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Abstract understand the behaviour of the code, for example, in order to inte-

grate it into an existing code base or to inspect its correctness.

The output of a code generator is assumed to be correct and no . 4 :
In this paper, we introduce a framework for automatic cus-

usually intended to be read or modified; yet programmers are often L L L
y yet prog tomization of generated code to enhance it with the capability to

interested in this, e.g., to monitor a system property. Here, we con- : ! .

sider code customization for a family of code generators associated™ONitor a property at runtime. Our system receives a property-of—
with big-step executable modelling languages (e.g., statecharts).'mereSt for the gengrated Java code of a model, and produ.ces As-
We introduce a customization language that allows us to expresspeCt‘] [1] code that is woven to the generated code to monitor the
customization scenarios for the generated code independently of aPTOPerty. Our system works with the output of a family of code
specific big-step execution semantics. These customization Scenargene_rator_sDZ]_ that each generates code for a behavioural model
ios are all diferent forms of runtime monitors, which lend them-  SPecified in dig-step modelling languag@BSML) [3]. .
selves to a principled, uniform implementation for observation and . BSMLs are a widely used c_Iass Of. modeling languages, which
code extension. A monitor is given in terms of the enabledness and'ndl.’d(':'S statecharts][4] and its vananlﬂ; 5], among other for-
execution of the transitions of a model and a reachability relation MaliSms. A BSML can be used to specify the behaviour of systems
between two states of the execution of the model during a big step.th.at interact with their environments; €g,a banking machmg ora
For each monitor, we generate the aspect code that is incorporatednicrowave. In a BSML model, the reaction of a model to an input
into the output of a code generator to implement the monitor at the Is described by a big step, which consists of a sequence of small

generated-code level. Thus, we provide means for code analysisStepS' each of which is the execution of a set of transitions. There

through using the vocabulary of a model, rather than the detail of is a plethora of BSMLs, which can be essentially distinguished by

the generated code. Our technique not only requires the code gener;helr semantic variation|[3} 6]. These variations specify the detail

ators to reveal only limited information about their code generation of r;OW trafnSItlons bkecome gtna_bled and htov_v they 6.‘][? g).(e(t:;'ted'
mechanisms, but also keeps the structure of the generated code in-, N Our raMework, a monitoring property IS specified in the-

tact. We demonstrate how various useful properties of a model orStep monitoring I_anguagéBML), which we introduce in this pa-
a language, can be checked using our moFr)litoprs. '~ per. A BML monitor uses the vocabulary of a BSML model, and

notthe often unreadable vocabulary of the generated code, to spec-
Categories and Subject DescriptorsD.2.2 [Design Tools and ify a property for the generated code of the model. As such, our

Techniques State diagrams; D.2.5Tgsting and Debuggiig framework raises the level of abstraction that a developer works at:
Monitors; D.3.4 Processorf Code generation; 1.2.2§utomatic a developer neither needs to know about the code generation mech-
Programming: Program transformation, Program modification; anism, nor about the mechanism by which a model-level property is
1.6.4 [Simulation and Modelling Model validation and analysis monitored at the generated-code level. A BML property can be con-

sidered as a kind of predicate-logic formula over the transitions of a
model, together with geachability(or anunreachability operator
Keywords AspectJ, Semantics, Statecharts, MDE, AOP that specifies whether a certain state of a big step can reach (must
not reach) another state of the big step. Quantification can be used
. to specify a general property about a model; e.g.gtbbal consis-
1. Introduction tency[7] property asserts that a transition that is triggered with the
Automatic code generation from high-level models is a key tech- absence of an event and a transition that generates the event cannot
nology to raise the abstraction level in software development, and be executed in the same big step. A BML property is eitheinan
so to increase productivity, and improve code reliability. While the variant, required to hold in all big steps, or isxtnessrequired to
output of a code generator is usually not meant to be read or mod-hold in at least one big step. A novelty in the design of our BML is
ified by a programmer, it is often necessary to have a means tothat it can be uniformly used by fiiérent BSMLs.
We define the semantics of BML by adapting the temporal
operators of LTL[[B] to work in the scope of a big step. A key idea
in our semantics is that thenablednesandexecutiorinformation
Permission to make digital or hard copies of all or part of this work for personal about the transitions are treated @sinterpreted fuqqtlonﬂ]:
classroom use is granted without fee provided that copies are not made outistrip ~ the semantics of BML is independent of how transitions become
for profit or commercial advantage and that copies bear this notice and the fubmitati  enabled and how they are executed. As such, BML abstracts away
on the first page. To copy otherwise, to republish, to post on servers or tariteds from the particularities of the semantics of BSMLs, and thus, is
tolists, requires prior specific permission A fee. uniformly adoptable by the family of BSMLs. This allows for
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Copyright© 2011 ACM 978_1_4503_068%1/10,9.$10.00 adopting BML for the output of dierent code generators as well.
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Figure 1. A simple BSML model.

We have implemented BML for a family of code generatbrs [2] finite state machine that consists of: (i) a hierarchy tree of control
that generates code for a subset of BSMLs. We have developedstates, and (ii) a set of transitions between these control states.
a code generator that for each BML monitor generates the multi-
threaded AspectJ code that collects the necessary information to
interpret the monitor at runtime. Because of the design of our
BML and the structure of the BSML-generated code, our generated
aspects need to intercept the execution of only a few of methods
of the BSML-generated code. To implement BML for a new code
generator, we require the BSML-generated code to expose only
limited programmatic means to inspect the execution of big steps.

Our contribution in this paper is threefold. First, we introduce a

language that allows to specify monitors to analyze the behaviour """ ="~
of genegrated code by usilgg thf)é vocabulary of a ?/nodel, rather than® simplified BSML model for the software system that controls the

the detail of its generated code. Thus, we combine model analy- operation of a microwave oven. Control sthgrowaveis anAnd

sis with code analysis, as advocated by otHers [10, 11], to decrease’ ' 2C that has three children, namé@gntroller, Lock andCooker

the gap between the model and the code. Second, we present a unlwh'Ch are allOr-states; note that the surrounding lines around these

) . : -~ Or-states have been removed to simplify the graphical representa-
form, automatic approach to implement BML monitors for a family . . )
of code generators that supporfieient BSML semantics. Finally, tion. Control statdJnlockedis a Basicstate and a child ofock

we present a non-intrusive, aspect-based technique to customize th&ne of the children of aldr-state is italefaultcontrol state, which

generated code to analyze its behaviour. Our technique is compa-IS signified by an incoming arrow without a source. Thet of the

: : : ; - .o hierarchy tree must be ar-state, which is not explicitly shown if

gaflt(J)Igj;v(lro?it:ﬁtrezpspg%?v(;f::svitg282?t[ﬁr,)rlosv]l.ng the extensibility it has only one child; e.g., as in the model in Figure 1. Each control
The remainder of the paper is organized as follows. SeEiion 2 state has a uniqueamethat appears at its top, left cormner.

presents an overview of the syntax and semantics of BSMLs. Sec-Transitions. A transition, graphically represented by an arrow,
tion[d presents our BML and its example applications. Se¢fion 4 specifies behaviour in a BSML model. Each transitionhas a
presents the semantics of BML. Sectidn 5 presents our implemen-source control statesro(t), and adestination control statelestt),
tation of BML for a family of code generators. Sect[dn 6 discusses together with the following four optional elements: (iyyaard con-
related work. Sectiofil 7 concludes the paper. dition, gc(t), which is a boolean expression over a set of variables,
enclosed by a “[]7; (ii) atriggering condition trig(t), which is the
conjunction of a set of events and negation of events; (iii) a set of
variable assignmentsasr(t), which is prefixed by a/, with at
most one assignment to each variable; and (iv) a sgeotrated
events ger(t), which is prefixed by a ™”. Each transition name
is followed by a “”. As an example, in the model in Figlideti,
is a transition, withsrc(t;) = Off, desf{t;) = On, gct;) = true,
asnt;) = 0, trig(ty) = start, andger(ty) = {lock, start. cook. Tran-
sitionsts, ts, ts, andts use variables; e.gasnts) = {l := true}
andgd(ts) = [I = true]. Variablel is used to disallow the situation
wherets is executed beforg andt, is executed beforg, to avoid
microwave radiation while the door is unlocked. Téeenaof a
transitiont, denoted byareng(t), is the lowesOr-state in the hier-
archy tree such that the source and destination control states of the
To provide a unifying semantic framework for BSMLs, we intro- transition are its descendants. For example, in the model in Figure
duced a normal form syntax, which is similar to the syntax of orig- [@arengt;) = Controller andarendt;) = Active For a modeM,
inal statecharts [4] 7]. A BSML model is a hierarchical, extended we denote the set of all its transitionsEsngM).

Control states. A control state graphically represented by a
rounded box, represents a noteworthy moment in the execution
of a model. Each control state hastyge which is eitherAnd,

Or, or Basic The control states of a model formhé&rarchy tree
where the leaves (and only they) have typesic A child of an
And-state oiOr-state is surrounded by the box representingéts

ent the children of anAnd-state are separated from one another
by dashed lines. Thencestoranddescendantelations are defined
with their usual meanings. As an example, the model in Figlre 1 is

2. Background: Big-Step Modelling Languages

In this section, we present an overview of the family of big-step
modelling languages (BSMLs), whose semantics we deconstructed
and compared in our previous work [3, 6]. We begin with de-
scribing the common, normal form syntax that we have adopted
for BSMLs. We then briefly describe the common semantics of
BSMLs, together with some of their semantic variations. There are
further semantic variations that are not considered in this paper; de-
tails can be found in our previous wolK [3, 6]. We use the BSML
model in Figurdl as our running example throughout the paper.

2.1 Normal Form Syntax



I B 2.2.3 Common Semantics
'SPt The flowchart in Figur€l3, adapted from our previous waik [3],

spy sp sp S
depicts the conceptual stages in executing a single big step. At
|
1 Tk
R = =
leh|  eh] leh|  Leh]

the beginning of a big step, an environmental input is received
71 € potentia(spy) 7k € potentia(sp)

from the environment. The next six stages of the flowchart specify
the necessary stages in forming and executing a small step. The
flowchart iterates until its big step beconmaaximal meaning that
there is no more small steps to be executed, at which point the big
step concludes and the flowchart reaches its end. In each iteration
- - of the flowchart, if there are more than one potential small steps,

Figure 2. Structure of a big step. stage 5 chooses one non-deterministically. As an example, when

the BSML model in Figur&ll resides in its default control states,
2.2 Common Semantics and Semantic Variations if environmental input everstart s received at the beginning of a
. . . big step, transitiot, can be taken as a small step. The execution of

A BSML model specifies the behaviour of a system that interacts t, generates eventsck and start cook which trigger transitiorts
with its environment. Anenvironmental inputs a set of input to be taken as the second small step. However(tt) would have
events together with a set of assignments to input variables. Thepaantrue and the BSML semantics would have only allowed one

reaction qf a BSML model to an environmental input ibig step transition per small step, thety} and(ts) each would have been a
that consists of a sequencesohall stepseach of which can be the potential small step after the executiontof

execution of a set of transitions.

(**ds)enualod

0=

2.2.4 BSML Semantic Variations

2.2.1 Model Initialization . -

- ) ) ) o Each of the six numbered stages of the flowchart in Figdre 3
Initially, in a BSML model, all variables are assigned their initial ~oyid be carried out dfierently in diferent BSMLs, and thus, is
values; all events arabsent(i.e., their statuses affalse); and the a semantic variation point for BSMLs. We call these semantic
model resideg in the default control state of its root. Furt.he.rmore, variation points thsemantic aspectsf BSMLs [3]. Each semantic
the following invariants always hold for a BSML model: (i) if the  aspect can be instantiated witemantic optiothat specifies how
model resides in one of itsnd-states, itresides in all of its children;  the corresponding stage of the semantic aspect must be carried out
and (i) if it resides in one of it©r-states, it resides in exactly one [3]. We use thesans serif and S1aLL Caps fonts to refer to the name
of its children. As an example, initially, the BSML model in Figure 5 53 semantic aspect and a semantic option, respectively.

[ resides in control statedicrowave Controller, Lock, Cooker The feature diagrani [1L4] in Figufé 4 shows six semantics as-
Active Off, Unlocked andldlg. Variablel i§ initialized vyith afalse pects together with a common set of semantic options for each of
value. Eventsstart, stop activate deactivateare environmental {he semantic aspects. Since variables and events are optional in the
input events of the model (they are not generated by any transition). syntax of BSMLs, their corresponding semantic aspects are op-
The model has no environmental input variables. tional features of the feature diagram. In this paper, we consider

. only a commonly used subset of the semantic aspects and semantic
2.2.2 Structure of a Big Step options, which are also supported by the family of code generators
Figure[2, adopted from our previous wotk [6], depicts the struc- that we consider in our implementation.

ture of a big stepT. The execution of a big step is an alternating The Event semantic aspect specifies the snapshots in which
sequence of snapshots and small steps, in response to an envirora generated event is present and can trigger a transition. Three
mental inputl. A snapshobf a BSML model is a valuation of its common semantic options for ti&vent semantic aspect are that a
snapshot elementeach dealing with an aspect of the semantics of generated eventis: (i) present only in the destination snapshot of the
a BSML. For example, there is a snapshot element that maintainssmall step that generates it (thext SuaLL Srer semantic option);

the set of control states that a model resides in: upon the execution(ii) present in the destination of the small step that generates it, and
of a transition, its source control state is removed from the snapshotin all subsequent snapshots in the big step (thesRper semantic
element and its destination control state is added to the snapshobption); or (iii) present throughout the next big step after the big
element. Similarly, there are snapshot elements that maintain thestep in which it is generated (thekr Bic Srep semantic option).
values of variables, the statuses of events, etc. The number of snap- The GC Variable semantic aspect concerns the variable values
shot elements of a BSML model depends on the semantics of theused to evaluate guard conditions. Two common semantic options
BSML. In the big step in Figullg 2, there e 2 snapshots, namely,  are: (i) to use variable values from the beginning of the current

S, SPL, -+ » SPk+1, andn snapshot elements, named, - - - , el,. big step, according to the assignments in the previous big step (the
We call snapshosp and snapshatp..; the source snapshand GC Bic Ster semantic option); or (ii) to use variable values in the
thedestination snapshptespectively, of big stefp. Snapshotpy, current snapshot, thus taking into account the assignments made
called thebeginning snapshpincludes the fect of receiving input in the current big step (the GGusLL Step semantic option). The

| at snapshosp,. Each tuple, $p,7i, Sp+1), (L < i < K)is a small semantic options for thRHS Variable semantic aspect are similar.
step of T. For each small stepsf, 7i, Sp+1), Sp andsp,; are its As an example, in the model in Figure 1, when the model resides
source shapshainddestination snapshptespectively. Theféect in its default control states and input evestart is received, only

of the execution of a small step is stored in its destination snap- employing the Rmamper and GC SiaLL Srep semantic options
shot. We refer to a big step through its sequence of small steps;results in the expected behavioyft}, {ts}, {ts}); e.g., if the GC

e.g., we refer to big step = (Sp, |, Sp, 71, SP1, - -+ » Tk» SPks1) @S Bic Ster semantic option is employets, is not executed.

(10, - , k). At each snapshot, there might be more than one setof = TheConcurrency andPriority semantic aspects deal with form-
transitions that can be executed as the next small step; we call eaching the set of potential small steps of a BSML model at each snap-
of these sets of transitionsptential small stepf that snapshot. shot, using the set of enabled transitions determined by stages 1
We denote the set of potential small steps of a model at a snapshotand 2 of the flowchart in Figuifd 3. Ti@oncurrency semantic as-

sp aspotentia(sp. For a BSML modelM, we denote the set of  pect specifies whether exactly one (thesBe semantic option) or a

all its possible big steps dsgste p$M). maximal set of transitions that the lowest common ancestor of their
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arenas is al\nd-state (the M~y semantic option) can be included

in a small step. Thériority semantic aspect specifies whether a
transition,t, has a higher priority than another transitidfy, in
which case ift can be included in a potential small step, then
must not belong to any potential small step. Two common seman-
tic options are that a transition with a higher source control state
has a higher priority than a transition with a lower one (therse
Parent option) and vice versa (theoSrce ChiLp option).

The Maximality semantic aspect specifies when a big step be-
comes maximal. Two common semantic options are that: (i) once
a transition/t, is taken by a small step, no other transition whose
arena is an ancestor or descendardrengt) can be taken in that
big step (the Ixke One semantic option); and (ii) a big step can
continue until there is no more transitions whose trigger and guard
condition are satisfied (thesite Many semantic option).

3. A Monitoring Language for BSMLs

This section introduces olnig-step monitoring languag@ML).
A BML monitorfor a BSML model specifies a property of the mod-

elled system. The evaluation of such a property amounts to a run-

time monitor that observes the execution of the model at the big-
step granularity for adherence to the specified property. Monitoring

at the big-step granularity is useful since it is compatible with the
design philosophy of BSMLs that considers a big step (and not its
constituent small steps) as a unit of execution. Se€fion 4 describes
the semantics of BML, which is oblivious to whether big steps of a
BSML model are executed by the model itself or, for example, by
the generated code for the model: it requires only information about
the enabledness and execution of the transitions of the model. Simi-
larly, this semantics is oblivious to the particularities of the plethora
of BSML semantics: it treats the information about the enabledness
and the execution of transition as uninterpreted boolean functions
[€]. As such, BML provides a high-level means to specify proper-
ties about a BSML model that can be uniformly monitored both at
the model and code level. In this paper, we are interested in moni-
toring only the behaviour of generated code. Se¢flon 5 presents our
implementation of BML at the generated-code level.

The BNF in Figurdb presents the abstract syntax of BML. As
shown in the first line of the BNF, a monitor is eitheriamariant,
which specifies a property that should hold for all big steps of the
model, or avitnesswhich specifies a pattern that could happen in a
big step of the model. An invariant monitor intercepts the execution
of the model in order to find aounterexampldor the property
that it represents. A withess monitor intercepts the execution of the
model in order to find avitness examplef the property that it
represents. A monitor is meant to execute as long as the model
executes. An invariant monitor returns all counterexamples that
it encounters during the execution of the model, and similarly, a
witness monitor returns all witness examples.

Predicates. To specify monitors for a model, BML provides two
basic unary predicategn and ex both of which operate over
the transitions of the model. Predicagt) evaluates tdrue in a
snapshotft transitiont is enabled i.e., iff t belongs to a potential
small step in that snapshot. Predicatét) evaluates tdrue in a
snapshotft it is about to beexecutedby the next small step. By
definition, if ext) is true at a snapshot, so &n(t). As an example,

in the model in Figur€ll, invariant monitor. —en(ts) v —ents)
asserts that transitiorts andts are never enabled together (i.e.,
there is no race between locking the microwave door and starting
the radiation); and witness monitd: ext;) asserts that transition

t; is executed at least in one big step (i.e., microwave can be
deactivated). Predicatesandexdo not have a snapshot parameter
because such a parameter is implicit in the semantics of BML.

Reachability expressions. Besides a predicate-logic-like syntax,
BML uses two operators that each can be used to specify a kind
of reachability or unreachability relation between the snapshots of
a big step. Binary operators,» and ¢ are reachability and un-
reachabilityoperators, respectively. We call an expression that uses
a reachability operator or an unreachability operatmrachability
expressioror anunreachability expressigmespectively. In a reach-
ability (or an unreachability) expression, the left operand is called



Monitor = I Invar| W: Witness
Invar = ISpExp | ISPExp < ISpEXp |
ISPEXp ¥~ ISPEXp:
ISpExp = BoolExp| Quang BoolExp
ISpExp = BoolExp| Quant BoolExp
Witness = WSpExp | WSpExp «— WSpEXp |
WSpEXxp ¥ WSpEXp

WSpExp = BoolExp| Quant BoolExp
WSpExp = BoolExp|Quant BoolExp
BoolExp = en()|ex() | ~BoolExp]|

BoolExp A BoolExp|

BoolExp VvV BoolExp
Quant Quang | Quant
Quang = VYt eTr-
Quang dt, €Tr-
t =t
ty = Alogical variable over transitions
te A transition of the modek, € TrangM)
Tr A subset of Trar®1); Tr e 2TandM) |

A function’s value, ft — 27an<\)

Figure 5. A BNF for the abstract syntax of BML.

the source expressigrand the right operand is called tdestina-
tion expressionThe source expression specifies the snapshot(s) in
a big step over which a reachability (or an unreachability) expres-

Range of quantification. The logical variable of a quantifier of an
invariant ranges over a set of transitions. For a madethis range

is either an explicit subset of the set of transitions of the model
(i.e., a subset ofran(M)) or a set that is determined by a syntactic
function, f, wheref: t — 2™"M_ For example, the invariant
monitor, |: ¥t € TrangM) - ext) ¥ 3It" € samearenf) - ext’),

in effect, checks that the execution i adheres to the Ake ONg
maximality semantics; functiosameareng) returns the set of
transitions, excluding, whose arenas are the samd'sis

Implicit quantifications. The meaning of a monitor involves
some implicit quantifications as well. An invariant monitor has two
implicit universal quantifications that assert that the invariant holds
for all big steps and for all of their snapshots. A withess monitor
has two implicit existential quantifications that specify that there
exists a big step and a snapshot of that big step such that the witness
property holds for it. Also, in the meaning of a reachability expres-
sion, in an invariant or a witness, there is an implicit existential
quantification that asserts that there exists a destination snapshot in
which the reachability expression holds.

Checking semantic properties.A semantic propertyf a mod-
elling language is a semantic attribute of the language that is com-
mon to all models specified in that languagé [15]. Using BML, we
can specify an invariant monitor to check a semantic property of a
BSML model. Such a monitor cannot be used to prove the presence
of a semantic property at the language level, but it can be used, for
example, to confirm one’s understanding about a BSML semantics,
or to gain confidence about the correctness of an implementation of

sion should be evaluated. The destination expression specifies thea BSML semantics. Next, we present two such monitors.

snapshot(s) that must be reached for the reachability to hold (or
that must not be reached for the unreachability expression to hold).
For exampleg, — e, specifies that from a snapshot of a big step
that satisfiese;, a future snapshot of the big step, including the
current snapshot, can be reached in whgcts satisfied. An invari-

ant monitor checks for a counterexample in which a reachability
expression does not hold, while a witness monitor checks for an
example in which a reachability expression holds. As an example,
for the model in Figur&ll, invariart: exts) — exts) specifies
that it is always the case that if transitignis executed, then tran-
sition ts will also be executed in the same big step (i.e., if the mi-
crowave door is locked, then radiation eventually starts). The in-
variantl: exts) > exts) asserts that transitiag is not executed
before or at the same time &s Invariantsl: exts) > exXts) and

I: eXts) — —eXt3) are not the same: #xts) is true, the latter in-
variant would hold whett is not executed at least in one snapshot.

Quantification. To specify a monitor that applies to a range
of transitions, the syntax of BML allows to quantify over a set
of transitions of a model. For a monitor of a model that uses
a (un)reachabilif}y expression, each of its source and destina-
tion expressions can use a quantification. We assume the follow-
ing two syntactic well-formedness conditions: (i) a monitor does
not have any free variables; and (ii) its quantifiers use distinct
logical variables. Invariants and witnesses ud@edént kinds of
outer quantificationswhere an outer quantifier of a monitor is
the quantifier that appears immediately after an”“or “W :".

An invariant (a witness) could only use a universal (an existen-
tial) quantification as its outer quantifier. For example, invariant
monitor | : Yt € TrangdM) - ext) — —en(t) ensures that a tran-
sition of M cannot execute in all small steps of a big step, be-

In aglobally consistenBSML semantics [7], if the negation of
an event is used to trigger a transition in a big step, that event is not
generated during the same big step. The following invariant asserts
the global consistency property, for BSML modé|

I: Yt € TrangM) - ext) & 3t’ € neggelt) - ext), (2)

where neggelfft) is the set of transitions in the model that each
generates at least one of the negated literals in the trigger of

In aquasi non-cancellin@SML semantics, which is similar to
anon-cancelling[l8] BSML semantics, if a transition, becomes
enabled in a big step, eitheor one of itsneighbouring transitions
will be executed in that big step; two transitions are neighbours
if they have the same source or destination control states. The
following invariant asserts this property,

I: Vt € TrangdM) - en(t) — At" € neighlt) - ext’) v ext), (2)

where functiomeigHh(t) returns the neighbouring transitionstof

As an example, in Figug 1, when the model resides in its de-
fault control states and environmental input evetiairt is received,
assuming thagc(ts) = [true], if the model employs the iScLe
and Next SmwaLL Srep semantic options, two big steps are possible:
{ts}, {t3}) (not executinds) and({t;}, {ts}) (not executinds), which
violate invariant[(2). Employing the My concurrency semantics,
which executests, ts}, results in a quasi non-cancelling semantics.

A limitation. The non-cancelling semantic properfy 5% a
stronger property than the quasi non-cancelling property: in a non-
cancelling semantics, an enabled transittpm the above monitor,
cannotbecome disabledintil the destination expression of the
reachability expression becomiege. We cannot express the non-
cancelling property in BML, because BML does not have a syntax

cause it becomes disabled after it is executed. Witness monitorto capture the notion of “becoming disabled”; we plan to include

W: 3t € TrangM) - ext) specifies that there exists a transition of
M that is executed. The set of witness examples for this witness
monitor at runtime could be used to animate the executidvl.of

1«a (un)reachability” should be read “a reachability or amaachability”.

such a syntax in BML in the future; cf., Sectigh 7.

2In previous work [[15], we used the term “executable” with teme
meaning as the term “enabled” here; we changed our termindiegy to
provide a clear distinction between en and ex predicates.



4. Semantics of BML 4.2 Semantics of Quantification

The meaning of a monitor is defined with respect to a BSML model To specify the semantics of a monitor that uses quantification,
and its big steps. Our semantics for BML assigns a boolean value towe expand the monitor to a set of ground monitors. A quantified
each monitor of a model. If an invariant monitor is assignéalse boolean expression has exactly one quantifier, while a quantified
value, then there exists at least one counterexample big step thateachability or an unreachability expression can have up to two
makes itfalse If a witness monitor is assignedtaue value, then quantifiers (one in the source and one in the destination expression).
there exists at least one withess-example big step that makes it Thus, we use two expansion functions: one for each quantifier.
The semantics of finding counterexamples and witness examplesis The first expansion functionexpout, eliminates the outer
implicit in the semantics of assigning truth value to a monitor. quantifier of a monitor. For an invariant monitor= |: Yt € T - g,

We present the semantics of invariant and witness monitors sep-expout(i) = A.r(I: €tc/t]), whereeft./t] means rewritinge by
arately. Except for the semantics of reachability and unreachability replacing the quantification variablevith transitiont.. Similarly,
expressions, the semantics of BML is simply based on the seman-For a witness monitosy = W: 3t € T - ¢ expout(w) = \/; r(W:
tics of predicate logic. We first consider the semanticgroiund €[t./t]). Each of the monitor termk €[t./t] or W: €[t./t] might use
reachability and unreachability expressions, whose source and desanother quantification, &is a (un)reachability expression with two
tination expression do not use any quantification. We then extend quantifications. The second expansion functexp.in, eliminates
these semantics to the cases with quantification. these inner quantifications in a standard way. Funatiopin, as

) . ) opposed toexpout, does not introduce any new ground moni-
Notation. We use notatioffy] to denote the meaning of a BML  tqys;: it just expands a destination expression. The two functions are

termy. We use a subscript to denote the big step under whish  jgentity functions if their inputs do not have an expected quantifier.
evaluated; e.glylr is the meaning of under big steff’. To spec- We then define the semantics of invariané of modelM as:

ify the semantics of reachability and unreachability, we adapt the ) )

“globally” (o) and “finally” (¢) temporal operators of linear tem- [1: e] = YT € bigstepgM) - [expin(expout(l: €)],

poral logic (LTL) [8], to express temporal properties ofindividual  where each oflexpin(expout(l : &)]r is the evaluation of the
big steps of a model. To evaluate an LTL formulagainst a big conjunction of a set of ground invariants.

stepT, we write []r. Within a big step, thes operator requires its Similarly, we define the semantics of witnaak e as:

operand to hold in all snapshots of the big step;¢heperator re- . . )

quires its operand to hold at least in one of the snapshots of the big ~ [W: el = 3T € bigstep¢M) - [expin(expout(W: €))]r.

step, including the current snapshot. These temporal operators cafyhere each oflexpin(expout(l : )l is the evaluation of the

be nested and combined with logical operators. For example, pred'disjunction of a set of ground witnesses.

icate [0(0—-en(ty))]r asserts that transitio is finally disabled in An invariant must hold in all big steps, and thus a universal

big stepT and henceforth remains disabledTin quantification is used in its semantics; a witness needs to hold in
. . . o at least one big step, and thus an existential quantification is used.

4.1 Semantics of Monitors without Quantification

Semantics of invariant monitors. Given a big stepT, the mean- 5. An Implementation of BML

ing of a ground invariant monitor that neither uses a reachability

nor an unreachability expression is easghould always beue: We adopt the output of the family of code generators introduced

by Prout, Atlee, Day, and Shakel [2] for our implementation of
[I: elr = [oelr BML. These code generators themselves are generated, on the fly,
by a parametric code generator generator (CGG) that, based upon
the semantic parameter values that it receives, uses conditional
compilation to act as a particular code generator. The normal form
syntax, the semantic aspects, and the semantic options of BSMLs,

The meaning of a ground invariant monitor that uses a reacha-
bility expression is described by the following formula, which uses
a request-response temporal pattern:

[l: & = &l = [A(e; = (O&))]r. as described in Sectidn 2, can be modelled by the syntax and the
o ) . ) . ) semantic parameters of the CGG, as outlined below.
Slmllarly,_ the meaning _of a grqund invariant monitor with an First, the CGG uses a syntax that is comparable to our nor-
unreachability expression is described by the following formula: 51 form syntax in Sectiofi2.1: while we use a notion of a hier-
[l: e ¥ el = [0 = (~0&))]r. archy of control states, CGG uses a notiorcofposition treeA
composition tree consists of a hierarchy treeofposition oper-
As such, it can be observed tHdt e; > el # ([l &1 — ators, each of which specifies a policy in the execution of the tran-
ellt), because, for example, & is alwaysfalsein T, then both sitions of its operands. The two needed composition operators to
[l: e # elr and[l: &, — e]r aretrue. model our normal form syntax are tMécro-Interleaving and

the Micro-Parallel composition operators, which provide the
means to model thenSsiLe and the Miny Concurrency semantics,
respectively. The leaves of a composition tree, and only thepiare
erarchical transition system#$TSs), each of which can be consid-
[W: elr = [¢€]r. ered as ai©r-state without anyAnd-state descendant. We assume
. . . . that a model employs either orifji cro-Interleaving composi-
The meaning of a ground witness monitor that uses a reachabil- tjon or onlyMicro-Parallel composition. We call a model that

Semantics of witness monitors.Given a big stef, the meaning
of a ground witness monitor that neither uses a reachability nor an
unreachability expression is easy; finalyshould becomérue:

ity expression is described by the following formula: satisfies this criterion a CGG-BSML model.
[W: e = el = [o(e1 A O&)]r, Second, the CGG provides a set of parameteriz_ed snapshot
) ) elements and predicates that each could be customized to model
which asserts tha; becomesdruein T, followed bye,. a semantic option. We call a CGG semantics that corresponds to a

Similarly, the meaning of a ground witness monitor that uses an combination of our semantic options a CGG-BSML semantics.
unreachability expression is described by the formula, o . ) )
Organization of the section. Sectior 5.1l describes the code gen-

[W: &1 - &llt = [O(e1 A (=0&))]7- eration mechanism of CGG. Sect[on]5.2 presents our own code gen-



eration mechanism that customizes a piece of CGG-generated cod®nally. Next, we describe the design of BML-CG, focusing mainly
with aspects to evaluate a BML monitor. Secfion 5.3 reports about on our use of aspects and threads in the BML-CG generated code.
our experiments and discusses issues related to our implementation.

5.2.1 Aspect Code Generated by BML-CG

AspectJ provides a rich language to spegifynt cuts join points
andadvicesfor a Java program[1]. In a BML-CG generated code,
however, we only need to udmefore and after advices for join
points in the execution of the methods listed in Table 1.

Figure[® presents the three pointcuts together with five advices
at we use in our generated code to implement a BML moni-
tor. In our implementation of BML-CG, we distinguish between
Structure of generated Code. The structure of the generated code  four types of monitors: (i) invariants with reachability operators;
is based on: (i) the structure of the composition tree of the model; (ii) invariants with unreachability operators; (iii) witnesses with
and (i) the snapshot elements specified through the input semanticreachability operators; and (iv) witnesses with unreachability op-
parameter values. There is a Java class for each composition opererators. (The monitors without a (un)reachability operator are spe-

5.1 Structure of Generated Code and its Execution Pattern

Ourimplementation of BML is based on knowledge about the high-
level structure of the code generated by CGG. Similar knowledge
is needed when implementing BML for afidirent code generator.
Given a CGG-BSML semantics and a CGG-BSML model, CGG
generates sequential Java code that implements the behaviour of,,
the model; concurrency is simulated via sequential execution.

ator and a Java class for each HTS. Each modehhBig' Ss. We cial cases of one of the above four types.) The point cuts and ad-
refer to the names of the classes that represent theisas, - - -, vices in Figure B are the same for these four types of monitors,
andHTS_ m. There is a class callethvSensor that provides anin-  except for the advice invoked before anabled-trans method,

terface to implement an environment for the generated code. Therel-€., before() : HTSenJoin(Object p). This advice is specialized
is a root class calle@eneratedSystem that instantiates and man-  for each type of monitor. Next, we describe each advice in detail.
ages all classes. In our implementation of BML, we need to deal ~ Before the execution of asnabled trans method, its cor-
only with the classes that represent the HTSs of a model (to obtain 'esponding advice checks whether the source expression of the
information about the enabledness and the execution of transitions)(Un)reachability expression of the monitor, i.erc_exp(en, ex),
and theEnvSensor class (to obtain information about the scope of IS true. Expressiorsrc_exp(en, ex) is evaluated with respect to the
a big step). TablEl1 enumerates the classes that we use in our imp|emf0rme_1t|on about the enablednegs and the execution of transitions
mentation of BML, together with the list of a few of their methods, Stored in arrayen andex, respectively; these information are up-
fields, and variables that we need. For convenience, we have specidated as the execution of the CGG generated code continues. When
fied a symbol to refer to the name of each method. src_exp(en, ex) is true, a new thread is forked that will check if

) the destination expression of the (un)reachability expression of the
Execution pattern. The generated code fora CGG-BSML model, monitor could becoméue. The dfect of the execution of a small
specified in a CGG-BSML semantics, follows the semantic struc- step is evaluated at its destination snapshot, before checking for the
ture of a big step in Figurgl 2. The start of a big step is signified enabledness of the transitions for the next small step. As such, it
by the execution ofsenseEnv. The set of potential small steps  suffices to do the above evaluation only if the big step is not at the
at a snapshot are identified by the execution of a sequence Ofbeginning snapshot and before the fitsh then*x* sequence of
enabled_trans methods of théiTS_is (1 < i < m). The setof  the next small step; i.e., whebdgSnapshot && firstEnistrue.
transitions of a small step are executed by ¢fiecute methods Once all threads evaluate th&et of the last small step, i.e., af-
of theHTS_is (1 < i < m). Thus, the execution of a small step by  terwaitForAllThreadsToReact() terminates, the information in
a piece of CGG generated code can be encoded by regular expresarraysen andex are reset for evaluating the new small step.

sionn*x", wheren andx are symbols representing the invocation After the execution of arnabled_trans method, its corre-
of anenabled_trans and anexecuted method, respectively. The  sponding advice collects the set of enabled transitions determined
execution of a big step can be encoded@sx*)'n*, wherev rep- by the method in arragn; similarly, after the execution of an

resents the invocation of thenseEnv method; the last* denotes execute method, its corresponding advice collects the enabled

that the big step is maximal. The ongoing execution of a BSML transition that is executed by the method in aresy We use
model can be modelled as a sequence of big stefis'x")'n*)". Java reflection mechanisms to collect these information from the
enabled_transitions and trans fields, described in Tablg 1.
5.2 BML Code Generator (BML-CG) (To use Java reflection, we had to changens variables to be-
We have implemented a prototype systeBML code generator come fields of their corresponding classes. This is the only change
(BML-CG), which given a CGG-BSML model and a monitor with-  that we made to the CGG-generated code.) Both advices update
out quantification generates the multi-threaded AspectJ code thatthe variablesfirstEn andfirstEx, which determine whether the
performs the runtime evaluation of the monitor against the execu- first n and the firstx in the sequence of method executions of a
tion of the CGG generated code of the model. Intuitively, the gen- small stem*x* are encountered, respectively. The latter advice is
erated aspects follow the semantics of BML in Seclibn 4. For ex- also responsible: (i) to increment the index representing the current
ample, for an invariant monitor with an unreachability expression, snapshot of a big step, to add an element to the vector that stores the

whenever the source of the expression becoimesin a big step, counterexampléwitness examples; and (ii) to update the variable
the system checks whether its destination expression could becomehat determines the beginning snapshot of a big step.
truein that big step, in which case it produces a counterexample. Before the execution of theenseEnvJoin method, i.e., when

Two key insights about the generated code by BML-CG are a current big step ends and a new big step is about to start, its cor-
that: (i) by using AspectJ, a monitor expression is evaluated with- responding advice sets tl@dBigStep to true. Setting this vari-
out modifying the structure and the behaviour of the CGG gener- able totrue signals all forked threads during the big step to ter-
ated code; and (ii) by using threads, the evaluation of a monitor minate; functiorwaitForAllThreadsToEnd() ensures that these
that uses a (un)reachability expression is orthogonalized into units threads terminate. After the execution of this method, the set of all
that each corresponds to a snapshot where the source expressiocounterexamples or withess examples could be inspected in vari-
of the (un)reachability expression becontese. The latter prop- ableresult. After the execution of theenseEnvJoin method,
erty makes BML-CG readily amenable to support quantification, at the beginning of a big step, its corresponding advice resets the
by evaluating the constituent ground monitors of a monitor orthog- variables of the system, preparing for a new big step.



Class Method Symbol Role

EnvSensor senseEnv(..) v

This method simulates the behaviour of the environment by setting the pnvi
mental input events and variables.

=
o

HTS_1,--- ,HTSm | enabled_trans(..) | n

For eachHTS_i, (1 < i < m), its methodenabled_trans identifies the set of
high-priority transitions whose arenas aréiffs_i and can be taken in the ne
small step; this set is stored in the fi@dabled_transitions of HTS i.

-

HTS_1,--- ,HTSm | execute(..) X

For eactiTS_i, (1 <i < m), its methodexecute executes one of the transition
stored in the fiel@nabled_transitions of HTS_i non-deterministically; vari-
abletrans in execute method stores the identifier of the executed transition.

(]

Table 1. List of the methods, fields, and variables in the CGG generated code¢haftiaterest for the implementation of BML.

/*Enabledness and execution information.*/

boolean[] en = new boolean[#TRANS];

boolean[] ex = new boolean[#TRANS];

/*Counterexamples or witnesses of a big step.*/

Vector<HashSet<Integer>> result = ();

boolean begSnapshot = true; /*Sp or not.*/

boolean endBigStep = false; /*Sp1 or not.*/

/*First n and x in small step n*x* or not.*/

boolean firstEn = true;

boolean firstEx = true;

int curSnapshot =0; /*Current snapshot.*/

pointcut HTSenJoin(Object p):
execution(HTS*.enabled_trans(..));

pointcut HTSexJoin(Object p):
execution(HTS*.execute(..));

pointcut senseEnvJ]oin(): execution(*.senseEnv(..));

before(): HTSenJoin(Object p) {

if (!begSnapshot && firstEn) {
/*Based on the type of a monitor, one is executed.”/
if (src_exp(en,ex)) {
new [I:s < d]findCounter(curSp).start(); /*or*/
new [I:s ¢ d]findCounter(curSp).start(); /*or*/
new [W:s < d]findWitness(curSp).start(); /*or*/
new [W:s ¢ d]findWitness(curSp).startQ;
waitForAllThreadsToReact();
for(i=0 to #TRANS-1) {en[i] = false; ex[i] = false;}
}

}

}

after(): HTSenJoin(Object p) {

collectEnableds(p,en);

firstEx = true;

firstEn = false;

}
after(): HTSexJoin(Object p) {
collectExecuted(p,ex);
if (firstEx) {
curSnapshot++; firstEx = false; firstEn = true;
result.add(new HashSet());
}
if (begSnapshot) begSnapshot = false;
}
before(): senseEnvJoin() {
endBigStep = true;
waitForAllThreadsToEnd(Q);
/*Examine counterexamples and witness examples.*/
}
after(): senseEnvJoin() {
for(i=0 to #TRANS-1) {en[i]= false; ex[i]=false;}
result.clear();
begSnapshot = firstEn = firstEx
endBigStep = false; curSnapshot
}

true;
0;

Figure 6. Point cuts and advices used in BML-CG generated code.

5.2.2 Multi-Threaded Code Generated by BML-CG

As mentioned earlier, thbefore() : HTSenJoin(Object p) ad-
vice, in the aspect in Figufld 6, forks a thread when a snapshot
of a big step is arrived at which the source expression of the
(un)reachability expression of a monitortisie. Figure[T shows
these threads. Based on the type of a monitor, a thread is invoked to
evaluate the monitor, through inspecting the value of the destination
expression of the (un)reachability expression of the monitor, i.e.,
des_exp(en, ex). A thread terminates when the big step ends, i.e.,
whenendBigStep becomesrue. FunctionsaddCounterExample

and addWitnessExample store a counterexample and a witness
example, respectively, in the last indexr@fsult.

We note that, for a witness monitor, once a thread is forked
during a big step, no more subsequent threads needs to be forked
because one witness examplefises; similarly, for an invariant
monitor that uses an unreachability expression, one thread per big
step is enough. However, in our implementation, we continue to
fork new threads, in order to, (i) find all counterexamples and all
witness examples; and (ii) to develop a multi-threaded implemen-
tation, with the necessary synchronization mechanisms, to provide
the foundation to support: (a) monitors with quantification, each
of which comprises of multiple ground BML terms; and (b) con-
current evaluation of multiple monitors. As a result of this design
decision, the first and the fourth threads, as well as, the second and
the third threads, in Figufd 7, are symmetric.

5.3 Discussion

Experiments. Using BML-CG, we have experimented with the
generated code of a few example BSML models. We ran various
BML monitors against the CGG generated code for the example
model in Figurdl (and its variations). Usingfdirent BSML se-
mantics, we checked that a BML monitor behaves as expected,
and thereby, tested the correctness of CGG, BML-CG, and the
model as a whole. For example, in the model in Fiddre 1, if input
eventsstopanddeactivateare received together at the beginning
of a big step, when the model resides in its default control states,
the expected behaviour would be non-deterministic: either big step
{ta}, {ta}, {ts}) or big step{t7}) would execute. To confirm this be-
haviour, the following two properties should hoW: en(t;) Aen(t;)
andl: (enlty) A ent;)) — (eXt;) Vv eXts)). However, if the Nxr
SuaLL Step event semantics is employed, the latter invariant would
not hold because of counterexample big gteq, {t3}). As another
example, to eliminate the above non-determinism, we changed the
source oft; to Active and employed the dorce Parent priority
semantics, which assigris a higher priority thart;; the model
then satisfied invariant: —-ent;) v —en(t7). In our experiments,

we ensured that we cover the range of possible monitors and the
range of BSML semantic options. We did not find any unexpected
behaviour. We also experimented with other example models, in-
cluding the CGG generated code for a model of an elevator system
of a three-story building. This system was specified in a notation



/*Used for monitors with reachability expressions*/ ecuting transitions of each small step, and how to determine the

void [I:s < d]findCounter(int sp) { start and the end of a big step at runtime. Any code generator
int myLastSnapshot = sp-1; that somehow exposes these information could be enhanced with
while(!endBigStep) { a BML monitoring capability. The more explicit these information
if (myLastSnapshot < curSnapshot) { are exposed, the moréieient an implementation could be. For ex-
if (des_exp(en,ex)) return; ample, if the CGG generated code would expose each of the set of
myLastSnapshot++; enabled and executed transitions of a small step in a single field of a
¥ single class, then it would be possible to use only two join points to
¥ . collect these sets, instead of twice as many as the number of HTSs.
addCounterExample(result); } N . . .
/*Used for monitors with unreachability expressions*/ Such a saving could result ina significant performance improve-
void [I:s ¢ d]findCounter(int sp) { ment. Even better, if these fields would have been accessible via
int myLastSnapshot = sp-1; existing methods of the generated code, no Java reflection would
while(!endBigStep) { have been needed. We chose to use CGG as is to demonstrate the
if (myLastSnapshot < curSnapshot) { relative independence of BML from a code generator.
if (des_exp(en,ex)) addCounterExample(result);
myLastSnapshot++;
) 6. Related Work
3 Our work is related tauntime monitoring frameworkéRMFs),
/*Used for witnesses with reachability expressions*/ such as Temporal Rover |16] and PathExplofef [17], which pro-
void [W:s < d]findWitness(int sp) { vide tool support for monitoring an input temporal property against

int myLastSnapshot = sp-1;
while(!endBigStep) {
if (myLastSnapshot < curSnapshot) {

the execution of a program. In an RMF, an input temporal property
is usually an LTL formula that is encoded in aaput format(IF).

if (des_exp(en,ex)) addiitnessExample(result); Our BML and the.IF of a typlcal RMF are comparable: they are

myLastSnapshot++; both used to specify monitoring properties. Our BML, however, is

3 distinct in two main respects. First, BML uses the vocabulary of
13 models, such as the names of transitions and their enabledness and
/*Used for witnesses with unreachability expressions®/ execution information, to specify a monitoring property for gen-
void [W:s #> d]findWitness(int sp) { erated code. The IF of an RMF, however, uses the vocabulary of
int myLastSnapshot = sp-1; programs, such as the names of variables, methods, segments of

while(!endBigStep) {
if (myLastSnapshot < curSnapshot) {
if (des_exp(en,ex)) return;

the code, etc. Second, BML, by virtue of being specialized for the
family of BSMLs, is preequipped with abstraction constructs that

myLastSnapshot++; facilitate the specification of properties. As such, using the IF of
1 an RMF to specify a property that is equivalent to a BML prop-
3 erty could be challenging. For example, specifying the equivalent
addWitnessExample(result); } property to BML property[(R) in Sectidi 3 could be a hard task;

even articulating such a property in natural language through the
vocabulary of the code can be very complicated. Of course, to eval-
uate a BML monitor at the code level, similar to an RMF property,
the vocabulary of the code needs to be used. However, the abstrac-
tion constructs of BML provide guidelines not only about how to
that uses asynchronous events, which is out of the current scope ofcheck these properties against the code, but also about how to gen-
BSMLs [3]. Our BML-CG, however, could deal with such a gener-  eratgderive the code, in the first place, to facilitate such checks.
ated code. For example, we monitored that the three transitions that A class of RMFs, which we calaspect-basedRMFs (AB-
open the three doors of the elevator are never enabled together. RMF), use aspects to specify and implement runtime monitors for
programs|[18=23]. The IFs of these RMFs and their implementa-
tion strategies are comparable to our BML and our BML-CG, re-
spectively. While in our implementation of BML we use aspects,
the syntax and the semantics of BML are independent of aspect
technology. In an AB-RMF, however, its IF, its syntax, semantics,
and implementation are all based on aspects, and thus based on the
erminology of programs. While compared to a regular RMF, an

B-RMF provides a higher level of abstraction for property speci-
fication, it still uses a generic, program-level IF, as opposed to our

ML, which is a specialized, model-level IF. Our use of aspects in

he BML-CG generated aspects is comparable with the implemen-
tation of an AB-RMF: they both use the notion of execution join
points to incrementally evaluate a property of the code at runtime.
‘The diference is that we chose AspectJ simply because the output
code of CGG naturally lends itself to be instrumented with aspects.
Our regular-expression-like notation, in Secfiod 5.1, is comparable
o the IF of AB-RMFTracematchefL8].

Our work is comparable to frameworks that combine the aspect-
oriented and generative programming paradighms [[24-27]. Our
work is distinct in that it focuses on a specific usage of gener-
BML for other code generators. Our implementation of BML ating aspects, as opposed to "general-purpose aspect languages”,
relies on knowledge about how to obtain the set of enabled and ex-which are criticized for “losing their purposefulness”|[28].

Figure 7. Different kinds of threads for evaluating monitors.

Cost of monitoring. The BML-CG generated code incurs a run-
time cost to the execution of the CGG generated code. In terms of
space, this cost is modest: we introduce only a few global variables
and two boolean arraysn andex, whose sizes are the number of
the transitions of the model. In terms of time, however, the cost is
proportional to the number of running threads, which in the worst
case — where at each snapshot of a big step, one thread is forke
— is proportional to the length of a big step. This cost includes the
computation time of the threads, the cost of their synchronization,
and the overhead of aspects and Java reflection. The cost of th
evaluation of a BML monitor is not related to the size of the mon-
itor: the evaluation of the source and destination expression of a
(un)reachability expression are constant-time boolean evaluations
The size of a model, however, could indirectlffezt the cost of
evaluation: a big model can produce a long big step. In our experi-
ments, we did not notice a tangible slowdown in the execution time ¢
of the GCC-generated code. However, we observed the importance
of building the right environment for checking a BML property, so
to avoid executing irrelevant transitions in checking the property.



Our work is related to works that promote using aspects at the
model level [12 13], either to capture aspects during the modelling
process|[[12], or to facilitate the extension of object-oriented code
[13]. The point cuts in our implementation are model-based point
cuts in that they originate from the vocabulary of a BSML model.

[7] A. Pnueli and M. Shalev, “What is in a step: On the semantics o
statecharts,” iMTACS vol. 526 ofLNCS pp. 244-264, 1991.
[8] A. Pnueli, “The temporal logic of programs,” ifProceedings of

the 18th IEEE Symposium on the Foundations of Computer Gzien
(FOCS-77) pp. 46-57, IEEE Computer Society Press, 1977.

Hand-written aspects have been used to extend the functionality [9] J. R. Burch and D. L. Dill, “Automatic verification of pipieled micro-

of a piece of generated code [29]. Our work isfelient in that
BML works with model-level vocabulary of BSML models, and
our implementation automatically generates aspect code.

Lastly, our work follows the goals of software development
methodologies that advocate model-driven code analygi§ 10, 11].

7. Conclusion and Future Work
In this paper, we introduced a language for specifying runtime

monitors that analyze the behaviour of a piece of generated code

that is derived from a model specified in a big-step modelling lan-
guage (BSML). Also, we introduced a customization mechanism

that modifies the generated code to enhance it with a runtime mon-

itoring capability. Our big-step monitoring language (BML) has a

high-level syntax that uses the vocabulary of a model, rather than

the detail of the generated code, to specify a runtime monitor. As

such, our BML raises the level of abstraction that a developer works
at when analyzing the generated code. A novelty in the design of

our BML is that it abstracts away from the particularities of the

syntax and semantics of the plethora of BSMLs, and thereby, lends
itself to be adopted by a wide range of modelling languages and
by the output of a wide range of code generators. We have imple-

mented the core, quantified-free fragment of BML for a family of
code generators. We have developed a non-intrusive code gener
tion technique that customizes a piece of generated code with th
AspectJ, multi-threaded code that monitors a property.

We plan to extend our implementation to support quantified
BML monitors. As discussed in Sectibh 3, we plan to extend BML
with predicates that capture the notions of “becoming disabled”,
and “becoming enabled”. Also, to specify a wider range of runtime
monitors, we plan to extend BML to suppdrackwardreachabil-
ity and unreachability operators, so that a monitor could refer to the

past snapshots of a big step. Lastly, we are interested in introducing

anactionsyntax to BML so that a BML term could not only moni-
tor the behaviour of generated code, but also could modify it. As an
example, using actiodisabl€), which removes a transition from
the set of enabled transitions, it is possible to enforce a globally-

consistent behaviour, as specified in propdrdy (1) in Seglion 3, by

disabling all transitions € neggeit) in property [(1).
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