
7th International Symposium on
High-Level Parallel Programming and Applications (HLPP 2014)
Amsterdam, Netherlands
July 3-4, 2014

Synthesizing MPI Implementations from
Functional Data-Parallel Programs

Tristan Aubrey-Jones · Bernd Fischer

Abstract Distributed memory architectures such as Linux clusters have be-
come increasingly common but remain difficult to program. We target this
problem and present a novel technique to automatically generate data distri-
bution plans, and subsequently MPI implementations in C++, from programs
written in a functional core language. The main novelty of our approach is
that we support distributed arrays, maps, and lists in the same framework,
rather than just arrays. We do this by formalizing our distributed data layouts
as types, which are then used both to search (via type inference) for optimal
data distribution plans and to generate the MPI implementations.

We introduce the core language and explain our formalization of distributed
data layouts. We describe how we search for data distribution plans using an
adaptation of the Damas-Milner type inference algorithm, and how we generate
MPI implementations in C++ from such plans.

1 Introduction

Functional languages provide good high-level notations for data parallelism
(e.g., [15,23,22,31,36]), but their automatic translation into efficient low-level
code for distributed memory architectures remains a problem, due to the many
possible data distributions. Many techniques only support a fixed model such
as map-reduce [15] that is not necessarily suitable for all problems [18], or do
not support distributed memory at all [31]. We present a flexible, type-based
technique to search through the space of possible data distributions, and to
generate efficient MPI implementations in C++ from the solutions.

We use a high-level core language called Flocc (Functional language on
compute clusters) to demonstrate our approach. Like PigLatin [29] and PQL

T. Aubrey-Jones
University of Southampton, UK
E-mail: taj105@ecs.soton.ac.uk

B. Fischer
University of Stellenbosch, South Africa
E-mail: bfischer@cs.sun.ac.za

Tristan Aubrey-Jones, Bernd Fischer

SELECT A.i as i, B.j as j,

sum (A.v * B.v) as v

FROM A JOIN B ON A.j = B.i

GROUP BY A.i, B.j;

R1 = A ./A.j=B.i B

R2 = ρA.v∗B.v/v(R1)

C = G〈A.i,B.j〉,sum(v)(R2)

Fig. 1 Matrix multiplication: SQL (left) and Relational Algebra (right)

[34], Flocc takes inspiration from relational algebra. Figure 1 illustrates this
data-parallel programming style with a matrix multiplication in SQL and re-
lational algebra. Here, A ./p B is the join of A and B over the predicate p; R1

thus contains all pairs of elements (Ai,k, Bk,j) that contribute to the result.
ρe/x is a renaming that creates a new column x with values e; R2 thus contains
all products Ai,k ∗Bk,j . Finally, Gi,f is a group-reduce operation that reduces
the groups of all tuples that have the same values in the columns i using the
function f ; C thus contains at (i, j) the sum of all products Ai,k ∗ Bk,j . This
formulation is implicitly parallel and abstracts away from global state, itera-
tion and recursion, and individual element accesses, which helps us to derive
data distribution plans. For example, we know from its syntactic structure that
the operation G〈A.i,B.j〉,sum(v)(R2) only ever reduces groups of v-elements that
come from tuples with the same values in the A.i- and B.j-columns of R2, re-
spectively. Hence, if we distribute R2 so that all these tuples are co-located,
then the group reduce operation requires no further data exchanges and can
run locally.

Our key insight is that we can use types to formalize this knowledge about
the data distribution characteristics of combinators (as well as the distribution
of the data itself), and type inference to derive data distribution plans for Flocc
programs, in a way that works for multiple collection types and not just arrays.
We call these types distributed data layout (DDL) types; they combine the
usual (functional) types with layout information. For example, the DDL type
DArr (Int, Int) Float fst D1 D2 characterizes a two-dimensional array of
Float values that is partitioned by row and distributed and mirrored over
different dimensions of a cluster’s node topology. Here, the third argument
fst of the DDL type constructor DArr is the partition function that describes
which dimensions of the array are partitioned over the nodes in the cluster
along the dimension D1 given as the fourth argument. The final argument
D2 gives any dimensions along which each partition selected by the partition
function is mirrored. Note that the DDL types are only used by the compiler,
and not exposed to the programmer.

The compiler provides different functionally equivalent implementations
of the combinators that work for different data distributions, and are thus
characterized by different DDL types. For example, the declaration

groupReduceArr2 :: Π(pf,_,_,_) :

(i1->i2, (i1,v1)->v2, (v2,v2)->v2, DArr i1 v1 pf d m) -> DArr i2 v2 id d m

expresses that groupReduceArr2 binds the value of its first parameter, which
is an array partition function, to pf and then uses this specific pf as partition

Synthesizing MPI Implementations from Functional Data-Parallel Programs

e ::= Id | v | (e1 , . . . , en) | \ x [:: t] -> e | e1 e2 | let x [:: t] = e1 in e2
| if e1 then e2 else e3

x ::= Id | _ | (x1 , . . . , xn)

v ::= Int | Float | True | False | ()
s ::= ∀Id·s | t
t ::= Id | Int | Float | Bool | Null | (t1, . . . , tn) | t1 → t2 | Map t1 t2 | Arr Int+ t | List t

Fig. 2 Flocc expression and type syntax

function for the array it reduces. The compiler instantiates the combinators in
the user program with the different implementations, and then uses a variant
of the standard Damas-Milner type inference algorithm to derive the DDL
types that represent data distribution plans for these variants. In a final step,
it generates efficient MPI implementations in C++ from these DDL plans.

Contributions. In this paper we describe the first technique (to our knowl-
edge) to automate the data distribution of data-parallel programs that sup-
ports multiple distributed collection types, including arrays, lists, and maps.
Our approach can easily be extended with further collection types and data-
parallel combinators, making it flexible and applicable for a wide variety of
data-parallel tasks. This is in contrast to existing approaches that focus on
automatically finding the best data distributions for array-based algorithms,
where input programs are either nested loops with affine array references [1,3,
5], or combinations of array section and reduction operators [13]. We demon-
strate our approach for a small domain-specific language for data-parallel func-
tional programming that is inspired by relational algebra. In particular, we
formalize distributed data layouts by polymorphic dependent type schemes
and use a variant of the standard Damas-Milner type inference algorithm to
search for different DDL plans in a type-directed way. We have implemented
a prototype code generator for DDL plans that targets MPI and C++.

2 Data-Parallel Programming in Flocc

Flocc’s expression and type syntax are shown in Figure 2. Expressions e can
be identifiers, literals, function abstractions, function applications, tuples, let
bindings, or if-then-else expressions. Function abstraction arguments and let
expressions bind values to tuples of identifiers x. List, array, and map literal
expressions are also supported but not shown. Flocc uses Damas-Milner type
inference [14] to infer types for all expressions, though function abstractions
and let-bindings support optional type declarations which the compiler checks.

At the high-level (i.e., executed on a single processor with a single address
space), Flocc has a standard call-by-value reduction semantics. All parallelism
in the language is expressed via data-parallel operations applied to the collec-
tions. These operations include predefined combinators for arrays, maps, and
lists shown in Figure 3; there are many further combinators not shown here
for brevity. In the following we illustrate the language with several examples.

Tristan Aubrey-Jones, Bernd Fischer

subArr :: (i, i, Arr i v) -> Arr i v

shiftArr :: (i, Arr i v) -> Arr i v

mapArrInv :: (i->j, (i,v)->w, j->i, Arr i v) -> Arr j w

eqJoinArr :: (i->k, j->k, Arr i v, Arr j w) -> Arr (i,j) (v,w)

groupReduceArr :: (i->j, (i,v)->w, (w,w)->w, Arr i v) -> Arr j w

map :: ((i,v)->(j,w), Map i v) -> Map j w

eqJoin :: ((i,v)->k, (j,w)->k, Map i v, Map j w) -> Map (i,j) (v,w)

allPairs :: ((i,v)->k, Map i v) -> Map (i,i) (v,v)

reduce :: ((i,v)->s, (s,s)->s, Map i v) -> s

groupReduce :: ((i,v)->j, (i,v)->w, (w,w)->w, Map i v) -> Map j w

union :: (Map i v, Map i v) -> Map i v

zip :: (List v, List w) -> List (v,w)

mapList :: (v->w, List v) -> List w

reduceList :: ((v,v)->v, v, List v) -> v

Fig. 3 Predefined data-parallel combinators for arrays, maps, and lists.

let mmul = (\(A,B) :: (Arr (Int ,Int) Float , Arr (Int ,Int) Float) ->

-- zip all combinations of rows from A and cols from B

let R1 = eqJoinArr (snd , fst A, B) in

-- multiply values from A and B

let R2 = mapArrInv (id, Float.*, id , R1) in

-- group by dest & sum -reduce

let C = groupReduceArr (\((ai,aj),(bi ,bj)) -> (ai ,bj),

snd , Float.+, R2) in C) in ...

Fig. 4 Matrix-matrix multiplication program

Matrix Multiplication. In Flocc, the matrix multiplication (cf. Figure 4)
closely follows the relational algebra version (cf. Figure 1). Here, A and B are
arrays with pairs of integers as indices, and floating point values. The array join
eqJoinArr computes the Cartesian product of both arrays, restricted to entries
where the snd index from A is equal to the fst index from B. It thus returns
an array with four indices that contains all pairs of Floats that contribute
to the result. mapArrInv multiplies each of these pairs (like the renaming),
and the aggregation groupReduceArr then groups these values using new keys
(ai,bj) (i.e., the row from A and column from B), and sums up all the values
in each group using Float.+.

Histograms. The function hist (cf. Figure 5) shows a use of maps in Flocc.
It takes a pair of arguments N and D, where D is a map from keys of arbitrary
type k to floating point values, and computes a histogram of these values.
This histogram has N equally spaced buckets such that bucket 0 contains the
minimum value in D and bucket N-1 contains the maximum. The reduce com-
binator projects the values from the map D into pairs and finds the minimum
and maximum values. These values are used to calculate the scaling coefficient
i, which in turn is used to calculate each value’s bucket index with the map

combinator. Here, the key remains unchanged, so map’s first argument is id.
groupReduce then uses these bucket indices as the keys for the result map,

Synthesizing MPI Implementations from Functional Data-Parallel Programs

let hist = (\(N,D) :: (Int , Map k Float) ->

-- use min/max vals as x-axis bounds

let (minV , maxV) = reduce (\(_,v) -> (v,v),

\((x1,y1),(x2,y2)) -> (Float.min(x1 ,x2),Float.max(y1,y2)),D) in

-- scaling coefficient to get bucket ids

let i = Float ./ (toFloat (Int.- (N,1)), Float.- (maxV ,minV)) in

let D’ = map (\(k,v) -> (k, toInt (Float.* (v,i))), D) in

-- group by bucket & count group sizes

groupReduce (snd , _ -> 1, addi , D’)) in ...

Fig. 5 N-bucket histogram

let dotp = (\(A,B) :: (List Float , List Float) ->

let AB = mapList (Float.*, zip (A,B)) in

reduceList (Float.+, 0.0, AB)) in ...

Fig. 6 Dot product

Problem Flocc Comparison Types
Matrix multiply (cf. Fig 4) 5 C/MPI 89 Arr
Floyd’s all pairs shortest path 15 C/MPI 88 Arr
Jacobi 2D 8 C++/MPI 120 Arr
SOR red/black 18 C/MPI 289 Arr
N-body (gravitational) 38 C/MPI 153 Arr
K-means clustering 36 C/MPI 114 Map
Triangle enum (cf. Fig 15) 12 C++/MR-MPI 263 Map
R-MAT graph generation 35 C++/MR-MPI 148 Map
PageRank 11 Java/Hadoop 157 Map
Histogram (cf. Fig 5) 6 C++/MPI 204 Map
Apriori association mining 14 Java/Hadoop 371 Map
Dot product (cf. Fig 6) 3 C++/MPI 35 List
Standard deviation 6 C/MPI 38 List
Simple linear regression 10 C++/MPI 47 List
Word count 3 Java/Hadoop 48 List & Map
Grep 2 Java/Hadoop 59 List

Fig. 7 Comparative code sizes (code lines without comments and IO code)

where snd projects them out of the original key-value pairs. For each key-
value pair a 1 is projected out (using \ -> 1), and then each group of ones
is aggregated using Float.+, thus counting the entries in each bucket.

Dot product. The function dotp (cf. Figure 6) shows a use of lists in Flocc.
It takes a pair of lists of floats, and returns their dot product, computed by
zipping together the lists, multiplying the pairs, and then sum reducing them.

Comparison of code sizes. Figure 7 compares the code sizes for a number of
programs written in Flocc and other languages.1 The Flocc implementations
are between 3% (Histogram) and 32% (K-means) of the size of the comparisons
(12% on average). This illustrates the potential productivity gains of such a
high-level language approach.

1 See http://www.flocc.net/hlpp14/codesizes.html for details.

Tristan Aubrey-Jones, Bernd Fischer

Fig. 8 Array distributions (left, center). Map distribution (right).

3 Distributed Data Layouts as Types

3.1 Distributing Collections on Clusters

MPI allows the definition of virtual node topologies where nodes are address-
able via Cartesian coordinates. The MPI implementation then decides how
best to map these onto physical nodes. This abstraction is useful, since it al-
lows us to describe where collections are stored and replicated relative to each
other, without considering the physical interconnect. We therefore identify
nodes using n-dimensional grids with dimensions D1 to Dn.

Collections can be split into partitions and distributed over the nodes in
some of the dimensions, replicated across any other dimensions, and are stored
at the nodes on the axis of any remaining dimensions. Figure 8 illustrates on
the left an input distribution for a matrix multiply on an 8-node cluster orga-
nized as a 3D grid. Matrix A is split into two partitions A1 and A2 distributed
along D1, and mirrored across D2, but only at the axis of D3. B is partitioned
along D2, and mirrored across D1, also only at the axis of D3. Hence, the node
(0, 1, 0) contains the partitions A2 and B2 while (1, 1, 1) remains empty. Fig-
ure 8 (center) illustrates a 2D partitioning of an array X, and shows (on the
right) a map M partitioned along D1 and only at the axis of D2. We use such
node arrangements to describe data distributions in the sections that follow.

3.2 Distributed Data Layout Types

β · α ⇒ \x→(β(α x))

α⊗β ⇒ \(x,y)→(α x, β y)

id ⇒ \x→x

∆ ⇒ \x→(x,x)

nullF ⇒ \ →()

fst ⇒ \(x,y)→x

snd ⇒ \(x,y)→y

lft ⇒ fst·fst⊗fst·snd

rht ⇒ snd·fst⊗snd·snd

Fig. 10 Built-in functions

In our system, every high-level collection has a cor-
responding distributed collection type which, in ad-
dition to describing the data type, has extra param-
eters which specify how it should be distributed on
the cluster. It is important to note that the user does
not see these types, but the compiler uses them to
plan the data distribution. The syntax for these dis-
tributed data layout (DDL) types is given in Figure 9.
In addition to standard type schemes these include a
polyadic version of dependent Π-types that we call
dependent type schemes and explain in Section 3.4.
The DDL types dt extend types t with distributed arrays, maps, and lists

Synthesizing MPI Implementations from Functional Data-Parallel Programs

dts ::= ∀Id · dts | Πx : dt → dt | dt

dt ::= Id | Int | Float | Bool | Null | (dt1, . . . , dtn) | dt1 → dt2
| Arr i t | Map t1 t2 | List t
| DArr i t f m? d1 d2 | DMap t1 t2 f d1 d2 | DList t m? d1 d2 | . . .

m ::= blk | cyc | (m1, . . . , mn)

i ::= Int | (i1, . . . , in)

x ::= Id | _ | (x1 , . . . , xn)

d ::= Id | (d1, . . . , dn)

f ::= \x [:: t] -> e | g | f1 · f2 | f1 ⊗ f2 | f1 u f2
| id | ∆ | nullF | fst | snd | lft | rht | hash(d)

g ::= fstFun f | sndFun f | lftFun f | rhtFun f

Fig. 9 Distributed data layout (DDL) type syntax

(DArr, DMap, and DList). Additional type parameters include partition func-
tions f, distribution modes m, and dimension identifiers d, which are described
below. Partition functions can contain function generators g which are de-
scribed in Section 3.5.

The DArr type formally describes how to store an array on a cluster. It takes
a partition function f , an optional tuple of distribution modes m, and two
tuples of dimension identifiers d1 and d2. f is an actual (projection) function
that is made from lambda terms from the input program and the operators
listed under f in Figure 9, and defined in Figure 10. It identifies the dimensions
of the array along which it should be partitioned. Dimension identifiers d1 and
d2 are just tuples of type variables. d1 has the same arity as f ’s co-domain, and
specifies over which dimensions of the cluster the partition dimensions should
be distributed. d2 specifies over which dimensions to mirror. Array partitions
only exist at the 0th position in any remaining dimensions. m is an optional
tuple of distribution modes (blk or cyc; default blk), with the same arity as
d1; it specifies a mode for each of the array dimensions returned by f . Here blk
describes contiguous blocks of an array on successive nodes (e.g. a[0:9] on n0,
a[10:19] on n2), and cyc describes storing alternate elements on successive
nodes (e.g. a[0] on n0, a[1] on n1, a[5] on n0, where |d1| = 5). For example,
the matrices in Figure 8 (left) have DDL types

A :: DArr (Int,Int) Float fst blk D1 D2

B :: DArr (Int,Int) Float snd blk D2 D1

where A is partitioned by row using fst, and B by column using snd. Similarly,
DMaps describe how to store Maps on clusters. d1 and d2 work in the same way
as DArr, but f takes key-value pairs rather than indices, mapping them onto
specific node indices in d1. f can use the function hash(d) which takes a tuple
of dimension identifiers d, and returns a function from any value type to node
indices for the dimensions in d. For example, the value M in Figure 8 (right) is
partitioned by z and so has type

DMap (Int,Int) Float hash(D1) · snd D1 ()

Tristan Aubrey-Jones, Bernd Fischer

DList’s parameters d1 and d2 work in the same way, but instead of a partition
function, DLists just have a partition mode m.

Top-level scalars and lambda terms are always mirrored on all nodes in
the cluster. For DArrs and DMaps, if the partition function is nullF the col-
lection is not partitioned. The ⊗-operator composes two functions pairwise as
defined in Figure 10. In some situations collections are partitioned by multi-
ple partition functions simultaneously, e.g. the result of two aligned collections
can be viewed as partitioned by either/both of the input’s partition functions.
We therefore allow collections to be partitioned by lists of partition functions,
concatenated using the u-operator. Both · and ⊗ distribute over u, so that
we can rearrange sequential/pairwise compositons of function lists, into lists
of compositions of individual functions, e.g. (α u β) · γ = (α · γ) u (β · γ).

3.3 Distributed Function Types

For each high-level combinator (cf. Figure 3), the compiler internally provides
different functionally equivalent implementations that work for different data
distributions. We use DDL types to characterize how these different imple-
mentations store their inputs and outputs. These implementations and their
types are hidden from the user; they only see the high-level combinators.

The DDL type schemes for some of these implementations are shown in
Figure 11, where different implementations of the same combinator are dis-
tinguished using suffix numbers. For example, groupReduce1 locally groups
and reduces the values stored at each node, exchanges the results between
nodes to co-locate by key, and then group-reduces again at each node. This
implementation works no matter how the input is partitioned. In the DDL
type we therefore use the universally quantified type variable f to specify that
the input can be partitioned by any partition function. The output is always
partitioned by key, which we specify by using fst in the return type.

3.4 Dependent Type Schemes

In addition to classic type schemes, we also have a polyadic version of de-
pendent Π types dts, similar to those used in dependent ML [45]. These are
not full dependent types, so that we can keep our system decidable. They are
similar to type schemes but the type variables are now rigidly bound to the
members of the argument tuples at function applications. Hence, rather than
representing any value, such type variables are bound to the actual values of
parameters at runtime, or more precisely, the AST terms that represent them.
These variables can then be used in the input and output types. This allows us
to place context-dependent constraints on data distributions, to specify when
different combinator implementations can be used.

For example, in contrast to groupReduce1, groupReduce2 group-reduces
just once, locally at each node. To yield a valid result all the input values for a

Synthesizing MPI Implementations from Functional Data-Parallel Programs

mapArrInv1 :: Π(f,_,_,_) : (i->j, (i,v)->w, j->i,

DArr i v (g · f) d m) -> DArr j w g d m

mapArrInv2 :: Π(_,_,f−1,_) : (i->j, (i,v)->w, j->i,

DArr i v g d m) -> DArr j w (g · f−1) d m

eqJoinArr1 :: Π(f,g,_,_) : (i->k, j->k, DArr i v f d m,

DArr j w g d m) -> DArr (i,j) (v,w) (f · fst u g · snd) d m

eqJoinArr2 :: (i->k, j->k, DArr i v fstFun(f) d m,

DArr j w nullF () (d,m)) -> DArr (i,j) (v,w) f d m

eqJoinArr3 :: (i->k, j->k, DArr i v fstFun(f) d1 (d2, m),

DArr j w sndFun(f) d2 (d1, m)) -> DArr (i,j) (v,w) f (d1 ,d2) m

groupReduceArr1 :: (i->j, (i,v)->w, (w,w)->w,

DArr i v f d1 m1) -> DArr j w id d2 m2

groupReduceArr2 :: Π(pf ,_,_,_) : (i->j), (i,v)->w, (w,w)->w,

DArr i v pf d m) -> DArr j w id d m

map :: Π(f,_) : ((i,v)->(j,w),

DMap i v (g · f) d m) -> DMap j w g d m

eqJoin1 :: Π(f,g,_,_) : ((i,v)->k, (j,w)->k, DMap i v f d m,

DMap j w g d m) -> DMap (i,j) (v,w) (f · lft u g · rht) d m

eqJoin2 :: ((i,v)->k, (j,w)->k, DMap i v lftFun(f) d m,

DMap j w nullF () (d,m)) -> DMap (i,j) (v,w) f d m

eqJoin3 :: ((i,v)->k, (j,v)->k, DMap i v lftFun(f) d1 (d2, m),

DMap j w rhtFun(f) d2 (d1, m)) -> DMap (i,j) (v,w) f (d1 ,d2) m

allPairs :: Π(f,_) : ((i,v)->k, DMap i v f d m) ->

DMap (i,i) (v,v) (f · lft u f · rht) d m

groupReduce1 :: ((i,v)->j, (i,v)->w, (w,w)->w,

DMap i v f d1 m1) -> DMap j w (hash(d) · fst) d2 m2

groupReduce2 :: Π(f,_,_,_) : ((i,v)->j, (i,v)->w, (w,w)->w,

DMap i v (hash(d) · f) d m) -> DMap j w (hash(d) · fst) d m

reduce :: ((k,v)->s, (s,s)->s, DMap k v f d m) -> s

union :: (DMap k v fst d m, DMap k v fst d m) -> DMap k v fst d m

zip :: (DList v cyc d m, DList w cyc d m) -> DList (v,w) cyc d m

mapList :: (v->w, DList v q d m) -> DList w q v m

reduceList :: ((v,v)->v, v, DList v q d m) -> v

redistArr :: DArr i v f1 d1 m1 -> DArr i v f2 d2 m2

repartMap :: DMap k v f1 d1 m -> DMap k v f2 d2 m

redistList :: DList v q1 d1 m1 -> DList v q2 d2 m2 etc ...

Fig. 11 DDL types for combinator implementations.

given group must be co-located on the same node. We specify this constraint
using a Π-type. groupReduce2’s type

groupReduce2 :: Π(f,_,_,_) :

((k1,v1) -> k2, (k1,v1) -> v2, (v2,v2) -> v2, DMap k1 v1 (hash(d) · f) d m)

-> DMap k2 v2 (hash(d) · fst) d m

thus binds the value of its first parameter, the function that generates the result
keys, to f. This f is then used to define the input map’s partition function.
All values for a given key produce the same hash, and will therefore be stored
on the same node. groupReduceArr2 uses the same technique.

eqJoin1 and eqJoinArr1 work in a similar way. Here, if we know that
the values that yield a given key are co-located on the same node then no

Tristan Aubrey-Jones, Bernd Fischer

inter-node communication is necessary and local joins will suffice. To specify
this we partition both inputs by their respective join-key projection functions
f and g. So in eqJoinArr1, the output will be partitioned by f·fst and g·snd,
hence the u.

We also use Π-types to propagate partitioning information between inputs
and outputs for structure-preserving transformations, like mapArrInv1. Here,
to ensure the output is partitioned by g, the input must be partitioned by g

applied after the index transformer function f. In the other direction, if the
inverse transformer function f−1 is known, and the input is partitioned by g,
then the output of mapArrInv2 will be partitioned by g applied after f−1. Both
these implementations work the same way, but they propagate distribution
information in different directions.

3.5 Function Generators

By expressing output partition functions as compositions of input ones, our
type schemes allow us to carry DDL information forwards (from inputs to out-
puts) through the programs. However, the analysis also needs to work back-
wards, in order to automatically find input partition functions which combine
to yield a given output partitioning. For unary combinators like mapArrInv1

we can use the existing DDL information, but for binary combinators like
eqJoinArr we need to decompose output partition functions. For this we use
function generators (cf. Figure 9, fstFun to rhtFun).

Generators analyze at compile-time the abstract syntax trees (ASTs) of
their arguments (which are partition functions), and derive new partition func-
tions that depend only on a subset of the inputs. If no such AST terms ex-
ist then the nullF function _->() is generated. For instance, fstFun takes
a function with a domain (x,y), and generates a function with domain x

by retaining all the parts of the AST that depend only on x, and throwing
away those terms that also depend on y; sndFun works accordingly on the
y domain. Recomposing the two results with the ⊗-operator yields a parti-
tion function that subsumes the original. Hence, given a partition function f

= \(a,(b,c)) -> (a,c), fstFun(f) equals \a -> a and sndFun(f) equals
\(b,c) -> c and their combination fstFun(f)⊗ sndFun(f) has the same ef-
fect as the original. For example, eqJoinArr3 uses function generators so that
it can partition its output by any f. To ensure that the output is partitioned
by f, the inputs must be partitioned by fstFun(f) and sndFun(f) along
dimensions d1 and d2.

3.6 Local Data Layouts

In addition to distribution information, we also use DDL types to specify
how to store collections in memory. We have omitted this from the types in
Figure 11 to simplify the presentation, but briefly sketch the mechanism here.

Synthesizing MPI Implementations from Functional Data-Parallel Programs

Multidimensional arrays can be stored different ways in memory, e.g., in
row-major or in column-major order. We specify the layout of an n-dimensional
DArr by adding a layout function to the type. This maps the array’s in-
dices to an n-tuple, whose order dictates how to order the indices in mem-
ory. Hence, \(x,y) -> (x,y) means row-major order, and \(x,y) -> (y,x)

means column-major. This can express very similar constraints to partition
functions. For example, groupReduceArr2 has the full type

Π(f,_,_,_) :

(i1->i2, (i1,v1)->v2, (v2,v2)->v2, DArr i1 v1 pf (f⊗ rem(f)) ·∆) d m)

-> DArr i2 v2 id id d m

where rem is a function generator that takes a function f and returns another
function that is the complement of f, i.e., projects all the parts of the input
tuple that f does not already project. Here, we force the first indices to be
the group’s key indices (projected by f), followed by the rest rem(f). This
improves cache-line usage by ensuring that elements in the same group are ad-
jacent in memory. We use the same technique to specify the indexing schemas
of DMaps. We also use flags in the types to specify the local storage modes (e.g.
hash table/binary tree/sorted vector/stream of values) for DMap and DList.

3.7 Extensibility

A major strength of our approach is its extensibility. New combinators can
be added simply by declaring their functional types, and the DDL types and
back-end templates of their implementations. Furthermore, the system can
be extended with new types without altering the underlying framework. For
example, collections like spatially indexed maps (Spatial), or trees (Tree),
and their distributed equivalents (DSpatial and DTree), can be added by
simply adding them to a config file (since all types are implemented as s-
expressions). DArrs can also be extended to support block-cyclic distributions,
and ghosting, by adding more function parameters to specify the offsets and
bounds. In fact irregular (i.e. master/slave) distribution algorithms can also
be modeled in a similar way to the “stream of values” (Stm) local storage
modes, where type variables identify irregular partition mappings, populated
at runtime. This extensibility is a clear benefit of this approach over collection-
specific techniques.

4 Automatic DDL Planning and Code Generation

4.1 Type Inference

Now that we have characterized the DDLs of combinator implementations,
we can search for distributed implementations of input programs by exploring
different combinations of combinator implementations. Here each combinator
application in a program can use a different implementation. We use type

Tristan Aubrey-Jones, Bernd Fischer

(DVar)
x : T ∈ Γ T ′ = instScheme(T)

Γ ` x : T ′ ↪→ {}

Γ ` e1 : T1 ↪→ C1

Γ ` e2 : T2 ↪→ C2 Γ ` e3 : T3 ↪→ C3

C′ = C1,2,3 ∪ {T1 = Bool, T2 = T3}
Γ ` if e1 then e2 else e3 : T2 ↪→ C′

(DIf)

(DTup)

Γ ` e1 : T1 ↪→ C1 . . . Γ ` en : Tn ↪→ Cn

C′ = C1 ∪ . . . ∪ Cn

Γ ` (e1, . . . , en) : (T1, . . . , Tn) ↪→ C′
Γ ` e1 : T1 Γ, x : T1 ` e2 : T2

Γ ` let x = e1 in e2 : T2 ↪→ {}
(DLet)

(DAbs)

X fresh var
Γ, x : X ` e1 : T ↪→ C

Γ ` \x -> e1 : X → T ↪→ C

X fresh var
Γ ` e1 : T1 ↪→ C1 Γ ` e2 : T2 ↪→ C2

C′ = C1,2 ∪ {T1 = T2 → X} ∪ gdc(T1, e2)

Γ ` e1 e2 : X ↪→ C′
(DApp)

Fig. 12 DDL type rules

inference to find a valid assignment of data distributions for a given choice of
combinator implementations, if one exists.

Figure 12 shows some of the typing rules for our DDL type system; we
omit rules for literals, and identifier patterns in let- and lambda-expressions
for brevity. The rules derive typing judgments for programs; the judgments also
include a set of constraints (denoted by “↪→ C”) which must be satisfiable for
the derived judgment to be valid. The rules closely mirror the standard poly-
morphic lambda calculus with conditionals and tuples [32], apart from DApp
which deals with dependent type schemes. DApp applies the gdc (generate
dependent constraints) function to return additional constraints which marry
up any Π-bound type variables (in T1), with their respective AST terms at
function applications (e2), so uses of these variables must match the AST
terms specified.

Our type inference algorithm is based on Damas and Milner’s Algorithm
W for ML [14]. The main difference is in the function application (case ii in the
original), which implements the DApp rule in Figure 12. This case instantiates
the function’s type scheme using fresh type variables, and instantiates any Π-
bound variables using gdc.

Testing for function equality is obviously undecidable in the general case;
in order to make our type system decidable we therefore adopt a sound but in-
complete approximate solution to unify partition functions. We currently test
for syntactic equality, which works for a wide range of programs, including
the examples in this paper. However, we are working on a more nuanced ap-
proach which relies on the fact that almost all of these functions are projection
functions.

4.2 Distribution Search

Now that we can find a valid data distribution for a choice of combinator
implementations, we can search through different choices of combinator func-

Synthesizing MPI Implementations from Functional Data-Parallel Programs

tions to explore different data distribution plans. Each combinator has a list
of combinator implementations, with different communication patterns, and
therefore different performance characteristics. Generally there are one or two
best implementations of a combinator which use some preferred data distri-
butions for their arguments (e.g., groupReduce2). After that there may be
one or two worse implementations of a combinator that are less efficient, but
that have less stringent constraints on their input and output distributions
(e.g., groupReduce1). Finally different redistribution functions (cf. Figure 11)
can be chained together to redistribute collections so that any combinator
implementations can be used, but this incurs a greater performance penalty
(e.g., groupReduce2·redistMap). So, to search for a good distributed imple-
mentation of a program, we look for a trade-off between giving some func-
tion applications their best combinator implementations (and therefore their
preferred data distributions) and giving others worse ones, so that the type
constraints are satisfied. We therefore currently explore giving different func-
tion applications their first or second choices of combinator implementations,
and making the best possible choices for other function applications (including
using combinations of redistribution functions) to make the constraints unify.
We are currently working on more sophisticated goal-directed searches based
on cost-estimates and performance feedback.

4.3 Code Generation

Fig. 13 Compiler architecture

We have implemented a prototype Flocc
code generator in Haskell that produces
MPI implementations in C++. The high-
level compilation process is illustrated in
Figure 13. The generator parses the input
program, and performs type inference for
the functional types. It then preprocesses
the AST to expand all tuple-typed vari-
ables to tuples of variables, and to replace
all function-typed variables with the lamb-
das they are bound to. This ensures that all
Π-bound lambdas are directly available at
function application expressions. Then it ex-
pands lambda term applications, so that dif-
ferent applications can have different DDLs.

At this point the generator loads the lists of combinator implementations
and their DDL types, and then uses the technique described in Section 4.2
to find possible distributed solutions, with their corresponding DDL types.
For a chosen implementation, it converts the AST into a data flow graph
(DFG), replacing all literals, tuple expressions and function applications etc.
with nodes, and let-bindings with edges.

Tristan Aubrey-Jones, Bernd Fischer

The generator then traverses the DFG, performing dead code elimination
and applying expression templates for each library function/distributed com-
binator application. Templates take their function application’s concrete DDL
types, and their input and output nodes. They output blocks of C++ to per-
form the corresponding operation, where blocks may be nested in, and consume
values from loops, for combinator implementations that take streams of values.
Most lambda-expressions are inlined by the code generator, apart from those
that are passed as custom reduction operators to MPI::Reduce and alike.

5 Example Derivations

We now discuss some generated DDL plans for the example programs. We list
the distributed implementation used for each combinator application, and the
DDL types that result. We use IP as shorthand for (Int,Int).

Matrix multiplication—partition for groupReduce. The first solution is driven
by an optimized partition for the group-reduce operation, which yields the
usual implementation of matrix multiplication. It uses groupReduceArr2 to
avoid inter-node communication by requiring R2 to be partitioned using its in-
dex projection function, which projects A’s row and B’s column from the array’s
indices. R1, mapArrInv2’s input, must thus be partitioned using this function
too. eqJoinArr3 satisfies this constraint, by partitioning A by row (using fst)
along one dimension, and B by column (using snd) along an orthogonal one,
and then mirroring both along their respective orthogonal dimensions. This
yields a 2D grid, enumerating all combinations of partitions, i.e., the Cartesian
product.

A :: DArr IP Float fstFun((\((ai,aj),(bi,bj))->(ai,bj))·id) d1 (d2,m)

= DArr IP Float fst d1 (d2,m)

B :: DArr IP Float sndFun((\((ai,aj),(bi,bj))->(ai,bj))·id) d2 (d1,m)

= DArr IP Float snd d2 (d1,m)

R1 :: DArr (IP,IP) (Float,Float) (\((ai,aj),(bi,bj))->(ai,bj))·id (d1,d2) m

R2 :: DArr (IP,IP) Float \((ai,aj),(bi,bj))->(ai,bj) (d1,d2) m

C :: DArr IP Float id (d1,d2) m

Matrix multiplication—partition for eqJoin. The next solution is more un-
usual. It uses eqJoinArr1 to avoid mirroring A and B, by aligning them to
co-locate partitions with common key values. A and B are partitioned by col-
umn (snd) and row (fst) respectively, and thus the join result R1 is partitioned
by both the column of A (snd · fst) and the row of B (fst · snd), which is re-
flected by the u-type. mapArrInv2 then constrains R2 to have this partitioning
as well, and so groupReduceArr2 cannot be used without inserting a redistri-
bution. Instead groupReduceArr1 is used, as it accepts any input partitioning,
at the expense of having to exchange intermediates between nodes. With dense
matrices R1 will be much larger than A and B, and so this solution will per-
form poorly, but if A and B are large and sufficiently sparse, exchanging the
intermediates could outperform mirroring.

Synthesizing MPI Implementations from Functional Data-Parallel Programs

A :: DArr IP Float snd d m

B :: DArr IP Float fst d m

R1 :: DArr (IP,IP) (Float, Float) (snd · fst u fst · snd) d m

R2 :: DArr (IP,IP) Float (snd · fst u fst · snd) · id d m

C :: DArr IP Float id d m

Matrix multiplication—mirror one matrix. This also uses groupReduceArr2,
but unlike the first solution, it uses eqJoinArr2 to give the required data
distribution. This partitions A across all the nodes in d, and mirrors B on all of
them. This solution is better than the first solution if B is much smaller than
A so that it is less expensive to replicate all of B than partitions of A.

A :: DArr IP Float fstFun((\((ai,aj),(bi,bj))->(ai,bj))·id) d m = fst d m

B :: DArr IP Float nullF () (d,m)

R1 :: DArr (IP,IP) (Float, Float) (\((ai,aj),(bi,bj))->(ai,bj))·id d m

R2 :: DArr (IP,IP) Float \((ai,aj),(bi,bj))->(ai,bj) d m

C :: DArr IP Float id d m

Histogram—group locally before exchange. The first Histogram solution uses
groupReduce1 so that the input D does not have to be partitioned by its Float
value. The output R is partitioned by bucket id (fst), and a concrete function
must still be chosen for f. Since in this example the type k is still abstract the
two possibilities for f are fst and snd. In a concrete program k is a concrete
type and so f could have more possible values. For f=fst, D is partitioned by
hash(d)·fst, which is a valid solution. However, for f=snd, D is partitioned
by hash(d)·\v->toInt(Float.* (v,i)), which is not valid, as it references i
before it has been declared, and so this solution is discarded by the compiler.

D :: Map k Float hash(d)·f·(id · fst⊗ \(_,v)->toInt(Float.* (v,i))) ·∆ d m

D’:: Map k Int hash(d)·f d m

R :: Map Int Int hash(d)·fst d m

Histogram—exchange before group. The second plan uses groupReduce2 by
repartitioning D’ by hash(d)·snd. However, this plan will be sub-optimal un-
less the number of buckets is close to the number of data points, since the
partitions of D’ that redistMap communicates will be larger than the results
of the local group-reduces that groupReduce1 communicates.

D :: DMap k Float hash(d)·f·(id · fst⊗ \(_,v)->toInt(Float.* (v,i))) ·∆ d m

D’:: DMap k Int hash(d)·snd d m

R :: DMap Int Int hash(d)·fst d m

Dot product—cyclic distribution. In this plan A and B are aligned since they
both have cyclic distributions over the same dimension d, so zip can be used
without any communication. However, if dotp was used in a context where A

or B had a different distribution, redistList would be automatically used to
convert it into the required cyclic distribution.

A :: DList Float cyc d (); B :: DList Float cyc d (); AB :: DList Float cyc d ()

Performance of generated code. We have generated implementations of the
running examples using our prototype tool and compared them (cf. Figure 14)
to PLINQ [16] (using all cores on a 64-bit/quad-core/2.67GHz workstation

Tristan Aubrey-Jones, Bernd Fischer

PLINQ Manual MPI
Program Speedup Compiler Data Speedup Compiler Data
Dot product 4.96× gcc -Ofast 2.2GB 0.99× icc -O3 4.5GB
Simple linear regression 137× gcc -Ofast 3GB 0.89× icc -O3 3GB

0.61× gcc -O3 3GB
Standard deviation 98.6× gcc -Ofast 3GB 0.88× icc -O3 3GB

1.00× gcc -O3 3GB
Histogram 31.5× gcc -Ofast 32MB 0.73× icc -O3 8GB
Matrix multiply 342× gcc -Ofast 1.4MB 6.14× gcc -O3 140MB

0.49× icc -O3 140MB

Fig. 14 Performance comparison of Flocc generated code vs. others

with 12GB memory), and hand-coded MPI implementations1 (averaged over
1,2,3,4,8,9,16,32 nodes on a 12k-core/16×2.67GHz core per node cluster, with
4GB memory per node, and InfiniBand interconnect). We compare with PLINQ,
even though it does not support distributed memory, because it also auto-
parallelizes programs written in a functional language inspired by relational
algebra, and so is the most closely related approach. All Flocc programs dras-
tically outperformed the PLINQ implementations, most likely because PLINQ
chose poor job partitionings, does not inline lambdas, and does not distinguish
between, and so cannot optimize for, arrays, lists, and maps. The generated
programs also came within 51% of the speed of hand-coded MPI versions. The
dot product and simple linear regression compiled with ICC, and the stan-
dard deviation, were nearly identical to the hand-coded versions. The linear
regression when compiled with ICC was 39% slower because it used an array of
structs, rather than a struct of arrays. The histogram was 27% slower, because
it used a hash table, and the comparison used an array. The matrix multiply
was 6× faster than the hand written code when compiled with GCC, since our
tool optimized the layout of B to be column-major, but was 51% slower when
compiled with ICC. This is because the manual version iterates over global
arrays, and ICC seems to optimize for this case. An additional Global array
storage mode (see Section 3.6) and corresponding templates, would cater for
this situation. The results could be improved further by optimizing the, and
adding additional, back-end templates, but they are sufficient to indicate that
the approach is viable in practice.

6 Related Work

Traditionally most high-performance computing (HPC) applications were pro-
grammed with MPI [42] or High Performance Fortran (HPF) [27]. MPI spec-
ifies message passing primitives for programming clusters. It is very versatile,
but it has no automatic data layout, and requires very verbose, hard-to-debug
implementations. We use it as target language in our work. HPF extends For-
tran 95 with directives to specify how to distribute arrays. It supports a limited
number of data-parallel operations for flat multi-dimensional arrays. Distribu-
tion directives were originally specified manually but a tool was developed to

Synthesizing MPI Implementations from Functional Data-Parallel Programs

optimize them for different programs [24]. Similar techniques were developed to
find data distributions for programs with array sections [13] and affine loop-
nests [1,3,5]. However our approach is more general, supporting collections
other than arrays, and an extensible set of data-parallel combinators.

MapReduce [15] and Hadoop [44] are frameworks for performing aggre-
gations on huge datasets, hosted on large-scale clusters. They primarily rely
on a map function that projects key-value pairs from a dataset, and a re-
duce function that aggregates a sorted list of values for each key. They handle
all communication, scheduling, and failure recovery, and so greatly simplify
data-parallel programming. However, they have a single restricted program-
ming model, and a single distributed implementation which is not suitable for
all applications. For example, one investigation showed a Hadoop K-means
clustering program performed 20× slower than an MPI version [17]. For this
reason numerous alternates have been suggested to allow, e.g., iteration [6,
19], different file types [7,20], accepting multiple inputs [46], removal of in-
termediate files [17], and supporting different architectures [33,11]. However,
each of these also has a (different) single programming model, and implemen-
tation, specialized for one particular task, and so can still suffer from the same
inflexibility as the original MapReduce. By contrast, our approach has many
input combinators, with many possible distributed implementations, that can
be combined in numerous ways, to yield implementations optimized for specific
applications. In particular, our technique supports iteration, multiple collec-
tion types, and structured data distributions.

Parallel databases can also be used for some distributed data-parallel tasks.
Like Flocc programs, parallel SQL query plans [9] are synthesized by enumer-
ating different combinations of plan operators to minimize the overall cost
[40]. SQL queries are also based on relational algebra, though they have a
weak type system, no support for array-based computation, and cannot be ex-
tended with new operators. Furthermore, parallel databases typically do not
generate standalone code, and the distributed schemas must be designed man-
ually, though a tool to assist with this has been proposed [30]. DryadLINQ
[23] is a framework for cluster computation in .NET languages, that also takes
SQL queries, optimizing them at runtime to query large distributed datasets.
However it suffers from many of the same problems as parallel databases.

Chapel [8] is a Partitioned Global Address Space (PGAS) language for
HPC that evolved from ZPL [26], a language for working with multidimen-
sional arrays, which featured named index sets called regions, so that arrays
that shared a region were aligned/distributed in the same way. Chapel im-
proves on ZPL and HPF by supporting data-parallel operations on maps and
graphs as well as arrays. It also includes some built in data distributions for
these types, but these must still be chosen by the programmer. X10 [10] is sim-
ilar, although it only supports distributed arrays and runs on the Java VM.
Fortress [43] was never fully implemented and is now dormant.

A number of functional data-parallel languages have been developed that
target shared memory parallelism. PLINQ [16] is like DryadLINQ for multi-
cores. NESL [4] specialized in nested data-parallel vector operations on vec-

Tristan Aubrey-Jones, Bernd Fischer

tor machines. Data Parallel Haskell [31] is an extension to Haskell based on
NESL, but for modern multi-cores. Single Assignment C (SAC) [22] supports
n-dimensional array computations, with an impressive implementation that
has outperformed Fortran in some cases. Some recent work on SAC has also
used a type system to reason about local array layouts, to detect when they
can be transformed to permit vectorization for SIMD instructions [41]. How-
ever none of these currently support distributed memory data parallelism, or
suggest how such support could be implemented.

One functional language that does target distributed memory architectures
is Sisal [21]. Sisal supports data-parallel for -expressions, which range over
index spaces accessing array elements, generating intermediate values, and
aggregating them. Although it only included this one data-parallel construct,
it did synthesize distributed memory implementations and seek to optimize
them by collocating tasks that would perform a lot of intercommunication
[37]. However, Sisal did not support structured data partitionings, alignments,
or data replication etc, and so was very limited in its ability to optimize data
layout. Furthermore, it only supported 1D arrays.

Finally, our data-parallel combinators are similar to algorithmic skeletons
[12]. Skeletons encode patterns of parallel processing and communication,
which can be composed and parameterized with concrete functions, leading to
networks of processes that perform a parallel task. For example, skeletons have
been implemented as C++ templates to allow users to quickly trial different
process networks on the CELL processor [35]. They have also been used in a
parallelizing SML compiler to implement list-combinators by synthesizing pro-
cess networks during an AST pass [38], and in an image processing DSL which
avoids redundant communication steps using a technique similar to our auto-
matic redistribution insertion [39]. However, none of these approaches support
different data partitionings, multiple collection types, or automatically explore
different data distributions.

7 Conclusions and Future Work

Conclusions. Existing languages for data-parallel programming rarely target
distributed-memory architectures, and those that do are restricted to a fixed
distribution model (MapReduce), and only support a limited set of opera-
tors (SQL/LINQ/HPF). In this paper we have presented a more general ap-
proach, where distributed-memory implementations are automatically synthe-
sized from data-parallel programs written in Flocc, a high-level functional core
language. To our knowledge this is the first approach that captures data dis-
tribution as a typing problem. In particular, we formalized distributed data
layouts by polymorphic dependent type schemes and used a variant of the
standard Damas-Milner type inference algorithm to search for different DDL
plans in a type-directed way.

Unlike similar work, our approach supports multiple collection types (i.e.,
arrays, maps, and lists) and thus works for a wide variety of programs (cf. Fig-

Synthesizing MPI Implementations from Functional Data-Parallel Programs

let triEnum = (\E :: Map (Int ,Int) () ->

-- find degree of all vertices

let D1 = groupReduce (fst.fst , _->1, addi , E) in

let D2 = groupReduce (snd.fst , _->1, addi , E) in

let D = map (\(k,v)->(k,addi v), eqJoin (fst ,fst ,D1,D2)) in

-- identify edges by vertex with lower degree

let E1 = eqJoin (fst , fst , E, D) in

let E2 = eqJoin (snd.fst , fst , E1, D) in

let E3 = map (\(((_,v1),v2),((_,d1),d2)) ->

(if lti (d1,d2) then (v1,v2) else (v2 ,v1), ()), E2) in

-- for each edge , find all angles

let A = allPairs (fst , E3) in

-- for each angle , see if it is closed

let T1 = eqJoin (\(((a,_),(_,b)),_)->(a,b), fst , A, E3) in

let T2 = eqJoin (\(((a,_),(_,b)),_)->(b,a), fst , A, E3) in

map (\((((v1,_),_),(v2,v3)),_) -> ((v1,v2,v3),()), union (T1 ,T2)))

Fig. 15 Triangle enumeration (MinBucket algorithm)

ure 7), and can easily be extended with more data types, data distributions,
and data-parallel operators, without changing the core framework. Our ap-
proach can boost programmer productivity and program reliability through
the conciseness of input programs (cf. Figure 7), fully automatic generation
of distribution plans and code, and the reduced number of possible bugs com-
pared to low level languages (i.e. no pointers/explicit message passing). Fi-
nally, initial performance results (cf. Figure 14) are substantially better than
PLINQ, a similar tool for multi-cores, and are close to manual MPI implemen-
tations, indicating that the approach is viable in practice.

Future Work. We are currently optimizing and implementing more back-end
templates for our code generator. In addition, there are several interesting
fundamental research directions. First, we are developing more efficient goal-
directed searches using cost estimates and performance feedback for our data
distribution planning. Second, we are developing a refined notion of function
comparison so that our distribution search algorithm can find solutions with
non-trivial partition function equalities. For example, Figure 15 shows an al-
gorithm for enumerating all triangles in a graph. The constraints caused by
the eqJoins and union at the end of this example preclude the use of local
eqJoin1s under syntactic equality. However, we work towards a more nuanced
system that finds the most general unifier of two partition functions, and so
permits this. Third, since arrays are “just” maps with dense integer domains
we plan to detect such maps in input programs, and to infer their bounds and
strides. This can then, for example, be used to derive dense and sparse matrix
algorithms from the same high-level programs using maps.

Additional Information. Additional information, including the code for the
examples in Figure 7 and Figure 14, can be found at
http://www.flocc.net/hlpp14/.

Tristan Aubrey-Jones, Bernd Fischer

References

1. J. M. Anderson and M. S. Lam. Global optimizations for parallelism and locality on
scalable parallel machines. PLDI ’93, pp. 112–125, 1993.

2. J. W. Berry, L. K. Fostvedt, D. J. Nordman, C. A. Phillips, C. Seshadhri, and A. G.
Wilson. Why do simple algorithms for triangle enumeration work in the real world? In
ITCS ’14, pp. 225–234, 2014.

3. R. E. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using 0-1 integer
programming. IFIP Trans ’94, pp. 111–122, 1994.

4. G. Blelloch, J. Hardwick, S. Chatterjee, J. Sipelstein, and M. Zagha. Implementation
of a portable nested data-parallel language. PPOPP ’93, pp. 102–111, 1993.

5. U. Bondhugula. Compiling affine loop nests for distributed-memory parallel architec-
tures. SC ’13 pp. 1–12, 2013.

6. Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop: efficient iterative data
processing on large clusters. PVLDB ’10, pp. 285–296, 2010.

7. J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn, N. Polyzotis, and
S. Brandt. SciHadoop: array-based query processing in Hadoop. SC ’11, pp. 66:1–
66:11, 2011.

8. B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability and the Chapel
language. IJHPCA ’07, pp. 291, 2007.

9. D. Chamberlin and R. Boyce. Sequel: A structured english query language. SIGFIDET
’74, pp. 249–264, 1974.

10. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform cluster com-
puting. OOPSLA ’05, pp. 519–538, 2005.

11. R. Chen, H. Chen, and B. Zang. Tiled-mapreduce: optimizing resource usages of data-
parallel applications on multicore with tiling. PACT ’10, pp. 523–534, 2010.

12. M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT
Press, Cambridge, MA, USA, 1991.

13. S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng. Automatic array alignment
in data-parallel programs. POPL ’93, pp. 16–28, 1993.

14. L. Damas and R. Milner. Principal type-schemes for functional programs. POPL ’82,
pp. 207–212, 1982.

15. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
OSDI ’04, 2004. USENIX.

16. J. Duffy and E. Essey. Parallel linq: Running queries on multi-core processors. MSDN
Magazine ’07, pp. 70-78, 2007.

17. J. Ekanayake, S. Pallickara, and G. Fox. Mapreduce for data intensive scientific analyses.
eScience ’08, pp. 277–284, 2008.

18. J. Ekanayake, T. Gunarathne, G. Fox, A. Balkir, C. Poulain, N. Araujo, and R. Barga.
Dryadlinq for scientific analyses. e-Science ’09, pp. 329–336, 2009.

19. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox. Twister:
a runtime for iterative mapreduce. HPDC ’10, pp. 810–818, 2010.

20. Z. Fadika, E. Dede, M. Govindaraju, and L. Ramakrishnan. Mariane: Mapreduce im-
plementation adapted for hpc environments. GRID ’11, pp. 82–89, 2011.

21. J. Feo, D. Cann, and R. Oldehoeft. A report on the Sisal language project. JPDC,
10(4):349–366, 1990.

22. C. Grleck. Shared memory multiprocessor support for functional array processing in
SAC. JFP, 15(03):353–401, 2005.

23. M. Isard and Y. Yu. Distributed data-parallel computing using a high-level program-
ming language. SIGMOD ’09, pp. 987–994, 2009.

24. K. Kennedy and U. Kremer. Automatic data layout for high performance fortran.
Supercomputing ’95, 1995.

25. C. Lengauer. Loop parallelization in the polytope model. CONCUR ’93, LNCS 715,
pp. 398–416, 1993.

26. C. Lin and L. Snyder. Zpl: An array sublanguage. LCPC ’94, LNCS 768, pp. 96–114,
1994.

27. D. Loveman. High performance fortran. PDS, 1(1):25 –42, 1993.

Synthesizing MPI Implementations from Functional Data-Parallel Programs

28. R. Milner. The polyadic λ-calculus: a tutorial. Logic and Algebra of Specification ’93,
pp. 203–246, 1993.

29. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign
language for data processing. SIGMOD ’08, pp. 1099–1110, 2008.

30. S. Papadomanolakis and A. Ailamaki. Autopart: automating schema design for large
scientific databases using data partitioning. SSDBM ’04, pp. 383–392, 2004.

31. S. Peyton Jones. Harnessing the multicores: Nested data parallelism in haskell. APLAS
’08, LNCS 5356, pp. 138–138, 2008.

32. B. Pierce. Types and Programming Languages. 2002. MIT Press.
33. C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating

mapreduce for multi-core and multiprocessor systems. HPCA ’07, pp. 13–24, 2007.
34. C. Reichenbach, Y. Smaragdakis, and N. Immerman. PQL: A purely-declarative java

extension for parallel programming. ECOOP ’12, LNCS 7313, pp. 53–78, 2012.
35. T. Saidani, J. Falcou, C. Tadonki, L. Lacassagne, and D. Etiemble. Algorithmic skeletons

within an embedded domain specific language for the cell processor. In PACT ’09,
pp. 67–76, 2009.

36. V. Sarkar and D. Cann. Posc - a partitioning and optimizing sisal compiler. ICS ’90,
pp. 148–164, 1990.

37. V. Sarkar and J. Hennessy. Compile-time partitioning and scheduling of parallel pro-
grams. CC ’86, pp. 17–26, 1986.

38. N. Scaife, S. Horiguchi, G. Michaelson, and P. Bristow. A parallel sml compiler based
on algorithmic skeletons. JFP, 15:615–650, 2005.

39. F. Seinstra, D. Koelma, and A. Bagdanov. Finite state machine-based optimization of
data parallel regular domain problems applied in low-level image processing. TPDS, 15
(10):865–877, 2004.

40. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access
path selection in a relational database management system. SIGMOD ’79, pp. 23–34,
1979.

41. A. Sinkarovs and S.-B. Scholz. Semantics-preserving data layout transformations for
improved vectorisation. FHPC ’13, pp. 59–70, 2013.

42. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI–the complete
reference. 1996.

43. M. Weiland. Chapel, Fortress and X10: novel languages for hpc. Technical report, HPCx
Consortium, U. of Edinburgh, Oct 2007.

44. T. White. Hadoop: The Definitive Guide. 2010.
45. H. XI. Dependent ML an approach to practical programming with dependent types.

JFP, 17:215–286, 2007.
46. H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-merge: simplified

relational data processing on large clusters. SIGMOD ’07, pp. 1029–1040, 2007.

