7th International Symposium on High-Level Parallel Programming and Applications (HLPP 2014) Amsterdam, Netherlands July 3-4, 2014

Synthesizing MPI Implementations from Functional Data-Parallel Programs

Tristan Aubrey-Jones · Bernd Fischer

Abstract Distributed memory architectures such as Linux clusters have become increasingly common but remain difficult to program. We target this problem and present a novel technique to automatically generate data distribution plans, and subsequently MPI implementations in C++, from programs written in a functional core language. The main novelty of our approach is that we support distributed arrays, maps, and lists in the same framework, rather than just arrays. We do this by formalizing our distributed data layouts as types, which are then used both to search (via type inference) for optimal data distribution plans and to generate the MPI implementations.

We introduce the core language and explain our formalization of distributed data layouts. We describe how we search for data distribution plans using an adaptation of the Damas-Milner type inference algorithm, and how we generate MPI implementations in C++ from such plans.

1 Introduction

Functional languages provide good high-level notations for data parallelism (e.g., [15, 23, 22, 31, 36]), but their automatic translation into efficient low-level code for distributed memory architectures remains a problem, due to the many possible data distributions. Many techniques only support a fixed model such as *map-reduce* [15] that is not necessarily suitable for all problems [18], or do not support distributed memory at all [31]. We present a flexible, type-based technique to search through the space of possible data distributions, and to generate efficient MPI implementations in C++ from the solutions.

We use a high-level core language called Flocc (Functional language on compute clusters) to demonstrate our approach. Like PigLatin [29] and PQL

B. Fischer

T. Aubrey-Jones

University of Southampton, UK E-mail: taj105@ecs.soton.ac.uk

University of Stellenbosch, South Africa E-mail: bfischer@cs.sun.ac.za

SELECT A.i as i, B.j as j,	$R_1 = A \bowtie_{A.j=B.i} B$
sum (A.v * B.v) as v FROM A JOIN B ON A.j = B.i	$R_2 = \rho_{A.v*B.v/v}(R_1)$
GROUP BY A.i, B.j;	$C = \mathcal{G}_{\langle A.i, B.j \rangle, \operatorname{sum}(v)}(R_2)$

Fig. 1 Matrix multiplication: SQL (left) and Relational Algebra (right)

[34], Flocc takes inspiration from relational algebra. Figure 1 illustrates this data-parallel programming style with a matrix multiplication in SQL and relational algebra. Here, $A \bowtie_p B$ is the join of A and B over the predicate p; R_1 thus contains all pairs of elements $(A_{i,k}, B_{k,j})$ that contribute to the result. $\rho_{e/x}$ is a renaming that creates a new column x with values e; R_2 thus contains all products $A_{i,k} * B_{k,j}$. Finally, $G_{i,f}$ is a group-reduce operation that reduces the groups of all tuples that have the same values in the columns i using the function f; C thus contains at (i, j) the sum of all products $A_{i,k} * B_{k,j}$. This formulation is implicitly parallel and abstracts away from global state, iteration and recursion, and individual element accesses, which helps us to derive data distribution plans. For example, we know from its syntactic structure that the operation $G_{(A.i,B.j),sum(v)}(R_2)$ only ever reduces groups of v-elements that come from tuples with the same values in the A.i- and B.j-columns of R_2 , respectively. Hence, if we distribute R_2 so that all these tuples are co-located, then the group reduce operation requires no further data exchanges and can run locally.

Our key insight is that we can use *types to formalize* this knowledge about the *data distribution characteristics* of combinators (as well as the distribution of the data itself), and *type inference to derive data distribution plans* for Flocc programs, in a way that works for multiple collection types and not just arrays. We call these types *distributed data layout* (DDL) types; they combine the usual (functional) types with layout information. For example, the DDL type DArr (Int, Int) Float fst D1 D2 characterizes a two-dimensional array of Float values that is partitioned by row and distributed and mirrored over different dimensions of a cluster's node topology. Here, the third argument fst of the DDL type constructor DArr is the *partition function* that describes which dimensions of the array are partitioned over the nodes in the cluster along the *dimension* D1 given as the fourth argument. The final argument D2 gives any dimensions along which each partition selected by the partition function is mirrored. Note that the DDL types are only used by the compiler, and not exposed to the programmer.

The compiler provides different functionally equivalent implementations of the combinators that work for different data distributions, and are thus characterized by different DDL types. For example, the declaration

```
groupReduceArr2 :: \Pi(pf, , , ) :
```

(i1->i2, (i1,v1)->v2, (v2,v2)->v2, DArr i1 v1 pf d m) -> DArr i2 v2 id d m

expresses that groupReduceArr2 binds the value of its first parameter, which is an array partition function, to pf and then uses *this specific* pf as partition Fig. 2 Flocc expression and type syntax

function for the array it reduces. The compiler instantiates the combinators in the user program with the different implementations, and then uses a variant of the standard Damas-Milner type inference algorithm to derive the DDL types that represent data distribution plans for these variants. In a final step, it generates efficient MPI implementations in C++ from these DDL plans.

Contributions. In this paper we describe the first technique (to our knowledge) to automate the data distribution of data-parallel programs that supports multiple distributed collection types, including arrays, lists, and maps. Our approach can easily be extended with further collection types and dataparallel combinators, making it flexible and applicable for a wide variety of data-parallel tasks. This is in contrast to existing approaches that focus on automatically finding the best data distributions for array-based algorithms, where input programs are either nested loops with affine array references [1,3, 5], or combinations of array section and reduction operators [13]. We demonstrate our approach for a small domain-specific language for data-parallel functional programming that is inspired by relational algebra. In particular, we formalize distributed data layouts by polymorphic dependent type schemes and use a variant of the standard Damas-Milner type inference algorithm to search for different DDL plans in a type-directed way. We have implemented a prototype code generator for DDL plans that targets MPI and C++.

2 Data-Parallel Programming in Flocc

Flocc's expression and type syntax are shown in Figure 2. Expressions e can be identifiers, literals, function abstractions, function applications, tuples, let bindings, or if-then-else expressions. Function abstraction arguments and let expressions bind values to tuples of identifiers x. List, array, and map literal expressions are also supported but not shown. Flocc uses Damas-Milner type inference [14] to infer types for all expressions, though function abstractions and let-bindings support optional type declarations which the compiler checks.

At the high-level (i.e., executed on a single processor with a single address space), Flocc has a standard call-by-value reduction semantics. All parallelism in the language is expressed via data-parallel operations applied to the collections. These operations include predefined combinators for arrays, maps, and lists shown in Figure 3; there are many further combinators not shown here for brevity. In the following we illustrate the language with several examples.

Tristan Aubrey-Jones, Bernd Fischer

```
subArr :: (i, i, Arr i v) -> Arr i v
shiftArr :: (i, Arr i v) -> Arr i v
mapArrInv :: (i->j, (i,v)->w, j->i, Arr i v) -> Arr j w
eqJoinArr :: (i->k, j->k, Arr i v, Arr j w) -> Arr (i,j) (v,w)
groupReduceArr :: (i->j, (i,v)->w, (w,w)->w, Arr i v) -> Arr j w
map :: ((i,v)->(j,w), Map i v) -> Map j w
eqJoin :: ((i,v)->k, (j,w)->k, Map i v, Map j w) -> Map (i,j) (v,w)
allPairs :: ((i,v)->k, Map i v) -> Map (i,i) (v,v)
reduce :: ((i,v)->s, (s,s)->s, Map i v) -> s
groupReduce :: ((i,v)->j, (i,v)->w, (w,w)->w, Map i v) -> Map j w
union :: (Map i v, Map i v) -> Map i v
zip :: (List v, List w) -> List (v,w)
mapList :: (v->w, List v) -> List w
reduceList :: ((v,v)->v, v, List v) -> v
```

Fig. 3 Predefined data-parallel combinators for arrays, maps, and lists.

Fig. 4 Matrix-matrix multiplication program

Matrix Multiplication. In Flocc, the matrix multiplication (cf. Figure 4) closely follows the relational algebra version (cf. Figure 1). Here, A and B are arrays with pairs of integers as indices, and floating point values. The array join eqJoinArr computes the Cartesian product of both arrays, restricted to entries where the snd index from A is equal to the fst index from B. It thus returns an array with four indices that contains all pairs of Floats that contribute to the result. mapArrInv multiplies each of these pairs (like the renaming), and the aggregation groupReduceArr then groups these values using new keys (ai,bj) (i.e., the row from A and column from B), and sums up all the values in each group using Float.+.

Histograms. The function hist (cf. Figure 5) shows a use of maps in Flocc. It takes a pair of arguments N and D, where D is a map from keys of arbitrary type k to floating point values, and computes a histogram of these values. This histogram has N equally spaced buckets such that bucket O contains the minimum value in D and bucket N-1 contains the maximum. The reduce combinator projects the values from the map D into pairs and finds the minimum and maximum values. These values are used to calculate the scaling coefficient i, which in turn is used to calculate each value's bucket index with the map combinator. Here, the key remains unchanged, so map's first argument is id. groupReduce then uses these bucket indices as the keys for the result map,

Fig. 5 N-bucket histogram

```
let dotp = (\(A,B) :: (List Float, List Float) ->
let AB = mapList (Float.*, zip (A,B)) in
reduceList (Float.+, 0.0, AB)) in ...
```

Fig. 6 Dot product

Problem	Flocc	Comparison	Types		
Matrix multiply (cf. Fig 4)	5	C/MPI 89		Arr	
Floyd's all pairs shortest path	15	C/MPI 88		Arr	
Jacobi 2D	8	C++/MPI	120	Arr	
SOR red/black	18	C/MPI	289	Arr	
N-body (gravitational)	38	C/MPI	153	Arr	
K-means clustering	36	C/MPI	114	Map	
Triangle enum (cf. Fig 15)	12	C++/MR-MPI	263	Map	
R-MAT graph generation	35	C++/MR-MPI	148	Map	
PageRank	11	Java/Hadoop	157	Map	
Histogram (cf. Fig 5)	6	C++/MPI	204	Map	
Apriori association mining	14	Java/Hadoop	371	Map	
Dot product (cf. Fig 6)	3	C++/MPI	35	List	
Standard deviation	6	C/MPI	38	List	
Simple linear regression	10	C++/MPI	47	List	
Word count	3	Java/Hadoop	48	List & Map	
Grep	2	Java/Hadoop	59	List	

Fig. 7 Comparative code sizes (code lines without comments and IO code)

where snd projects them out of the original key-value pairs. For each key-value pair a 1 is projected out (using $\ > -> 1$), and then each group of ones is aggregated using Float.+, thus counting the entries in each bucket.

Dot product. The function dotp (cf. Figure 6) shows a use of lists in Flocc. It takes a pair of lists of floats, and returns their dot product, computed by zipping together the lists, multiplying the pairs, and then sum reducing them.

Comparison of code sizes. Figure 7 compares the code sizes for a number of programs written in Flocc and other languages.¹ The Flocc implementations are between 3% (Histogram) and 32% (K-means) of the size of the comparisons (12% on average). This illustrates the potential productivity gains of such a high-level language approach.

¹ See http://www.flocc.net/hlpp14/codesizes.html for details.

Fig. 8 Array distributions (left, center). Map distribution (right).

3 Distributed Data Layouts as Types

3.1 Distributing Collections on Clusters

MPI allows the definition of virtual node topologies where nodes are addressable via Cartesian coordinates. The MPI implementation then decides how best to map these onto physical nodes. This abstraction is useful, since it allows us to describe where collections are stored and replicated relative to each other, without considering the physical interconnect. We therefore identify nodes using *n*-dimensional grids with dimensions D_1 to D_n .

Collections can be split into partitions and distributed over the nodes in some of the dimensions, replicated across any other dimensions, and are stored at the nodes on the axis of any remaining dimensions. Figure 8 illustrates on the left an input distribution for a matrix multiply on an 8-node cluster organized as a 3D grid. Matrix A is split into two partitions A_1 and A_2 distributed along D_1 , and mirrored across D_2 , but only at the axis of D_3 . B is partitioned along D_2 , and mirrored across D_1 , also only at the axis of D_3 . Hence, the node (0, 1, 0) contains the partitions A_2 and B_2 while (1, 1, 1) remains empty. Figure 8 (center) illustrates a 2D partitioning of an array X, and shows (on the right) a map M partitioned along D_1 and only at the axis of D_2 . We use such node arrangements to describe data distributions in the sections that follow.

3.2 Distributed Data Layout Types

In our system, every high-level collection has a corresponding distributed collection type which, in addition to describing the data type, has extra parameters which specify how it should be distributed on the cluster. It is important to note that the user does not see these types, but the compiler uses them to plan the data distribution. The syntax for these distributed data layout (DDL) types is given in Figure 9. In addition to standard type schemes these include a polyadic version of dependent Π -types that we call dependent type schemes and explain in Section 3.4. The DDL types dt extend types t with distributed

$$\begin{array}{lll} \beta \cdot \alpha \Rightarrow \langle \mathbf{x} {\rightarrow} (\beta(\alpha \ \mathbf{x})) \\ \alpha {\otimes} \beta \Rightarrow \langle (\mathbf{x}, \mathbf{y}) {\rightarrow} (\alpha \ \mathbf{x}, \ \beta \ \mathbf{y}) \\ \mathrm{id} & \Rightarrow \langle \mathbf{x} {\rightarrow} \mathbf{x} \\ \varDelta & \Rightarrow \langle \mathbf{x} {\rightarrow} (\mathbf{x}, \mathbf{x}) \\ \mathrm{null} \mathbf{F} \Rightarrow \langle {-} {\rightarrow} () \\ \mathrm{fst} & \Rightarrow \langle (\mathbf{x}, \mathbf{y}) {\rightarrow} \mathbf{x} \\ \mathrm{snd} & \Rightarrow \langle (\mathbf{x}, \mathbf{y}) {\rightarrow} \mathbf{y} \\ \mathrm{lft} & \Rightarrow \mathrm{fst} \cdot \mathrm{fst} {\otimes} \mathrm{fst} \cdot \mathrm{snd} \\ \mathrm{rht} & \Rightarrow \mathrm{snd} \cdot \mathrm{fst} {\otimes} \mathrm{snd} \cdot \mathrm{snd} \end{array}$$

Fig. 10 Built-in functions

The DDL types dt extend types t with distributed arrays, maps, and lists

```
\begin{array}{l} dts :::= \forall Id \cdot dts \mid \Pi x : dt \to dt \mid dt \\ dt :::= Id \mid \text{Int} \mid \text{Float} \mid \text{Bool} \mid \text{Null} \mid (dt_1, \ \dots, \ dt_n) \mid dt_1 \to dt_2 \\ \mid & \text{Arr } i \ t \mid \text{Map} \ t_1 \ t_2 \mid \text{List} \ t \\ \mid & \text{DArr } i \ t \ f \ m? \ d_1 \ d_2 \mid \text{DMap} \ t_1 \ t_2 \ f \ d_1 \ d_2 \mid \text{DList} \ t \ m? \ d_1 \ d_2 \mid \dots \\ m :::= \text{ blk} \mid \text{cyc} \mid (m_1, \ \dots, \ m_n) \\ i :::= \text{ Int} \mid (i_1, \ \dots, \ i_n) \\ x :::= Id \mid \_ \mid (x_1, \ \dots, \ x_n \ ) \\ d :::= Id \mid (d_1, \ \dots, \ d_n) \\ f :::= \text{N} \left[ :: \ t \ ] \rightarrow e \mid g \mid f_1 \cdot f_2 \mid f_1 \otimes f_2 \mid f_1 \ \sqcap f_2 \\ \mid & \text{id} \mid \Delta \mid \text{nullF} \mid \text{fst} \mid \text{snd} \mid \text{lft} \mid \text{rht} \mid \text{hash}(d) \\ g :::= \text{ fstFun} \ f \mid \text{sndFun} \ f \mid \text{lftFun} \ f \mid \text{rhtFun} \ f \end{array}
```

Fig. 9 Distributed data layout (DDL) type syntax

(DArr, DMap, and DList). Additional type parameters include partition functions f, distribution modes m, and dimension identifiers d, which are described below. Partition functions can contain function generators g which are described in Section 3.5.

The DArr type formally describes how to store an array on a cluster. It takes a partition function f, an optional tuple of distribution modes m, and two tuples of dimension identifiers d_1 and d_2 . f is an actual (projection) function that is made from lambda terms from the input program and the operators listed under f in Figure 9, and defined in Figure 10. It identifies the dimensions of the array along which it should be partitioned. Dimension identifiers d_1 and d_2 are just tuples of type variables. d_1 has the same arity as f's co-domain, and specifies over which dimensions of the cluster the partition dimensions should be distributed. d_2 specifies over which dimensions to mirror. Array partitions only exist at the 0^{th} position in any remaining dimensions. m is an optional tuple of distribution modes (blk or cyc; default blk), with the same arity as d_1 ; it specifies a mode for each of the array dimensions returned by f. Here blk describes contiguous blocks of an array on successive nodes (e.g. a[0:9] on n_0 , a[10:19] on n_2), and cyc describes storing alternate elements on successive nodes (e.g. a[0] on n_0 , a[1] on n_1 , a[5] on n_0 , where $|d_1| = 5$). For example, the matrices in Figure 8 (left) have DDL types

```
A :: DArr (Int,Int) Float fst blk D1 D2
B :: DArr (Int,Int) Float snd blk D2 D1
```

where A is partitioned by row using fst, and B by column using snd. Similarly, DMaps describe how to store Maps on clusters. d_1 and d_2 work in the same way as DArr, but f takes key-value pairs rather than indices, mapping them onto specific node indices in d_1 . f can use the function hash(d) which takes a tuple of dimension identifiers d, and returns a function from any value type to node indices for the dimensions in d. For example, the value M in Figure 8 (right) is partitioned by z and so has type

DMap (Int,Int) Float hash(D1) · snd D1 ()

DList's parameters d_1 and d_2 work in the same way, but instead of a partition function, DLists just have a partition mode m.

Top-level scalars and lambda terms are always mirrored on all nodes in the cluster. For DArrs and DMaps, if the partition function is nullF the collection is not partitioned. The \otimes -operator composes two functions pairwise as defined in Figure 10. In some situations collections are partitioned by multiple partition functions simultaneously, e.g. the result of two aligned collections can be viewed as partitioned by either/both of the input's partition functions. We therefore allow collections to be partitioned by lists of partition functions, concatenated using the \sqcap -operator. Both \cdot and \otimes distribute over \sqcap , so that we can rearrange sequential/pairwise compositons of function lists, into lists of compositions of individual functions, e.g. $(\alpha \sqcap \beta) \cdot \gamma = (\alpha \cdot \gamma) \sqcap (\beta \cdot \gamma)$.

3.3 Distributed Function Types

For each high-level combinator (cf. Figure 3), the compiler internally provides different functionally equivalent implementations that work for different data distributions. We use DDL types to characterize how these different implementations store their inputs and outputs. These implementations and their types are hidden from the user; they only see the high-level combinators.

The DDL type schemes for some of these implementations are shown in Figure 11, where different implementations of the same combinator are distinguished using suffix numbers. For example, groupReduce1 locally groups and reduces the values stored at each node, exchanges the results between nodes to co-locate by key, and then group-reduces again at each node. This implementation works no matter how the input is partitioned. In the DDL type we therefore use the universally quantified type variable **f** to specify that the input can be partitioned by any partition function. The output is always partitioned by key, which we specify by using **fst** in the return type.

3.4 Dependent Type Schemes

In addition to classic type schemes, we also have a polyadic version of dependent Π types dts, similar to those used in dependent ML [45]. These are not full dependent types, so that we can keep our system decidable. They are similar to type schemes but the type variables are now rigidly bound to the members of the argument tuples at function applications. Hence, rather than representing *any* value, such type variables are bound to the *actual* values of parameters at runtime, or more precisely, the AST terms that represent them. These variables can then be used in the input and output types. This allows us to place context-dependent constraints on data distributions, to specify when different combinator implementations can be used.

For example, in contrast to groupReduce1, groupReduce2 group-reduces just once, locally at each node. To yield a valid result all the input values for a mapArrInv1 :: Π(f,_,_,) : (i->j, (i,v)->w, j->i, DArr i v $(g \cdot f)$ d m) -> DArr j w g d m mapArrInv2 :: $\Pi(_,_,f^{-1},_)$: (i->j, (i,v)->w, j->i, DArr i v g d m) -> DArr j w (g \cdot f⁻¹) d m eqJoinArr1 :: $\Pi(f,g,_,)$: (i->k, j->k, DArr i v f d m, DArr j w g d m) -> DArr (i,j) (v,w) (f \cdot fst \sqcap g \cdot snd) d m eqJoinArr2 :: (i->k, j->k, DArr i v fstFun(f) d m, DArr j w nullF () (d,m)) -> DArr (i,j) (v,w) f d m eqJoinArr3 :: (i->k, j->k, DArr i v fstFun(f) d1 (d2, m), DArr j w sndFun(f) d2 (d1, m)) -> DArr (i,j) (v,w) f (d1,d2) m groupReduceArr1 :: $(i \rightarrow j, (i, v) \rightarrow w, (w, w) \rightarrow w,$ DArr i v f d1 m1) -> DArr j w id d2 m2 groupReduceArr2 :: $\Pi(pf, , ,)$: (i->j), (i,v)->w, (w,w)->w, DArr i v pf d m) -> DArr j w id d m map :: $\Pi(f, _)$: ((i,v)->(j,w), DMap i v $(g \cdot f) d m$) -> DMap j w g d m eqJoin1 :: $\Pi(f,g,_,)$: ((i,v)->k, (j,w)->k, DMap i v f d m, DMap j w g d m) -> DMap (i,j) (v,w) (f · lft □ g · rht) d m eqJoin2 :: $((i,v) \rightarrow k, (j,w) \rightarrow k, DMap i v lftFun(f) d m,$ DMap j w nullF () (d,m)) \rightarrow DMap (i,j) (v,w) f d m eqJoin3 :: ((i,v)->k, (j,v)->k, DMap i v lftFun(f) d1 (d2, m), DMap j w rhtFun(f) d2 (d1, m)) -> DMap (i,j) (v,w) f (d1,d2) m allPairs :: $\Pi(f,_)$: ((i,v)->k, DMap i v f d m) -> DMap (i,i) (v,v) (f · lft □ f · rht) d m groupReduce1 :: ((i,v)->j, (i,v)->w, (w,w)->w, DMap i v f d1 m1) -> DMap j w (hash(d) \cdot fst) d2 m2 groupReduce2 :: $\Pi(f, , ,)$: $((i,v) \rightarrow j, (i,v) \rightarrow w, (w,w) \rightarrow w,$ DMap i v (hash(d) · f) d m) \rightarrow DMap j w (hash(d) · fst) d m reduce :: $((k,v) \rightarrow s, (s,s) \rightarrow s, DMap k v f d m) \rightarrow s$ union :: (DMap k v fst d m, DMap k v fst d m) -> DMap k v fst d m zip :: (DList v cyc d m, DList w cyc d m) -> DList (v,w) cyc d m mapList :: (v->w, DList v q d m) -> DList w q v m reduceList :: $((v,v) \rightarrow v, v, DList v q d m) \rightarrow$ redistArr :: DArr i v f1 d1 m1 -> DArr i v f2 d2 m2 repartMap :: DMap k v f1 d1 m -> DMap k v f2 d2 m redistList :: DList v q1 d1 m1 -> DList v q2 d2 m2 etc...

Fig. 11 DDL types for combinator implementations.

given group must be co-located on the same node. We specify this constraint using a Π -type. groupReduce2's type

```
groupReduce2 :: II(f,_,__) :
   ((k1,v1) -> k2, (k1,v1) -> v2, (v2,v2) -> v2, DMap k1 v1 (hash(d) · f) d m)
   -> DMap k2 v2 (hash(d) · fst) d m
```

thus binds the value of its first parameter, the function that generates the result keys, to f. This f is then used to define the input map's partition function. All values for a given key produce the same hash, and will therefore be stored on the same node. groupReduceArr2 uses the same technique.

eqJoin1 and eqJoinArr1 work in a similar way. Here, if we know that the values that yield a given key are co-located on the same node then no inter-node communication is necessary and local joins will suffice. To specify this we partition both inputs by their respective join-key projection functions f and g. So in eqJoinArr1, the output will be partitioned by $f \cdot fst$ and $g \cdot snd$, hence the \Box .

We also use Π -types to propagate partitioning information between inputs and outputs for structure-preserving transformations, like mapArrInv1. Here, to ensure the output is partitioned by g, the input must be partitioned by g applied after the index transformer function f. In the other direction, if the inverse transformer function f^{-1} is known, and the input is partitioned by g, then the output of mapArrInv2 will be partitioned by g applied after f^{-1} . Both these implementations work the same way, but they propagate distribution information in different directions.

3.5 Function Generators

By expressing output partition functions as compositions of input ones, our type schemes allow us to carry DDL information *forwards* (from inputs to outputs) through the programs. However, the analysis also needs to work *backwards*, in order to automatically find input partition functions which combine to yield a given output partitioning. For unary combinators like mapArrInv1 we can use the existing DDL information, but for binary combinators like eqJoinArr we need to *decompose* output partition functions. For this we use *function generators* (cf. Figure 9, fstFun to rhtFun).

Generators analyze at compile-time the abstract syntax trees (ASTs) of their arguments (which are partition functions), and derive new partition functions that depend only on a subset of the inputs. If no such AST terms exist then the nullF function $_->$ () is generated. For instance, fstFun takes a function with a domain (x,y), and generates a function with domain x by retaining all the parts of the AST that depend only on x, and throwing away those terms that also depend on y; sndFun works accordingly on the y domain. Recomposing the two results with the \otimes -operator yields a partition function that subsumes the original. Hence, given a partition function f = $(a, (b, c)) \rightarrow (a, c)$, fstFun(f) equals $a \rightarrow a$ and sndFun(f) equals $(b, c) \rightarrow c$ and their combination fstFun(f) \otimes sndFun(f) has the same effect as the original. For example, eqJoinArr3 uses function generators so that it can partition its output by any f. To ensure that the output is partitioned by f, the inputs must be partitioned by fstFun(f) and sndFun(f) along dimensions d1 and d2.

3.6 Local Data Layouts

In addition to distribution information, we also use DDL types to specify how to store collections in memory. We have omitted this from the types in Figure 11 to simplify the presentation, but briefly sketch the mechanism here. Multidimensional arrays can be stored different ways in memory, e.g., in row-major or in column-major order. We specify the layout of an *n*-dimensional DArr by adding a *layout function* to the type. This maps the array's indices to an *n*-tuple, whose order dictates how to order the indices in memory. Hence, $\langle (x,y) \rangle \rightarrow \langle x,y \rangle$ means row-major order, and $\langle (x,y) \rangle \rightarrow \langle y,x \rangle$ means column-major. This can express very similar constraints to partition functions. For example, groupReduceArr2 has the full type

Π(f,_,_,) : (i1->i2, (i1,v1)->v2, (v2,v2)->v2, DArr i1 v1 pf (f⊗rem(f)) · Δ) d m) -> DArr i2 v2 id id d m

where rem is a function generator that takes a function f and returns another function that is the complement of f, i.e., projects all the parts of the input tuple that f does not already project. Here, we force the first indices to be the group's key indices (projected by f), followed by the rest rem(f). This improves cache-line usage by ensuring that elements in the same group are adjacent in memory. We use the same technique to specify the indexing schemas of DMaps. We also use flags in the types to specify the local storage modes (e.g. hash table/binary tree/sorted vector/stream of values) for DMap and DList.

3.7 Extensibility

A major strength of our approach is its extensibility. New combinators can be added simply by declaring their functional types, and the DDL types and back-end templates of their implementations. Furthermore, the system can be extended with new types without altering the underlying framework. For example, collections like spatially indexed maps (Spatial), or trees (Tree), and their distributed equivalents (DSpatial and DTree), can be added by simply adding them to a config file (since all types are implemented as sexpressions). DArrs can also be extended to support block-cyclic distributions, and ghosting, by adding more function parameters to specify the offsets and bounds. In fact irregular (i.e. master/slave) distribution algorithms can also be modeled in a similar way to the "stream of values" (Stm) local storage modes, where type variables identify irregular partition mappings, populated at runtime. This extensibility is a clear benefit of this approach over collectionspecific techniques.

4 Automatic DDL Planning and Code Generation

4.1 Type Inference

Now that we have characterized the DDLs of combinator implementations, we can search for distributed implementations of input programs by exploring different combinations of combinator implementations. Here each combinator application in a program can use a different implementation. We use type

Fig. 12 DDL type rules

inference to find a valid assignment of data distributions for a given choice of combinator implementations, if one exists.

 $\overline{\Gamma \vdash e_1 \ e_2} : \mathbf{X} \ \hookrightarrow \ C'$

Figure 12 shows some of the typing rules for our DDL type system; we omit rules for literals, and identifier patterns in let- and lambda-expressions for brevity. The rules derive typing judgments for programs; the judgments also include a set of constraints (denoted by " $\hookrightarrow C$ ") which must be satisfiable for the derived judgment to be valid. The rules closely mirror the standard polymorphic lambda calculus with conditionals and tuples [32], apart from DAPP which deals with dependent type schemes. DAPP applies the gdc (generate dependent constraints) function to return additional constraints which marry up any Π -bound type variables (in T_1), with their respective AST terms at function applications (e_2) , so uses of these variables must match the AST terms specified.

Our type inference algorithm is based on Damas and Milner's Algorithm W for ML [14]. The main difference is in the function application (case ii in the original), which implements the DAPP rule in Figure 12. This case instantiates the function's type scheme using fresh type variables, and instantiates any Π bound variables using gdc.

Testing for function equality is obviously undecidable in the general case; in order to make our type system decidable we therefore adopt a sound but incomplete approximate solution to unify partition functions. We currently test for syntactic equality, which works for a wide range of programs, including the examples in this paper. However, we are working on a more nuanced approach which relies on the fact that almost all of these functions are projection functions.

4.2 Distribution Search

Now that we can find a valid data distribution for a choice of combinator implementations, we can search through different choices of combinator functions to explore different data distribution plans. Each combinator has a list of combinator implementations, with different communication patterns, and therefore different performance characteristics. Generally there are one or two best implementations of a combinator which use some preferred data distributions for their arguments (e.g., groupReduce2). After that there may be one or two worse implementations of a combinator that are less efficient, but that have less stringent constraints on their input and output distributions (e.g., groupReduce1). Finally different redistribution functions (cf. Figure 11) can be chained together to redistribute collections so that any combinator implementations can be used, but this incurs a greater performance penalty (e.g., groupReduce2.redistMap). So, to search for a good distributed implementation of a program, we look for a trade-off between giving some function applications their best combinator implementations (and therefore their preferred data distributions) and giving others worse ones, so that the type constraints are satisfied. We therefore currently explore giving different function applications their first or second choices of combinator implementations, and making the best possible choices for other function applications (including using combinations of redistribution functions) to make the constraints unify. We are currently working on more sophisticated goal-directed searches based on cost-estimates and performance feedback.

4.3 Code Generation

We have implemented a prototype Flocc code generator in Haskell that produces MPI implementations in C++. The highlevel compilation process is illustrated in Figure 13. The generator parses the input program, and performs type inference for the functional types. It then preprocesses the AST to expand all tuple-typed variables to tuples of variables, and to replace all function-typed variables with the lambdas they are bound to. This ensures that all Π -bound lambdas are directly available at function application expressions. Then it expands lambda term applications, so that different applications can have different DDLs.

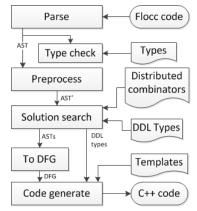


Fig. 13 Compiler architecture

At this point the generator loads the lists of combinator implementations and their DDL types, and then uses the technique described in Section 4.2 to find possible distributed solutions, with their corresponding DDL types. For a chosen implementation, it converts the AST into a data flow graph (DFG), replacing all literals, tuple expressions and function applications etc. with nodes, and let-bindings with edges. The generator then traverses the DFG, performing dead code elimination and applying expression templates for each library function/distributed combinator application. Templates take their function application's concrete DDL types, and their input and output nodes. They output blocks of C++ to perform the corresponding operation, where blocks may be nested in, and consume values from loops, for combinator implementations that take streams of values. Most lambda-expressions are inlined by the code generator, apart from those that are passed as custom reduction operators to MPI::Reduce and alike.

5 Example Derivations

We now discuss some generated DDL plans for the example programs. We list the distributed implementation used for each combinator application, and the DDL types that result. We use IP as shorthand for (Int,Int).

Matrix multiplication—partition for groupReduce. The first solution is driven by an optimized partition for the group-reduce operation, which yields the usual implementation of matrix multiplication. It uses groupReduceArr2 to avoid inter-node communication by requiring R2 to be partitioned using its index projection function, which projects A's row and B's column from the array's indices. R1, mapArrInv2's input, must thus be partitioned using this function too. eqJoinArr3 satisfies this constraint, by partitioning A by row (using fst) along one dimension, and B by column (using snd) along an orthogonal one, and then mirroring both along their respective orthogonal dimensions. This yields a 2D grid, enumerating all combinations of partitions, i.e., the Cartesian product.

```
A :: DArr IP Float fstFun((\((ai,aj),(bi,bj))->(ai,bj)).id) d1 (d2,m)
= DArr IP Float fst d1 (d2,m)
B :: DArr IP Float sndFun((\((ai,aj),(bi,bj))->(ai,bj)).id) d2 (d1,m)
= DArr IP Float snd d2 (d1,m)
R1 :: DArr (IP,IP) (Float,Float) (\((ai,aj),(bi,bj))->(ai,bj)).id (d1,d2) m
R2 :: DArr (IP,IP) Float \((ai,aj),(bi,bj))->(ai,bj) (d1,d2) m
C :: DArr IP Float id (d1,d2) m
```

Matrix multiplication—partition for eqJoin. The next solution is more unusual. It uses eqJoinArr1 to avoid mirroring A and B, by aligning them to co-locate partitions with common key values. A and B are partitioned by column (snd) and row (fst) respectively, and thus the join result R1 is partitioned by both the column of A (snd \cdot fst) and the row of B (fst \cdot snd), which is reflected by the \Box -type. mapArrInv2 then constrains R2 to have this partitioning as well, and so groupReduceArr2 cannot be used without inserting a redistribution. Instead groupReduceArr1 is used, as it accepts any input partitioning, at the expense of having to exchange intermediates between nodes. With dense matrices R1 will be much larger than A and B, and so this solution will perform poorly, but if A and B are large and sufficiently sparse, exchanging the intermediates could outperform mirroring. A :: DArr IP Float snd d m
B :: DArr IP Float fst d m
R1 :: DArr (IP,IP) (Float, Float) (snd fst □ fst snd) d m
R2 :: DArr (IP,IP) Float (snd fst □ fst snd) id d m
C :: DArr IP Float id d m

Matrix multiplication—mirror one matrix. This also uses groupReduceArr2, but unlike the first solution, it uses eqJoinArr2 to give the required data distribution. This partitions A across all the nodes in d, and mirrors B on all of them. This solution is better than the first solution if B is much smaller than A so that it is less expensive to replicate all of B than partitions of A.

```
A :: DArr IP Float fstFun((\((ai,aj),(bi,bj))->(ai,bj)).id) d m = fst d m
B :: DArr IP Float nullF () (d,m)
R1 :: DArr (IP,IP) (Float, Float) (\((ai,aj),(bi,bj))->(ai,bj)).id d m
R2 :: DArr (IP,IP) Float \((ai,aj),(bi,bj))->(ai,bj) d m
C :: DArr IP Float id d m
```

Histogram—group locally before exchange. The first Histogram solution uses groupReduce1 so that the input D does not have to be partitioned by its Float value. The output R is partitioned by bucket id (fst), and a concrete function must still be chosen for f. Since in this example the type k is still abstract the two possibilities for f are fst and snd. In a concrete program k is a concrete type and so f could have more possible values. For f=fst, D is partitioned by hash(d)·fst, which is a valid solution. However, for f=snd, D is partitioned by hash(d)·v->toInt(Float.* (v,i)), which is not valid, as it references i before it has been declared, and so this solution is discarded by the compiler.

```
D :: Map k Float hash(d).f.(id.fst \otimes (\_,v)->toInt(Float.* (v,i))).\Delta d m D':: Map k Int hash(d).f d m R :: Map Int Int hash(d).fst d m
```

Histogram—exchange before group. The second plan uses groupReduce2 by repartitioning D' by hash(d).snd. However, this plan will be sub-optimal unless the number of buckets is close to the number of data points, since the partitions of D' that redistMap communicates will be larger than the results of the local group-reduces that groupReduce1 communicates.

```
D :: DMap k Float hash(d)·f·(id·fst \otimes ( _,v) \rightarrow toInt(Float.* (v,i))) \cdot \Delta d m
```

```
D':: DMap k Int hash(d).snd d m
R :: DMap Int Int hash(d).fst d m
```

-

Dot product—cyclic distribution. In this plan A and B are aligned since they both have cyclic distributions over the same dimension d, so zip can be used without any communication. However, if dotp was used in a context where A or B had a different distribution, redistList would be automatically used to convert it into the required cyclic distribution.

A :: DList Float cyc d (); B :: DList Float cyc d (); AB :: DList Float cyc d ()

Performance of generated code. We have generated implementations of the running examples using our prototype tool and compared them (cf. Figure 14) to PLINQ [16] (using all cores on a 64-bit/quad-core/2.67GHz workstation

Tristan Aubrey-Jones, Bernd Fischer

	PLINQ			Manual MPI			
Program	Speedup	Compiler	Data	Speedup	Compiler	Data	
Dot product	$4.96 \times$	gcc -Ofast	2.2 GB	$0.99 \times$	icc -O3	4.5 GB	
Simple linear regression	$137 \times$	gcc -Ofast	3GB	$0.89 \times$	icc -O3	3GB	
				$0.61 \times$	gcc -O3	3GB	
Standard deviation	$98.6 \times$	gcc -Ofast	3GB	$0.88 \times$	icc -O3	3GB	
				$1.00 \times$	gcc -O3	3GB	
Histogram	$31.5 \times$	gcc -Ofast	32MB	$0.73 \times$	icc -O3	8GB	
Matrix multiply	$342 \times$	gcc -Ofast	$1.4 \mathrm{MB}$	$6.14 \times$	gcc -O3	140 MB	
				$0.49 \times$	icc -O3	140MB	

Fig. 14 Performance comparison of Flocc generated code vs. others

with 12GB memory), and hand-coded MPI implementations¹ (averaged over 1,2,3,4,8,9,16,32 nodes on a 12k-core/16×2.67GHz core per node cluster, with 4GB memory per node, and InfiniBand interconnect). We compare with PLINQ, even though it does not support distributed memory, because it also autoparallelizes programs written in a functional language inspired by relational algebra, and so is the most closely related approach. All Flocc programs drastically outperformed the PLINQ implementations, most likely because PLINQ chose poor job partitionings, does not inline lambdas, and does not distinguish between, and so cannot optimize for, arrays, lists, and maps. The generated programs also came within 51% of the speed of hand-coded MPI versions. The dot product and simple linear regression compiled with ICC, and the standard deviation, were nearly identical to the hand-coded versions. The linear regression when compiled with ICC was 39% slower because it used an array of structs, rather than a struct of arrays. The histogram was 27% slower, because it used a hash table, and the comparison used an array. The matrix multiply was $6 \times$ faster than the hand written code when compiled with GCC, since our tool optimized the layout of B to be column-major, but was 51% slower when compiled with ICC. This is because the manual version iterates over global arrays, and ICC seems to optimize for this case. An additional Global array storage mode (see Section 3.6) and corresponding templates, would cater for this situation. The results could be improved further by optimizing the, and adding additional, back-end templates, but they are sufficient to indicate that the approach is viable in practice.

6 Related Work

Traditionally most high-performance computing (HPC) applications were programmed with MPI [42] or High Performance Fortran (HPF) [27]. MPI specifies message passing primitives for programming clusters. It is very versatile, but it has no automatic data layout, and requires very verbose, hard-to-debug implementations. We use it as target language in our work. HPF extends Fortran 95 with directives to specify how to distribute arrays. It supports a limited number of data-parallel operations for flat multi-dimensional arrays. Distribution directives were originally specified manually but a tool was developed to optimize them for different programs [24]. Similar techniques were developed to find data distributions for programs with array sections [13] and affine loopnests [1,3,5]. However our approach is more general, supporting collections other than arrays, and an extensible set of data-parallel combinators.

MapReduce [15] and Hadoop [44] are frameworks for performing aggregations on huge datasets, hosted on large-scale clusters. They primarily rely on a map function that projects key-value pairs from a dataset, and a reduce function that aggregates a sorted list of values for each key. They handle all communication, scheduling, and failure recovery, and so greatly simplify data-parallel programming. However, they have a single restricted programming model, and a single distributed implementation which is not suitable for all applications. For example, one investigation showed a Hadoop K-means clustering program performed $20 \times$ slower than an MPI version [17]. For this reason numerous alternates have been suggested to allow, e.g., iteration [6, 19], different file types [7,20], accepting multiple inputs [46], removal of intermediate files [17], and supporting different architectures [33,11]. However, each of these also has a (different) single programming model, and implementation, specialized for one particular task, and so can still suffer from the same inflexibility as the original MapReduce. By contrast, our approach has many input combinators, with many possible distributed implementations, that can be combined in numerous ways, to yield implementations optimized for specific applications. In particular, our technique supports iteration, multiple collection types, and structured data distributions.

Parallel databases can also be used for some distributed data-parallel tasks. Like Flocc programs, parallel SQL query plans [9] are synthesized by enumerating different combinations of plan operators to minimize the overall cost [40]. SQL queries are also based on relational algebra, though they have a weak type system, no support for array-based computation, and cannot be extended with new operators. Furthermore, parallel databases typically do not generate standalone code, and the distributed schemas must be designed manually, though a tool to assist with this has been proposed [30]. DryadLINQ [23] is a framework for cluster computation in .NET languages, that also takes SQL queries, optimizing them at runtime to query large distributed datasets. However it suffers from many of the same problems as parallel databases.

Chapel [8] is a Partitioned Global Address Space (PGAS) language for HPC that evolved from ZPL [26], a language for working with multidimensional arrays, which featured named index sets called *regions*, so that arrays that shared a region were aligned/distributed in the same way. Chapel improves on ZPL and HPF by supporting data-parallel operations on maps and graphs as well as arrays. It also includes some built in data distributions for these types, but these must still be chosen by the programmer. X10 [10] is similar, although it only supports distributed arrays and runs on the Java VM. Fortress [43] was never fully implemented and is now dormant.

A number of functional data-parallel languages have been developed that target shared memory parallelism. PLINQ [16] is like DryadLINQ for multicores. NESL [4] specialized in nested data-parallel vector operations on vector machines. Data Parallel Haskell [31] is an extension to Haskell based on NESL, but for modern multi-cores. Single Assignment C (SAC) [22] supports n-dimensional array computations, with an impressive implementation that has outperformed Fortran in some cases. Some recent work on SAC has also used a type system to reason about local array layouts, to detect when they can be transformed to permit vectorization for SIMD instructions [41]. However none of these currently support distributed memory data parallelism, or suggest how such support could be implemented.

One functional language that does target distributed memory architectures is Sisal [21]. Sisal supports data-parallel *for*-expressions, which range over index spaces accessing array elements, generating intermediate values, and aggregating them. Although it only included this one data-parallel construct, it did synthesize distributed memory implementations and seek to optimize them by collocating tasks that would perform a lot of intercommunication [37]. However, Sisal did not support structured data partitionings, alignments, or data replication etc, and so was very limited in its ability to optimize data layout. Furthermore, it only supported 1D arrays.

Finally, our data-parallel combinators are similar to *algorithmic skeletons* [12]. Skeletons encode patterns of parallel processing and communication, which can be composed and parameterized with concrete functions, leading to networks of processes that perform a parallel task. For example, skeletons have been implemented as C++ templates to allow users to quickly trial different process networks on the CELL processor [35]. They have also been used in a parallelizing SML compiler to implement list-combinators by synthesizing process networks during an AST pass [38], and in an image processing DSL which avoids redundant communication steps using a technique similar to our automatic redistribution insertion [39]. However, none of these approaches support different data partitionings, multiple collection types, or automatically explore different data distributions.

7 Conclusions and Future Work

Conclusions. Existing languages for data-parallel programming rarely target distributed-memory architectures, and those that do are restricted to a fixed distribution model (MapReduce), and only support a limited set of operators (SQL/LINQ/HPF). In this paper we have presented a more general approach, where distributed-memory implementations are automatically synthesized from data-parallel programs written in Flocc, a high-level functional core language. To our knowledge this is the first approach that captures data distribution as a typing problem. In particular, we formalized distributed data layouts by polymorphic dependent type schemes and used a variant of the standard Damas-Milner type inference algorithm to search for different DDL plans in a type-directed way.

Unlike similar work, our approach supports multiple collection types (i.e., arrays, maps, and lists) and thus works for a wide variety of programs (cf. Fig-

```
let triEnum = (\E :: Map (Int.Int) () ->
  -- find degree of all vertices
 let D1 = groupReduce (fst.fst, \_->1, addi, E) in
 let D2 = groupReduce (snd.fst, \->1, addi, E) in
 let D = map ((k,v) \rightarrow (k,addi v), eqJoin (fst,fst,D1,D2)) in
  -- identify edges by vertex with lower degree
 let E1 = eqJoin (fst, fst, E, D) in
 let E2 = eqJoin (snd.fst, fst, E1, D) in
 let E3 = map (\(((_,v1),v2),((_,d1),d2)) ->
   (if lti (d1,d2) then (v1,v2) else (v2,v1), ()), E2) in
    for each edge, find all angles
 let A = allPairs (fst, E3) in
  -- for each angle, see if it is closed
 let T1 = eqJoin (\(((a,_),(_,b)),_)->(a,b), fst, A, E3) in
 let T2 = eqJoin (\(((a,_),(_,b)),_)->(b,a), fst, A, E3) in
 map (\((((v1,_),_),(v2,v3)),_) -> ((v1,v2,v3),()), union (T1,T2)))
```

Fig. 15 Triangle enumeration (MinBucket algorithm)

ure 7), and can easily be extended with more data types, data distributions, and data-parallel operators, without changing the core framework. Our approach can boost programmer productivity and program reliability through the conciseness of input programs (cf. Figure 7), fully automatic generation of distribution plans and code, and the reduced number of possible bugs compared to low level languages (i.e. no pointers/explicit message passing). Finally, initial performance results (cf. Figure 14) are substantially better than PLINQ, a similar tool for multi-cores, and are close to manual MPI implementations, indicating that the approach is viable in practice.

Future Work. We are currently optimizing and implementing more back-end templates for our code generator. In addition, there are several interesting fundamental research directions. First, we are developing more efficient goal-directed searches using cost estimates and performance feedback for our data distribution planning. Second, we are developing a refined notion of function comparison so that our distribution search algorithm can find solutions with non-trivial partition function equalities. For example, Figure 15 shows an algorithm for enumerating all triangles in a graph. The constraints caused by the eqJoins and union at the end of this example preclude the use of local eqJoin1s under syntactic equality. However, we work towards a more nuanced system that finds the most general unifier of two partition functions, and so permits this. Third, since arrays are "just" maps with dense integer domains we plan to detect such maps in input programs, and to infer their bounds and strides. This can then, for example, be used to derive dense and sparse matrix algorithms from the same high-level programs using maps.

Additional Information. Additional information, including the code for the examples in Figure 7 and Figure 14, can be found at http://www.flocc.net/hlpp14/.

References

- J. M. Anderson and M. S. Lam. Global optimizations for parallelism and locality on scalable parallel machines. *PLDI '93*, pp. 112–125, 1993.
- J. W. Berry, L. K. Fostvedt, D. J. Nordman, C. A. Phillips, C. Seshadhri, and A. G. Wilson. Why do simple algorithms for triangle enumeration work in the real world? In *ITCS* '14, pp. 225–234, 2014.
- R. E. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using 0-1 integer programming. *IFIP Trans* '94, pp. 111–122, 1994.
- G. Blelloch, J. Hardwick, S. Chatterjee, J. Sipelstein, and M. Zagha. Implementation of a portable nested data-parallel language. PPOPP '93, pp. 102–111, 1993.
- U. Bondhugula. Compiling affine loop nests for distributed-memory parallel architectures. SC '13 pp. 1–12, 2013.
- Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop: efficient iterative data processing on large clusters. *PVLDB* '10, pp. 285–296, 2010.
- J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn, N. Polyzotis, and S. Brandt. SciHadoop: array-based query processing in Hadoop. SC '11, pp. 66:1– 66:11, 2011.
- B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability and the Chapel language. *IJHPCA '07*, pp. 291, 2007.
- D. Chamberlin and R. Boyce. Sequel: A structured english query language. SIGFIDET '74, pp. 249–264, 1974.
- P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform cluster computing. *OOPSLA '05*, pp. 519–538, 2005.
- R. Chen, H. Chen, and B. Zang. Tiled-mapreduce: optimizing resource usages of dataparallel applications on multicore with tiling. *PACT '10*, pp. 523–534, 2010.
- M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press, Cambridge, MA, USA, 1991.
- S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng. Automatic array alignment in data-parallel programs. *POPL* '93, pp. 16–28, 1993.
- L. Damas and R. Milner. Principal type-schemes for functional programs. POPL '82, pp. 207–212, 1982.
- J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. OSDI '04, 2004. USENIX.
- J. Duffy and E. Essey. Parallel linq: Running queries on multi-core processors. MSDN Magazine '07, pp. 70-78, 2007.
- J. Ekanayake, S. Pallickara, and G. Fox. Mapreduce for data intensive scientific analyses. eScience '08, pp. 277–284, 2008.
- J. Ekanayake, T. Gunarathne, G. Fox, A. Balkir, C. Poulain, N. Araujo, and R. Barga. Dryadling for scientific analyses. *e-Science '09*, pp. 329–336, 2009.
- 19. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox. Twister: a runtime for iterative mapreduce. *HPDC '10*, pp. 810–818, 2010.
- Z. Fadika, E. Dede, M. Govindaraju, and L. Ramakrishnan. Mariane: Mapreduce implementation adapted for hpc environments. *GRID* '11, pp. 82–89, 2011.
- J. Feo, D. Cann, and R. Oldehoeft. A report on the Sisal language project. JPDC, 10(4):349–366, 1990.
- C. Grleck. Shared memory multiprocessor support for functional array processing in SAC. JFP, 15(03):353–401, 2005.
- M. Isard and Y. Yu. Distributed data-parallel computing using a high-level programming language. SIGMOD '09, pp. 987–994, 2009.
- K. Kennedy and U. Kremer. Automatic data layout for high performance fortran. Supercomputing '95, 1995.
- C. Lengauer. Loop parallelization in the polytope model. CONCUR '93, LNCS 715, pp. 398–416, 1993.
- C. Lin and L. Snyder. Zpl: An array sublanguage. LCPC '94, LNCS 768, pp. 96–114, 1994.
- 27. D. Loveman. High performance fortran. PDS, 1(1):25-42, 1993.

- R. Milner. The polyadic λ-calculus: a tutorial. Logic and Algebra of Specification '93, pp. 203-246, 1993.
- C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for data processing. SIGMOD '08, pp. 1099–1110, 2008.
- S. Papadomanolakis and A. Ailamaki. Autopart: automating schema design for large scientific databases using data partitioning. SSDBM '04, pp. 383–392, 2004.
- S. Peyton Jones. Harnessing the multicores: Nested data parallelism in haskell. APLAS '08, LNCS 5356, pp. 138–138, 2008.
- 32. B. Pierce. Types and Programming Languages. 2002. MIT Press.
- C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems. *HPCA '07*, pp. 13–24, 2007.
- C. Reichenbach, Y. Smaragdakis, and N. Immerman. PQL: A purely-declarative java extension for parallel programming. ECOOP '12, LNCS 7313, pp. 53–78, 2012.
- T. Saidani, J. Falcou, C. Tadonki, L. Lacassagne, and D. Etiemble. Algorithmic skeletons within an embedded domain specific language for the cell processor. In *PACT '09*, pp. 67–76, 2009.
- V. Sarkar and D. Cann. Posc a partitioning and optimizing sisal compiler. ICS '90, pp. 148–164, 1990.
- V. Sarkar and J. Hennessy. Compile-time partitioning and scheduling of parallel programs. CC '86, pp. 17–26, 1986.
- N. Scaife, S. Horiguchi, G. Michaelson, and P. Bristow. A parallel sml compiler based on algorithmic skeletons. JFP, 15:615–650, 2005.
- F. Seinstra, D. Koelma, and A. Bagdanov. Finite state machine-based optimization of data parallel regular domain problems applied in low-level image processing. *TPDS*, 15 (10):865–877, 2004.
- P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path selection in a relational database management system. *SIGMOD '79*, pp. 23–34, 1979.
- A. Sinkarovs and S.-B. Scholz. Semantics-preserving data layout transformations for improved vectorisation. *FHPC '13*, pp. 59–70, 2013.
- M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-the complete reference. 1996.
- M. Weiland. Chapel, Fortress and X10: novel languages for hpc. Technical report, HPCx Consortium, U. of Edinburgh, Oct 2007.
- 44. T. White. Hadoop: The Definitive Guide. 2010.
- 45. H. XI. Dependent ML an approach to practical programming with dependent types. *JFP*, 17:215–286, 2007.
- H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-merge: simplified relational data processing on large clusters. SIGMOD '07, pp. 1029–1040, 2007.