
Semiformal Verification of Embedded Software in Medical Devices Considering
Stringent Hardware Constraints

Lucas Cordeiro1, Bernd Fischer1, Huan Chen2 and Joao Marques-Silva2

1University of Southampton
{lcc08r, b.fischer}@ecs.soton.ac.uk

2University College Dublin
{huan.chen, jpms}@ucd.ie

Abstract

In recent days, the complexity of software has increased
significantly in embedded products in such a way that the
verification of Embedded Software (ESW) now plays an im-
portant role to ensure the product’s quality. Embedded sys-
tems engineers usually face the problems of verifying prop-
erties that have to meet the application’s deadline, access
the memory region, handle concurrency, and control the
hardware registers. This work proposes a semiformal ver-
ification approach that combines dynamic and static veri-
fication to stress and cover exhaustively the state space of
the system. We perform a case study on embedded software
used in the medical devices domain. We conclude that the
proposed approach improves the coverage and reduces sub-
stantially the verification time.

1 Introduction

Embedded systems are ubiquitous in modern day infor-
mation systems. Our society has become dependent on the
services provided by this type of system which consists of
a set of hardware/software components that together im-
plement a set of functionalities while satisfying constraints
(e.g., timing, power dissipation, and costs). For this kind
of system, the choice of the implementation architecture
usually determines whether a given functionality is imple-
mented as a hardware or software component.

Due to the high pressure imposed by the market to launch
new products coupled with evolving system’s specifica-
tion, semiconductor and system development companies are
forced to choose flexible implementations where new prod-
ucts can quickly be built [7]. The increasing computational
power and decreasing size and cost of processors, enables
system’s designers to move increasingly more functionali-
ties to software [20]. Market analysis shows that software-

based implementations accounts for more than 80% of sys-
tem development in embedded systems domain [20].

The increasing number of functionalities being moved
to software-based implementations, leads to difficulties in
verifying design correctness. In practice, however, this ver-
ification is of importance due to dependability properties
(reliability and availability) in several embedded system do-
mains such as automotive, industrial automation, and trans-
portation [13]. Nowadays, in order to verify the design
correctness of hardware blocks, model checking has been
widely used as a verification methodology. Nevertheless,
the verification of ESW has always been difficult to be car-
ried out by engineers mainly due to its flexibility.

There is some work that aims to exhaustively generate
test vectors, but may require several hours to dynamically
verify small ESW using assertion-based verification [14].
Nevertheless, the size of ESW is increasing to millions of
LOC and software builds are usually produced on a weekly
or daily basis in large organizations. In addition, the use
of simulation and assertion-based verification also has lim-
itations to explore the state space and verify more complex
properties in ESW. As a result, the approaches adopted to
verify design correctness take nowadays 40-70% of the de-
sign time to find out bugs and implement the necessary cor-
rections in the design [9].

Despite the vast number of practical applications, em-
bedded system design verification raises a number of hard
challenges. There is clearly the need for taking into account
stringent constraints (e.g. real-time, memory allocation, in-
terrupts, and concurrency) imposed by the hardware when
verifying the design correctness of ESW. Hence, this paper
proposes a semiformal verification methodology to stress
and cover the variables and function calls of the ESW that
is under stringent hardware constraints considering micro-
processor’s Verilog model. Hence, we aim full coverage of
the embedded system and reduce the verification time by
combining static and dynamic verification.

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.82

394

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.82

394

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.82

394

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.82

394

2009 International Conferences on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.82

396

2009 International Conference on Embedded Software and Systems

978-0-7695-3678-1/09 $25.00 © 2009 IEEE

DOI 10.1109/ICESS.2009.82

396

Outline. Section 2 summarizes related work. Section
3 describes the proposed methodology to verify ESW in
medical devices. Section 4 shows the application of model
checkers to the verification of the pulse oximeter device.
Section 5 shows the experimental results and finally Sec-
tion 6 concludes this paper and describes the future work.

2 Related Work

This section briefly surveys work that has been published
in the area of embedded systems verification. A verification
algorithm that uses the compositional backward technique
is proposed by [18]. Straunstrup et al. verify six machine
models ranging from 10 to 1,421 state machines, but they
do not provide information about the characteristics of the
embedded software. The authors verify these machine mod-
els using generic properties with the visualState commercial
tool. Straunstrup et al. report a problem to check the proper-
ties of a zoom-camera state machine model which contains
36 state machines.

Ivancic et al. present a brief tutorial on model checking
of C programs [12]. In this work, the authors describe a ver-
ification platform called F-SOFT, which allows to abstract
the software modelling and uses customized model check-
ing techniques based on propositional satisfiability (SAT)
and binary decision diagram (BDD). Brinksma and Mader
present a survey of the basic principles that are involved
in the application of model checking to controller verifica-
tion and synthesis [3], and discuss how model checking can
be combined with heuristic cost functions to guide search
strategies.

There has been work in the verification of assembly lan-
guage programs for embedded systems. Thiry and Clae-
sen propose a model checking approach based on BDDs to
verify a mouse controller and find inconsistencies between
assembly code and flow chart specifications [19]. Balakr-
ishnan and Tahar also propose a similar approach based on
the more general multiway decision graph to avoid some
BDD-size blow-up [1]. Moreover, Balakrishnan and Tahar
also verify a mouse controller and find inconsistencies.

Yun et al. propose a semiformal verification based on
PNPM (Petri Net based Representation for Pipeline Mod-
elling) simulation in order to take advantage of both the
simulation and the formal verification [21]. Lettnin et al.
[15] also describe a semiformal verification methodology
that adopts simulation and formal verification. Instead, this
solution uses the frontend of BLAST tool [11] to convert a
C program to a Control Flow Graph (CFG) and uses SymC
model checker [10] to verify the properties. Lettnin et al.
apply this methodology in a case study to verify the locking
and unlocking rules of a driver.

To the best of our knowledge, there is no work that
considers the combination of dynamic and static verifica-

tion techniques to deal with embedded software written
in ANSI-C language using the microprocessor’s Verilog
model. As a result, our main contribution is a semiformal
verification approach to stress and cover variables and func-
tion calls of ESW under stringent hardware constraints. As
an example, this paper focuses on the medical devices do-
main. In this sense, we present essentially techniques to
formally verify “pure” code and platform specific code at
system level with the purpose of exploiting the capabilities
of the model checkers using microprocessor models. Sim-
ulation tools are also used in order to monitor the variables
and function calls in ESW during dynamic verification.

3 A New Semiformal Verification Approach

This section describes our proposed semiformal verifica-
tion approach to verify ESW. The idea behind this approach
is to consider not only higher levels of abstraction, but also
the HW/SW interface in platform-based design methodolo-
gies [20]. As depicted in Figure 1, our proposed semifor-
mal verification approach starts by designing the unit test
for each stage of computation of the system’s functionalities
that are described in the product backlog [2]. The product
backlog may be viewed as an evolving, prioritizing queue of
requirements to be developed in an iterative and incremental
way [16]. Therefore, according to the business value (pri-
ority) of the system’s functionalities defined in the product
backlog, we must first write the unit test for a given func-
tionality and thereafter we must compile successfully the
unit test before really writing the functionality’s code.

There are some benefits if we design and compile the
unit test before writing the code [7]. These benefits fall into
the following categories: (i) reflect about the design before
coding the system functions, (ii) test the correctness of the
functionalities by stressing and covering difficult scenarios,
and (iii) achieve better results in terms of cyclomatic com-
plexity v(φ) in order to facilitate the verification activities.
Low cyclomatic complexity v(φ) levels (where φ means the
CFG of the program) make white-box testing easier due to
the fact that they decrease substantially the number of paths
(i.e., the control flow) that should be tested to reasonably
guard against errors [7].

After designing the tests and developing the ESW, the
model translator converts the ESW and microprocessor
model to BDDs (Binary Decision Diagrams) or CNF (Con-
junctive Normal Form) formulas with the purpose of al-
lowing the engineer to verify that certain system’s proper-
ties hold in the model by using BDD-based or SAT-based
model checking techniques. The system’s properties (e.g.,
deadlock-freedom, reachability, safety and liveness) can be
expressed as state formulae using Computation Tree Logic
(CTL), Real-Time CTL, Linear Temporal Logic (LTL), and
Property Specification Language (PSL) [4].

395395395395397397

P r o d u c t
B a c k l o g

U n i t a n d
f u n c t i o n a l t e s t s

M o d e l
T r a n s l a t o r

C o u n t e r -
e x a m p l e

M o d e l
C h e c k i n g

P r o p e r t y
D e s c r i p t i o n

B D D a n d
C N F

E m b e d d e d S o f t w a r e

M i c r o p r o c e s s o r
M o d e l

C o u n t e r -
e x a m p l e

C o v e r a g e

C o v e r a g e

Figure 1. Semiformal Verification Approach.

Furthermore, if the model does not satisfy the specifi-
cation then a counter-example is automatically generated.
This counter-example is included into the test suite and can
be used to test the ESW during dynamic verification. The
process to convert the counter-example to test case is still
performed manually as described in Section 4. Another
important aspect is that the verification directive cover of
PSL can be included in order to measure the occurrence of
expected behaviours during dynamic verification. However,
we did not integrate yet tools in our proposed approach that
provide information about property coverage.

In a complex embedded system, there will be several
software modules that depend on the hardware and others
that do not. We usually cannot determine whether a prob-
lem is within a module or is somewhere else in the sys-
tem when we integrate all components into the embedded
platform. This often happens in embedded systems due to
timing constraints. Specially in embedded hard real-time
systems (e.g., pulse oximeter), where deadlines should not
be missed, it is extremely important to reason quantitatively
about temporal properties to assure the correctness of the
design.

Hence, when we try running newly developed ESW on
a microprocessor model, we are tackling many unknowns
simultaneously. A problem on the simulator, CPU model,
register address access, or the interruptions generation can
mask as a software bug leading to a significant and frustrat-
ing waste of time. Specially, when we flash our ESW into
the platform, hardware that worked perfectly one minute
can be buggy the next and intermittent hardware bugs are
hard to deal with. Consequently, we still need an efficient
approach to isolate completely the modules in order to avoid
verifying hardware and software simultaneously. As a re-
sult, we propose three approaches to tackle these problems.
In the first approach, we aim to verify statically and dynam-
ically the “pure” ESW while the second approach focuses

on the hardware-dependent code. The third approach con-
siders the integration of hardware and software components
so that it allows us to find properties violations related to
system integration during the whole lifecycle of the system
development.

3.1 1st Approach: Verification using
Platform-Independent Software

In order to avoid verifying hardware and software simul-
taneously, we have to implement small changes in the ESW
to keep the capability of (i) using model checkers, (ii) per-
forming automated unit tests, and (iii) running the ESW
on the target platform. Furthermore, these modifications
are needed because the model checkers (e.g., CBMC [5]
and SATABS [6]) and the unit test framework (e.g., Em-
bUnit1) that accept ANSI C do not recognize platform-
dependent software and so we have to abstract this infor-
mation from our C models. The second approach described
in the next subsection provides techniques to verify for-
mally the platform-dependent software using microproces-
sor’s Verilog model with the model checker CBMC [5].

In order to avoid the need for significant usage of the
#ifdef construct, we include the platform-dependent
software in lower level driver files with the purpose of iso-
lating platform-independent and platform-dependent soft-
ware. This then allows the engineer to efficiently verify the
“pure” software and easily migrate it for each target plat-
form that we intend to reuse the ESW on. This approach
also helps understand clearly the interface between “pure”
code and hardware specific code. For the software mod-
ules that are hardware specific, we also separate into two
different classes: modules that control the hardware and
modules that are driven by the environment. For the latter,
the strategy is to use stubs in order to simulate the interac-
tion between the environment and the system. For instance,
we could collect actual data from the pulse oximeter sensor
hardware in real-time and afterwards put them into a file
that can be used by the ESW during the simulation phase
(i.e. dynamic verification).

As a result, we can adapt our function to read the data
from the file stored on the PC instead of reading this in-
formation directly from the sensor. This type of strategy
is applicable to a wide range of medical devices, because
most of them have a data acquisition stage, then the appli-
cation of an algorithm, followed by output of a result. In
addition to that, the actual data collection is usually feasible
because the manufacturer of the sensor often provides an
evaluation board that connects it to the PC and then allows
the engineer to test the sensor hardware independently from
the target platform. The main benefit of this approach is that

1embUnit: Unit Test Framework for Embedded C Systems.
http://embunit.sourceforge.net/

396396396396398398

it allows the embedded system engineer to isolate problems
that might be related to the microprocessor model. Thus, by
gaining confidence in the ESW through static and dynamic
verification, we can then verify the ESW knowing that the
only areas left, are direct interaction with hardware.

3.2 2nd Approach: Verification using
Platform-Dependent Software

In order to verify platform-dependent software, we
adopt verification techniques based on assertions to reduce
substantially the problems related to HW/SW interaction.
Hence, C’s assert macro can be used to state an assump-
tion (e.g., assert(next<buffer size)) so that exe-
cution will halt if the asserted property does not hold. This
halt allows the engineer to examine the call stack (during
dynamic verification) or the counter-example (during static
verification) and check what went wrong. The following C
code shows an example of hardware-dependent software of
the pulse oximeter timer:

1 o c 8 0 5 1 t c . t h 0 =THIGH ;
2 o c 8 0 5 1 t c . t l 0 =TLOW;
3 f o r (c y c l e =0; c y c l e <n ; c y c l e ++)
4 n e x t t i m e f r a m e () ;
5 a s s e r t (o c 8 0 5 1 t c . t h 0 ==X) ;
6 a s s e r t (o c 8 0 5 1 t c . t l 0 ==Y) ;

The registers th0 and tl0 are loaded with the values
THIGH and TLOW in lines 1 and 2 respectively. These
values define the time to generate an interrupt in the sys-
tem that is then used to trigger some event. The function
next timeframe() in line 4 changes the state of the
register in the Verilog model n times according to the loop
defined in line 3. After that, the content of the registers are
then checked in lines 5 and 6 using assert macros. Con-
sequently, the assert macro can be used in the presence
of a microprocessor model in order to verify the interplay of
HW/SW components. For this purpose, the CBMC model
checker allows the engineer to reason about a C/C++ pro-
gram together with a Verilog model of the hardware. Given
this, this model checker provides means to (i) change the
state of the Verilog model from the C program, (ii) syn-
chronize inputs between the software and hardware mod-
ules, (iii) restrict the choice of the Verilog module inputs
from the C program, and (iv) map variables within the mod-
ule hierarchy in order to monitor the registers values during
static verification.

The use of the assert macro is appropriate during sys-
tem development, but the code should not halt when it is
in customer use. In order to tackle this problem, we use
a wrapper function that allows to use the plain assert
macro or quietly write a diagnostic message to a buffer, de-
pending on a flag that indicates development or field en-
vironment. Each message written to the buffer reports the

source file, line number, severity, and diagnostic text. Al-
though the use of the assertion-based verification is quite
efficient, it has limitations to verify more complex proper-
ties in ESW.

In this context, CBMC model checker is only capable of
verifying more complex properties that arise from the non-
trivial interplay of HW/SW components if we implement
the complete specification of the property in ANSI-C. How-
ever, the combination of Real-Time CTL and PSL is more
effective by the fact that it allows the verification of complex
temporal and functional properties and can create functional
coverage models built on formally specified properties. As
future work, we intend to define a subset of Real-Time CTL
and PSL to verify platform-dependent software in CBMC
in order to improve the coverage of the system.

3.3 3rd Approach: Domain-Level Verifi-
cation

The specification languages such as FLTL (Finite Lin-
ear Temporal Logic) and Real-Time CTL seem to be a suit-
able vehicle for specifying properties that involve explicit
time bounds. However, even if we use the model checker
NuSMV2, it is still premature to consider the verification
of temporal properties in ESW, because it considers that
each transition takes unit time for execution. For embed-
ded systems, we need mechanisms to assign values to each
transition so that these values are the estimated worst-case
execution times (WCET) of the respective transition on the
selected processor. Given this, we clearly need a domain-
level verification strategy in order to isolate problems ob-
served at the system level, such as timing delays. Figure 2
shows our proposed domain-level verification process.

This process allows the team members to integrate com-
ponents into the system, manage the product development
line, and hence identify problems at system level. This pro-
cess works as follows: (i) firstly we must check out the code
in the repository to a local workspace. Thist allows us to im-
plement new system’s functionalities, fix bugs and improve
the system’s code. Moreover, we are also able to gener-
ate new product builds in the local repository. The Sub-
version (SVN) repository has the purpose of controlling the
system’s code versions.2 (ii) Before making the ESW avail-
able in the repository to other engineers, we first specify and
verify formally the system’s properties using the micropro-
cessor’s Verilog model (static verification) and then run all
test cases in an automated way.

If the model checkers find bugs or violation of properties
during the verification process, then the counter-examples
are converted into test cases and included into the EmbUnit

2SVN (http://sourceforge.net/svn/) is an improved version of
the well-know CVS (Concurrent Versions System) available at
http://sourceforge.net/cvs/

397397397397399399

Figure 2. Domain-Level Verification Process.

tool. This tool aims to perform all kinds of unit, functional,
and integration tests. (iii) After making the ESW available
in the SVN repository, the CruiseControl3 tool looks for
code modifications in the repository. If the file date/time
changes then the CruiseControl tool starts the build process
in an automated way. If there is a compilation error then
CruiseControl tool sends an e-mail to the person responsi-
ble for breaking the code. Otherwise, it generates the .hex
file that will be loaded into the flash memory of the em-
bedded platform and it then runs other tools (e.g., CCCC4,
CBMC, Satabs, NuSMV2, and EmbUnit) in order to cap-
ture the metrics, verify and test the code. Data on source
code size, number of functions and cyclomatic complexity
are obtained using CCCC tool which analyzes C/C++ files.

3.4 Comparison of Proposed Approaches

As mentioned in the previous subsection, we need a
domain-level verification strategy in order to isolate prob-
lems observed at the system level, such as timing delays.
Given this, our first approach focuses on the platform in-
dependent software and allows to determine quickly prop-
erty violation in the control and data flow of the ESW. This
approach essentially abstracts the platform details on the
cost of becoming hard to find timing delays when all sys-
tem components are integrated into the embedded platform.
The second approach aims to verify formally the HW/SW
interaction and find problems related to ESW that controls
the hardware components. On the other hand, this approach
does not consider higher levels of ESW as the first approach
does. The third approach then aims to integrate the HW/SW
components and perform static and dynamic verification to
find properties violations that might arise due to the integra-
tion of the system’s components.

3CruiseControl. http://cruisecontrol.sourceforge.net/
4C and C++ Code Counter. http://sourceforge.net/projects/cccc

4 Medical Device Case Study

This section describes the main characteristics of the
pulse oximeter equipment and shows the application of the
model checkers CBMC, SATABS, and NuSMV2 to the
static verification of the functional and temporal proper-
ties of the pulse oximeter. Generally speaking, the pulse
oximeter is responsible for measuring the oxygen satura-
tion (SpO2) and heart rate (HR) in the blood system using a
non-invasive method [7]. The pulse oximeter that we used
to apply our semiformal verification approach, also allows
the user to change the sample time and save SpO2 and HR
values in the device’s memory in order to transfer them to
the PC desktop for further analysis.

The system architecture is composed of the application
software, platform API and architecture. The hardware so-
lution consists basically of two platforms: a data acquisition
platform that is responsible for providing the SpO2 and HR
levels, and a development platform that aims to capture the
data provided by the acquisition platform, perform a set of
computations and finally show the results on a LCD dis-
play to the user. The development platform is based on the
AT89S8252 which has an 8051-like architecture with code
and data memory integrated on chip. The software archi-
tecture is composed, basically, of device drivers (i.e., dis-
play, keyboard, serial, sensor, and timer) that are hardware-
dependent code, a system log component that allows the
developer to debug the code through data stored on RAM
memory, and an API that enables the application layer to
call the services provided by the platform.

In order to verify dynamically the pulse oximeter ESW,
we use the Keil μVision IDE and Debugger5 as well as the
EmbUnit tool. Keil μVision provides an interrupt system,
four 8-bit parallel ports for taking inputs and presenting out-
puts, one serial channel, and three timers that can be used as
counters. There is also a performance analyzer that helps vi-
sualizing the time (max, min, avg) spent in executing
each function of the pulse oximeter. EmbUnit tool provides
means to apply assertion-based verification in ESW writ-
ten in ANSI C. It provides a set of macros to assert strings,
integers, pointer value, conditions, and to register a failed
assertion with the specified message.

4.1 Formal Verification using Model
Checking

In order to show the suitability of each model checker to
verify formally ESW, we present here the advantages and
disadvantages of applying CBMC, SATABS, and NuSMV2
to the verification of four properties that we extracted from
the pulse oximeter product backlog. For the first property
(a), we intend to check if the tail of the circular buffer

5Keil software. http://www.keil.com/

398398398398400400

1 void insertLogElement(Data8 b) {
2 if (next < buffer size) {
3 buffer[next] = b;
4 next = (next+1)%buffer size;
5 assert(next<buffer size);
6 }
7 }

Figure 3. Function to insert an element into
the circular buffer.

points to its head and in the second property (b), we in-
tend to check if fixed-length text messages are included and
removed from the circular buffer using the FIFO (First In,
First Out) policy. These two properties belong to the log
component of the pulse oximeter. For the third property (c)
that belongs to the sensor driver, we aim to verify the data
flow to compute the HR value that is provided by the pulse
oximeter sensor hardware. For the fourth property (d) that
belongs to application software, we intend to verify if the
user is capable of adjusting the sample time of the embed-
ded device.

4.1.1 CBMC and SATABS

CBMC is capable of handling the full ANSI C language
using Bounded Model Checking (BMC) [5]. To check the
property (a), we need to include the assert macro (line 5)
as shown in Figure 3. CBMC was not capable of verifying
property (a). To verify this property in CBMC, we need to
initialize the first, next, buffer size variables to proper val-
ues. As CBMC is used to verify automatically array bounds
and pointer safety as well as assert macros specified by
the engineer, then we have to develop some additional code
and use the assert macro in order to verify the property
(b).

It is important to mention that we could not verify the
properties (c) and (d), because CBMC does not support any
mechanism to specify more complex properties. However,
we can overcome these problems by expressing properties
(c) and (d) using LTL and translate them to Büchi Au-
tomata using Wring tool [17]. After that, we convert each
Büchi Automata representing the property into ANSI-C
and merge them into the code. The properties (c) and (d)
can be expressed using the following LTL pattern:

AG (p → Fr) (1)

As an example, for the property (c), let p denote the state
that the buffer contains HR and SpO2 raw data. Let r denote

1 MODULE log
2 VAR
3 buffer size : 0..255;
4 nextptr : 0..255;
5 DEFINE
6 nextptr condition := nextptr < buffer size;
7 ASSIGN
8 init(nextptr) := 0;
9 next(nextptr) := case
10 nextptr = nextptr condition & buffer size > 0
11 : ((nextptr+1) mod buffer size);
12 1 : nextptr;
13 esac;
14 PSLSPEC AG nextptr ≤ buffer size;

Figure 4. Function insertLogElement in
NuSMV language.

the state that defines the respective HR value. Consequently,
any state containing the HR and SpO2 raw data in the buffer
is eventually followed by a state representing the respective
HR value. The same approach is applied to verify property
(d). Furthermore, CBMC was able to identify bugs related
to array bounds and pointer safety in functions that imple-
ment these two properties. An important aspect of CBMC
is the capability of verifying hardware-dependent software.
CBMC supports co-verification and allows us to verify our
ANSI-C code together with a Verilog model of the hard-
ware. Thus, CBMC is able to cope with ESW that inter-
acts directly with hardware modules. As with CBMC, SA-
TABS can also verify automatically array bounds, pointer
safety, exceptions, and assert macros specified by the
engineer [6]. As a result, we faced the same scenario as
the CBMC tool in order to verify all four properties (a),
(b), (c), and (d). Actually, we identified much more bugs
in our ESW by using SATABS than with the CBMC tool.
Moreover, there were bugs that were discovered only with
CBMC and others only with SATABS.

4.1.2 NuSMV2

NuSMV2 is a symbolic model checker that combines BDD-
based and SAT-based model checking [4]. NuSMV2 ac-
cepts system models written in NuSMV language which can
represent synchronous and asynchronous FSMs. The sys-
tem properties can be expressed in CTL, Real-Time CTL,
LTL and PSL. Hence, in order to verify property (a), we
had to convert the ANSI-C code from Figure 3 to NuSMV
language. Figure 4 shows the abstracted version of the in-
sertLogElement function in NuSMV language.

399399399399401401

The MODULE log is split into four different sections:
VAR, DEFINE, ASSIGN, and PSLSPEC. The VAR section
declares the state variables of the module and their ranges
(note that the AT89S8252 is a 8-bit processor). The DE-
FINE section defines the symbol nextptr condition that in-
corporates the expression nextptr < buffer size in order to
make the description more concise. The ASSIGN section
contains the FSM responsible for controlling the circular
buffer operations. As can be seen in line 14, we use PSL
to specify the property (a). The property AG nextptr ≤
buffer size ensures that on all paths, at all states on each
path the formula nextptr ≤ buffer size is satisfied. When
we verified the property (a) in NuSMV2, we found a prop-
erty violation that was not identified by CBMC and SA-
TABS. NuSMV2 identified a division by zero in line 11 (and
then we had to adjust our model and include the condition
buffer size > 0 in line 10).

Another important point is that CBMC and SATABS are
not capable of identifying properties violations related to
data types. For instance, if we declare the nextptr as int and
buffer size as unsigned int, then the nextptr will range from
-127 to 127 and buffer size will range from 0 to 255. In this
situation, the nextptr will never reach the buffer size, if the
latter is set to 128, for instance. Fortunately, NuSMV2 is
capable of identifying this sort of property violation by rep-
resenting data types as scalars and defining its range. How-
ever, NuSMV2 is not capable of verifying property (b) due
to the fact that it involves dataflow and for each operation
we need some mechanism to save the value of the variables.
Nonetheless, mere unit test can be used to verify property
(b). For properties (c) and (d), we verified them formally
by using CTL and PSL in combination. As an example,
the property (d) can be expressed using the following PSL
formula:

PSLSPEC always (p ∧ q −→ eventually! r) (2)

In order to check if the sample time is incremented, let
p denote the state that the sample time is selected and let q
denote the state that the user pressed the button to increment
the sample time. Let r denote the state that the sample time
is incremented. Consequently, the PSL formula checks if
any state satisfying p ∧ q is eventually followed by a state
satisfying r.

5 Experimental Results

This section describes the experimental results when ap-
plying the proposed approach in the verification of the pulse
oximeter equipment. These experiments were conducted on
an Intel Core 2 Duo CPU, 2Ghz, 3GB RAM with Linux OS.
The final version of the pulse oximeter ESW has approxi-
mately 3500 lines of ANSI-C code and 80 functions. In

order to meet the application’s deadline, there are 100 lines
of Assembly code that are responsible for writing text mes-
sages to the LCD hardware. By applying the proposed ap-
proach, we found 14 violations of the verification conditions
(VCs) using SATABS, 6 violations of the VCs using CBMC
and 3 properties violations using NuSMV2. The verifi-
cation conditions are related to array bounds and pointer
safety and are automatically generated by the model check-
ers CBMC and SATABS.

Table 1 shows the total number of verification conditions
(#C), number of properties and test cases as well as the ver-
ification time (T) in seconds for each module of the pulse
oximeter ESW using the tools CBMC, SATABS, NuSMV2,
and EmbUnit. We achieved short time during dynamic ver-
ification due to the fact that our first approach (described in
Section 3.1) separates logic from timing while running the
ESW against the EmbUnit tool on the PC desktop. On the
other hand, in order to verify dynamically the timing con-
straints at system level, we run the hardware unit tests and
monitor the register values in the Keil μVision tool. SA-
TABS verified more VCs and NuSMV2 verified more prop-
erties, but these model checkers did not take into account
the hardware-dependent code. We use an assertion-based
verification with CBMC in order to verify the hardware-
dependent code. We were able to specify more properties
of the pulse oximeter with NuSMV2 due to the fact that it
supports a wide range of specification languages and then
some properties are checked in more than one specification
language.

6 Conclusions and Future Work

In a complex embedded system there will be several
software modules that depend on the hardware and others
that do not. Our semiformal verification approach allows
the engineer to reason quantitatively about functional and
temporal properties to assure the timeliness and correctness
of the design. Hence, we propose a combination of tech-
niques to verify statically and dynamically the “pure” and
hardware-related ESW as well as techniques that aim to find
properties violations at system level. Apart from the state
space explosion problem, CBMC and SATABS allow us to
verify full ANSI-C, but these model checkers have limita-
tions to specify more complex temporal properties in ESW.
NuSMV2 provides a variety of languages to specify the sys-
tem’s properties, but there is no straightforward mapping
from ANSI-C to NuSMV language. In the near future, we
intend to verify formally ANSI-C and SystemVerilog mod-
els using the Satisfiability Modulo Theories (SMT) solver
Z3 [8] in order to make use of high-level information and
then reduce substantially the state space to be explored. Fur-
thermore, we aim at defining a subset of Real-Time CTL
and PSL to verify more complex properties in embedded

400400400400402402

Static Verification Dynamic Verification
CBMC SATABS NuSMV2 EmbUnit

Module Properties #C T(s) Properties #C T(s) Properties T(s) Test Cases T(µs)
MenuApp 9 32 5 9 23 3 53 5.4 62 130

Sensor 10 224 20 10 617 130 10 3.7 42 403
LCD 1 22 0.02 1 1 0.02 8 4.1 6 6
Serial 6 5 2 1 1 0.02 8 4.6 5 8
Timer 11 12 4 3 13 2 7 4.9 7 12

Keyboard 1 1 0.02 1 1 0.02 16 4.8 10 18
Log 4 14 2 4 6 1 4 5.4 10 48

Total 42 310 33.04 29 662 134.06 106 32.9 139 625

Table 1. Results of the proposed approach.

systems using SMT-based CBMC approach instead of SAT
solver.

Acknowledgement We thank Daniel Kroening for many
helpful discussions about CBMC and SATABS model
checking tools.

References

[1] S. Balakrishnan and S. Tahar. On the formal verifica-
tion of embedded systems using multiway decision graphs.
Technical Report TR-402, Concordia University, Montreal,
Canada, 1997.

[2] K. Beck and C. Andres. Extreme Programming Explained -
Embrace Change. Second Edition, Addison-Wesley, 1999.

[3] E. Brinksma and A. Mader. Model checking embedded sys-
tem designs. Proceedings of the Sixth International Work-
shop on Discrete Event Systems (WODES’02). ISBN 0-7695-
1683-1, page 151, 2002.

[4] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren,
E. Olivetti, M. Pistore, M. Roveri, and A. Tchaltsev.
NuSMV: a new symbolic model checker. http://nusmv.itc.it/,
2009.

[5] E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. In Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 2988 of LNCS,
pages 168–176, 2004.

[6] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SA-
TABS: SAT-based predicate abstraction for ANSI-C. In
Tools and Algorithms for the Construction and Analysis of
Systems, volume 3440 of LNCS, pages 570–574, 2005.

[7] L. C. Cordeiro, R. S. Barreto, R. F. Barcelos, M. Oliveira,
V. F. Lucena Jr., and P. Maciel. Txm: An agile hw/sw de-
velopment methodology for building medical devices. In
ACM SIGSOFT Software Engineering Notes. ISSN:0163-
5948, 32(6):32, 2007.

[8] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver,
volume 4963/2008 of Lecture Notes in Computer Science,
pages 337–340. Springer Berlin, April 2008.

[9] H. Goldstein. Checking the play in plug-and-play. Spectrum,
IEEE, 39(6):50–55, 2002.

[10] F. M. Group. SymC. http://www-ti.informatik.uni-
tuebingen.de/ fmg/symc/, 2008.

[11] T. A. Henzinger, D. Beyer, R. Majumdar, and R. Jhala.
BLAST: Berkeley Lazy Abstraction Software Verification
Tool. http://mtc.epfl.ch/software-tools/blast/, 2009.

[12] F. Ivancic, I. Shlyakhter, A. Gupta, M. Ganai, V. Kahlon,
C. Wang, and Z. Yang. Model checking c programs using f-
soft. Computer Design: VLSI in Computers and Processors,
2005. ICCD 2005, pages 297–308.

[13] H. Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Pub-
lishers, 2002.

[14] D. Lettnin, P. K. Nalla, J. Ruf, , T. Kropf, and W. Rosenstiel.
Verification of temporal properties in automotive embedded
software. Design, Automation and Test in Europe, pages
164–169, 2008.

[15] D. Lettnin, P. K. Nalla, J. Ruf, R. Weiss, A. Braun, J. Ger-
lach, T. Kropf, and W. Rosenstiel. Semiformal verification
of temporal properties in embedded software. GI/ITG/GMM
Workshop, Methoden und Beschreibungssprachen zur Mod-
ellierung und Verifikation von Schaltungen und Systemen,
Erlangen, Germany, 2007.

[16] K. Schwaber and M. Beedle. Agile Software Development
with Scrum. First Edition, Series in Agile Software Devel-
opment, Prentice Hall, 2002.

[17] F. Somenzi and R. Bloem. Efficient buechi automata from
ltl formulae. In CAV 2000, LNCS 1855:247263. Springer-
Verlag, 2000.

[18] J. Straunstrup, H. Andersen, H. Hulgaard, J. Lind-Nielsen,
G. Behrmann, K. Kristoffersen, A. Skou, H. Leerberg, and
N. Theilgaard. Practical verification of embedded software.
IEEE Computer, 33(5):68–75, 2000.

[19] O. Thiry and L. J. M. Claesen. A formal verification tech-
nique for embedded software. Proceedings of the 1996 In-
ternational Conference on Computer Design, VLSI in Com-
puters and Processors. ISBN:0-8186-7554-3, pages 352–
357, 1996.

[20] A. S. Vicentelli, P. L. Carloni, F. Bernardinis, and M. Sgroi.
Benefits and challenges for platform-based design. Proceed-
ings of the Design Automation Conference, (41):409–414,
2004.

[21] Z. Yun, L. Xi, Z. Siyang, and G. Yuchang. Implementation
of a semi-formal verification for embedded systems. Pro-
ceedings of the Second International Conference on Embed-
ded Software and Systems (ICESS’05). ISBN: 0-7695-2512-
1, page 7, 2005.

401401401401403403

