism was able to automatically
certify the same programs as the old system, as well as some sub-
sequent extensions. However, as Table 1 shows, the re-construction
is not yet complete, and we continue to extend the new system.
These system extensions require less effort than before since the
patterns and annotation schemas are expressed declaratively and
in one place, in contrast to the previous decentralized architecture
where certification information is distributed throughout the code
generator. Identifying the patterns was an iterative process. We
were helped in this by a browser [9] which allows tracing between
VCs and statements of the auto-generated code. This let us pin-
point missing annotations more easily and, thus, determine missing
patterns.

Our approach offers a general framework for augmenting code
generators with a certification component, and we have started a
project to apply it to MathWorks Real-Time Workshop [2]. Our
techniques could also be adapted to other annotation languages.

There is a strong interaction between the VCG and the annota-
tions. It is possible to modify the VCG so that it does some anal-
ysis and requires less annotations. This would, however, mean that
a greater part of the certification system must be trusted. Neverthe-
less, we would like have a “safety dial” whereby users can trade off
trustedness with speed (which depends, inter alia, on the number
of annotations which must be checked). Further empirical studies
will be required to determine the most effective balance. Howev-
er, we have already implemented several optimizations which cut
down on redundant annotations. This is important since the same
annotations can arise on multiple paths. Furthermore, many com-
putational optimizations could be achieved by merging several of
the phases.

Currently, the entire variability over the set of programs gen-
erated by AUTOFILTER and AUTOBAYES can be captured by the
fixed set of patterns used. In general, this is not necessarily the case.
However, then the code generator could be extended to generate an-
notation plans which would, as an extension to the techniques pre-
sented in this paper, supply additional program-specific patterns,
and would also allow the default inference algorithm to be modi-
fied. This could further increase the applicability of our techniques.

References
[1] www.coverity.com.
[2] www.mathworks.com/products/rtw/

[3] XML Path Language (XPath) Version 1.0, 1999.
www.w3.org/TR/xpath.

[4] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming.
Addison-Wesley, 2005.

[5] K. Czarnecki and U. W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[6] E. Denney and B. Fischer. Correctness of source-level safety policies.
In FM’03, LNCS 2805, pp. 894–913. Springer, 2003.

[7] E. Denney and B. Fischer. Certifiable program generation. In
GPCE’05, LNCS 3676, pp. 17–28. Springer, 2005.

[8] E. Denney, B. Fischer, and J. Schumann. Adding assurance to
automatically generated code. In 8th Intl. Symp. High-Assurance
Systems Engineering, pp. 297–299. IEEE Press, 2004.

[9] E. Denney and B. Fischer. A program certification assistant based on
fully automated theorem provers. In Intl. Workshop User Interfaces
for Theorem Provers, pp. 98–116, April 2005.

[10] E. Denney, B. Fischer, and J. Schumann. An empirical evaluation
of automated theorem provers in software certification. Intl. J. of AI
Tools, 15(1):81–107, 2006.

[11] N. Dershowitz and Z. Manna. Inference rules for program annotation.
ICSE-3, pp. 158–167. IEEE Press, 1978.

[12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution.
IEEE TSE, 27(2):1–25, 2001.

[13] B. Fischer and J. Schumann. AutoBayes: A system for generating
data analysis programs from statistical models. J. Functional
Programming, 13(3):483–508, 2003.

[14] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for
ESC/Java. In FME’01, LNCS 2021, pp. 500–517. Springer, 2001.

[15] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In PLDI’02, pp.
234–245. ACM Press, 2002.

[16] M.J. Harrold and G. Rothermel. Syntax-directed construction of
program dependence graphs. Technical Report OSU-CISRC-5/96-
TR32, The Ohio State University, 1996.

[17] S. Katz and Z. Manna. Logical analysis of programs. CACM,
19(4):188–206, 1976.

[18] O. Lee, H. Yang, and K. Yi. Automatic Verification of Pointer
Programs Using Grammar-Based Shape Analysis. In ESOP’05,
LNCS 3444, pp. 124–240. Springer, 2005.

[19] J. C. Mitchell. Foundations for Programming Languages. The MIT
Press, 1996.

[20] G. C. Necula. Proof-carrying code. In POPL-24, pp. 106–19. ACM
Press, 1997.

[21] J. W. Nimmer and M. D. Ernst. Static verification of dynamically
detected invariants: Integrating Daikon and ESC/Java. In First
Workshop on Runtime Verif ication, Elec. Notes in Theoretical
Computer Science, 55(2). Elsevier, 2001.

[22] C. Rich and L. M. Wills. Recognizing a program’s description: A
graph-parsing approach. IEEE Software, 7(1):82–89, 1990.

[23] D. R. Smith. KIDS: A semi-automatic program development system.
IEEE TSE, 16(9):1024–1043, 1990.

[24] M. Stickel et al. Deductive composition of astronomical software
from subroutine libraries. In CADE-12, LNAI 814, pp. 341–355.
Springer, 1994.

[25] I. Stürmer and M. Conrad. Test suite design for code generation tools.
In ASE-18 pp. 286–290. IEEE, 2003.

[26] B. Wegbreit. The synthesis of loop predicates. CACM, 17(2):102–
112, 1974.

[27] M. Whalen, J. Schumann, and B. Fischer. Synthesizing certified code.
In FME’02, LNCS 2391, pp. 431–450. Springer, 2002.

[28] J. Whittle and J. Schumann. Automating the implementation of
Kalman filter algorithms. ACM Trans. Mathematical Software,
30(4):434–453, 2004.

