
A Lazy Unbounded Model Checker for Event-B 1

Paulo J. Matos1, Bernd Fischer1, and João Marques-Silva2

1 Electronics and Computer Science, University of Southampton
{pocm,b.fischer}@ecs.soton.ac.uk

2 School of Computer Science and Informatics, University College Dublin
jpms@ucd.ie

Abstract. Formal specification languages are traditionally supported
by theorem provers, but recently model checkers have proven to be useful
tools. In this paper we present Eboc, an explicit state model checker for
Event-B. Eboc is based on lazy techniques that allow it to fairly perform
an exhaustive state space search without bounding the size of the sets
used in the specification. We describe the implementation of Eboc and
provide a preliminary comparison with ProB, an existing bounded model
checker for classical B.

1 Introduction

Model checking has been the focus of many research papers in recent years,
with successes in both hardware and software development. In formal methods,
languages are usually supported by theorem provers but model checking has
recently been investigated as well and model checkers have been developed for
languages like Z [1–3], CSP [4], or classical B [5]. This paper addresses the
problem of model checking Event-B.

The B-method, originally devised by J.-R. Abrial [5], is a theory and method-
ology for the formal development of computer systems. It is used by industries
in a range of critical domains, most notably railway control [6]. Event-B [7], an
evolution of the classical B, focuses on the formal development of discrete sys-
tems based on refinement. An Event-B specification consists of machines and
contexts. A machine defines a state and several events which repeatedly update
the state by means of update rules or actions, and so provide dynamics to the
system. Contexts, which are seen by machines, provide static data to the model.
Proof obligations ensure the correctness of the model and its dynamics [8], by
for example assuring that invariants remain true after each event’s actions.

In this paper, we describe Eboc, an explicit state model checker for Event-
B. Like other model checkers, Eboc does not discharge proof obligations, but
simulates the execution of the model, searching each state for an invariant viola-
tion. It thus complements theorem proving, which leaves users in the lurch if it
fails to discharge a proof obligation, as the users cannot tell whether the proof
1 This work is partially funded by EU project Coconut FP7-ICT-217069 and by EP-
SRC Grant EP/E012973/1.

Machine Simple
Variables x
Invariants

x 6= 5
Initialisation b=

x := 0
Event Simple b=

any y where y ∈ Z then x := y end
End

Fig. 1. Simple machine causing a false claim in ProB’s bounded model checking

obligation is provable in principle or not. In the latter case, Eboc will (eventu-
ally) find a counterexample, describing which state violates which invariant and
how it can be reached from the initial state. If the state space is finite, Eboc can
even search the complete state space and decisively show whether any invariant
is violated. Even if the state space is infinite and the proof obligation is provable
Eboc can search through enough of this space to give the user enough confidence
to proceed and try to discharge it manually.

Eboc’s state space exploration is driven by a scheduler that expands all states
and searches for a violation of an invariant in the original (i.e., unbounded) state
space. Eboc traverses this potentially infinite state space by lazily enumerating
the values for any given variable such that no value is ever repeated and the space
is fairly covered. The way Eboc handles the problem of infinite search space is
fundamentally different than for example ProB [9], an existing model checker
for classical B. ProB bounds the state space to be explored by bounding the
size of the deferred sets, the integers, the number of initial states computed,
and the number of enablings for each state. This up-front bounding however,
is of course problematic when the invariant is only violated for values outside
the bounds. Consider for example the (deliberately simple) machine shown in
Figure 1. Obviously, the invariant is violated if y = 5 is chosen. However, ProB’s
default lower and upper bounds for the integers are -1 and 4, respectively, so
the guard will return no violation of the invariant. In this simple example it
is of course possible to inspect the model, see that a higher bound is required
and overwrite ProB’s defaults, but with larger models this will generally become
harder, and eventually setting the right bound becomes a trial-and-error issue.
The problem is aggravated by the fact that if ProB returns no error, it is unclear
whether this is because the model is consistent with the invariants or because
the bounds are too restrictive. Moreover, more obscure problems might be due
to bounding the number of initial states computed by ProB or due to any other
bound imposed by ProB before the search starts. Our approach avoids these
bounds, thereby solving this problem. The solution involves the combination of
a lazy exploration of the values in the domain with a priority system that avoids
the search being deadlocked in a single infinite stream of values. This allows us
to fairly explore even infinite domains, or more precisely, given finite time, fairly

chosen finite subsets of unbounded size. In this context, laziness means that all
the nodes in the search space are considered however, they are only computed
when required for processing.

In Section 2 we present some background concepts important for the rest of
the paper, in Section 3 we will present in detail the model checker for Event-B.
Section 4 will focus on the architecture of the system and Section 5 will provide a
preliminary comparison between our model checker and ProB with a discussion
of the results. The paper finishes with an overview of related work in Section 6
and conclusions in Section 7.

2 Event-B Essentials

Event-B is a modelling notation and method for formal development of discrete
systems based on refinement [10] which evolved from the B-Method [5]. Here,
we give a brief overview of Event-B; for details see [7]. Since our model checker
focuses on model checking the validity of invariants, we will ignore the concepts
and constructs of Event-B that are irrelevant to this end. In particular, we
will ignore the concept of refinement, which makes the specification of large and
complex systems more tractable by gradually adding more details to an abstract
base model. However, we are not constraining the amount of models that can be
model checked: since model checking generally focuses on a specific refinement
level, it is possible to remove the more abstract levels by flattening the model
into the required level. Moreover, statuses and witnesses will not be discussed
either since they are associated with the refinement of events. Similarly, we will
not discuss theorems which are associated with contexts and machines, because
they do not influence the execution of an Event-B machine.

An Event-B specification consists of machines which specify the behavioral
properties of the model, and contexts which axiomatically provide static aspects
of the model. Event-B’s mathematical language is based on first-order logic
and set theory (as in classical B) and its syntax, type inference rules, and
legibility rules are defined in [11].

Figure 2 presents a simple Event-B model which consists of a single machine
and a single context. The context Colors consists of the deferred set Colors whose
elements are left undefined, three constants and an axiom. The interpretation of
the constants is given by the Axioms; in this case, the axioms specify that the
deferred set consists of three different values represented by the identifiers red,
green, and blue, respectively. The machine Example has two state variables x and
y, which are initialized to 0 and red, respectively. It can see the Colors context,
hence all the definitions of the context can be referred to in the machine. The
machine defines an event e with two parameters xx and yy, a set of predicates
referred to as guards, and a set of update rules referred to as actions. Events
are guarded atomic actions that drive the execution of the model. Once all
the variables are initialized, all events are checked for enabledness. An event
is enabled if there is an assignment to its parameters that satisfies the guards
in the current state. An enabled event is then chosen non-deterministically to

Machine Example
Sees

Colors
Variables

x y
Invariants

x ∈ Z ∧ y ∈ Colors
x = 2⇒ y 6= red

Initialisation b=
x, y := 0, red

Event e b=
any

xx yy
where

xx ∈ Z
yy ∈ Colors
yy 6= y

then
x := x + xx
y := yy

end
End

Context Colors
Sets

Colors

Constants
red green blue

Axioms
partition(Colors, {red}, {green}, {blue})

End

Fig. 2. Example Event-B specification

be triggered and, once triggered, values are chosen non-deterministically for its
parameters and the state is updated according to its actions. In the initial state
x = 0, y = red, e is enabled. Since this is the only event of the machine, it is
triggered and if for example xx = 1 and yy = green are chosen as values for
the parameters, the new state becomes x = 1, y = green. Note that xx = 1 and
yy = red would not be a valid choice for the parameters as this would violate
the guard yy 6= y. Once a new state is generated, the process continues until no
event is enabled, in which case it is said the model reached a deadlock state.

The initialization of the state variables is given by a set of actions which can
take three forms:

v := E(c) (1)
v :∈ S(c) (2)

v :| P (v′, c) (3)

Here, E(c) represents a set of expressions over the seen constants, S(c) is a single
set expression over the seen constants and P (v′, c) is a before-after predicate,
where v′ is the set of variables v in the after-state. The first form is a determinis-
tic assignment form which assigns the value of each expression on the right-hand
side to the set of variables in the left-hand side in order. The second form is a
non-deterministic assignment form which assigns to the variable on the left-hand

side one of the elements of the set that result from the evaluation of S(c). The
third form, which is the most general form, assigns a value non-deterministically
to the variables v that satisfy the predicate P (v′, c). Event actions can, in gen-
eral, also take different forms. However, we will assume without loss of generality
that all the non-determinism is represented in the guards and that event actions
always take the deterministic form. The following is thus the canonical form used
for events:

Event e b= any x where P (v,x, c) then v := E(v,x, c)

Here, x represents the event’s parameters whose scope are the the event’s body
and whose value are constrained by the guard P (v,x, c). The guard enables the
event and generates a new state through the application of the actions v :=
E(v,x, c), which are analogous to the form shown in Equation (1).

Proof obligations play an important role in Event-B and their purpose is
two-fold. On one hand, they show that a model is sound with respect to some
behavioral semantics. On the other hand, they serve to verify properties of the
model [8].

In this paper, we will focus on checking invariants. Invariants are the predi-
cates that must be satisfied in all states of the model. Event-B ensures that a
machine is consistent by constructing proof obligations that formalize the intu-
ition that the machine preserves the invariant. Each event thus induces a proof
obligation of the form:

I(v) ∧Pe(v,x, c)⇒ I(v′) (4)

Intuitively this means that if the invariants and the guard for event e hold in
the current state, then the invariants also hold in the post-state. If this is proven
for each event, then the machine is consistent. Eboc focuses on checking that
these invariants are never violated. Eboc checks this by simulating the model,
generating and exploring a state space by repeatedly applying all possible events
that are enabled in the given state.

3 Explicit State Model Checking of Event-B

In contrast to ProB, Eboc performs a lazy, unbounded, explicit state search of
an Event-B model. Before going into the details of how Eboc model checks an
Event-B model, we present a brief discussion on what it means to do explicit
state model checking of an Event-B model. Consider a slightly simplified version
of event e of Figure 2:

Event e1 b= when > then x := x + 1

where x is always incremented. Consider also a second event:

Event e2 b= any zz where zz ∈ Colors ∧ x mod 2 = 1 then x, y := x + 1, zz

which increments x and non-deterministically chooses a new color for y if x is
odd. Figure 3 shows the search tree for the machine of Figure 2 but with the

x = 0, y = red x = 1, y = red

x = 2, y = red

x = 2, y = green
e1(zz = green)

x = 2, y = blue

e

e

e1(
zz

= red
)

e1(zz = blue)

Fig. 3. Example of a search tree on an Event-B model.

events e and e1 above. The initial state is created and from it, all the enabled
events are expanded: initially only event e because x is 0. In the resulting state
both events are enabled however, four transitions occur to three different states.
One transition is due to event e and the remaining three are due to the non-
deterministic assignment of zz to one of the possible colors. Note what would
have happened if there was a non-deterministic assignment to an integer vari-
able, instead of a variable whose type is finite. The branching from this state
would have been infinite. Current model checkers opt to bound these infinite
sets so they can perform a search on the state space. However, our approach
is to leave the infinite sets unbounded and lazily unroll them during search.
Therefore, Eboc has the advantage of finding violations others may not find be-
cause their domains may be bounded to too restrictive values. This means that
nothing is bound a priori and the search space (potentially infinite) is possibly
exhaustively searched for a counterexample. However, this space is only unfolded
when required. Therefore a counterexample, if it exists, is eventually found. The
downside is that the model checker will not stop if the space is infinite and the
model is correct. That is why we allow the user of Eboc to input a bound on
the number nodes (which represent states in the system) to explore. In this case,
Eboc assures the user that within that space no counterexample exists. The
remainder of the section presents our approach in more detail.

3.1 Enumerations

In order to have an exhaustive search of an infinite state space, we need to have a
methodology to list for every variable in the model all the values they can take,
which are possibly infinite, so we need to lazily enumerate them. Whenever
we need to choose non-deterministically a value for a given variable we take a
value from a lazy stream of possible values (which depend on the type of the
variable) and if the value does not fit the constraints the variable is subject to,
we backtrack and try another. To this end, we discuss enumerations.

Consider again the simple example in Figure 1. Event Simple is always en-
abled, and can be triggered an infinite amount of times from a given state and
for different values of y. From the initial state x = 0, each time we trigger event
Simple we take a new y from the lazy stream of values [0,−1, 1,−2, 2, . . .], which
generate the states x = 0, x = −1, x = 1, . . . respectively. If instead the event
was of the form:

Event Simple1 b= any y z where y ∈ Z ∧ z ∈ Colors . . .

where it can be assumed that Colors is the set defined in Figure 2, then we would
need to lazily enumerate all values in Z×Colors, assign each of the values to y
and z respectively and evaluate the state, thereby generating an infinite amount
of states. The lazy stream this time would look like [0 7→ red, 0 7→ green, 1 7→
red, 0 7→ blue, . . .], where x 7→ y is Event-B’s representation of the pair (x, y).

In general, an enumeration of a set S is a surjection f from N onto S. This
definition allows that two different natural numbers have the same image under
f , which is something we do not want for efficiency reasons, so f is, in our case,
also injective.

Event-B has a flat type system that includes as basic types user defined
sets, the booleans, the integers and cartesian product along with the powerset
as type constructors. For each of these types we define enumerations that allow
us to lazily step through each possible value induced by the type. However, we
had to make sure these enumerations are not only injective but also fair. There
are two dimensions to fairness:

1. it has to explore all the possible values the variable can have. For example, for
an integer variable, it would not be fair to first explore all the positive number
and then all the negative numbers because since the positive numbers are
infinite the negative numbers would never be explored, even if given infinite
time;

2. and, given a list of variables whose values we need to enumerate, we need
to alternate the variable we change the value for next. For example, when
enumerating all the values of a list of two integer variables, we cannot first
enumerate all the values for the first and then, increase the second, enumerate
all the values for the first and so on. If the first variable has an infinite
domain, we end up never increasing the second variable. We need to alternate
the variables to modify.

How each of the presented enumerations is fair will become clear during their
presentation. To enumerate all possible values that a variable of given type can
have, we will generate them recursively and them compose them. Assume a
variable x has type P(Z× BOOL) and the following enumerations:

– an enumeration h for powersets from N to P(N);
– an enumeration g for cartesian products from N to N× N;
– an enumeration f1 for integers from N to Z, and;
– an enumeration f2 for booleans from N to BOOL.

To obtain an enumeration for P(Z × BOOL), we need to compose the above
enumerations in the following way: given an n, we apply h to obtain a set of
naturals {h0, . . . , hs}. To every element of this set we apply g resulting in {g00 7→
g01, . . . , gs0 7→ gs1}. Then we can apply f1 to all the first elements of each pair
and f2 to all the second elements of each pair obtaining a set in P(Z× BOOL):
{f11 7→ f21, . . . , f1s 7→ f2s}. This is a powerful method because it only requires us
to define a few types of enumerations which by composition allows up to obtain
enumerations for any possible Event-B type. The following enumerations will
be defined:

– An enumeration for carrier sets S, mapping a subset of N to S;
– an enumeration for the integers, mapping N to Z;
– an enumeration for the powerset, mapping N to P(N), and;
– an enumeration for fixed size lists, mapping N to N × . . . × N. We require

this enumeration to provide a lazy stream of values for a list of variables, for
example, the list of local variables in an event. Furthermore, this enumeration
for size 2 provides an enumeration of pairs.

The simplest enumeration is the one defined for user defined sets. Considering
a set S = {s0, s1, . . . , sn}, the enumeration is a function that maps the first n+1
natural numbers to each of the elements of the set S. An enumeration for the
set Colors defined in the context shown in Figure 2 would be {0 7→ red, 1 7→
green, 2 7→ blue}.

The enumeration of the integers is given by a function f , where f(x) =
−(x+1)/2 if x is even and f(x) = x/2 otherwise. This generates an enumeration
that jumps between the positive and negative numbers, without giving precedent
to the positive or the negative numbers making it a fair enumeration for the whole
set of integers.

Enumerating pairs is the same as enumerating lists of size 2. To enumer-
ate lists, we enumerate first all of those whose elements sum 0, then all whose
elements sum 1, and so on. This generates a diagonal perspective on the enumer-
ation. Figure 4, on the left, represents diagrammatically how the enumeration
proceeds for pairs of naturals. In the case of pairs, the only pair summing 0 is
0 7→ 0, then all comes all of those summing 1: 0 7→ 1 and 1 7→ 0, and so on.
Consider the enumeration of Colors × Z, where Colors is defined in Figure 2,
in this case since Colors is finite, the enumeration will not generate pairs whose
first element is bigger than 2, therefore having a diagrammatic representation as
the one shown in the right of Figure 4.

Even though sometimes it is easy to find an explicit form as a function for an
enumeration (as in the case of the integers), it is not so easy for more complex
structures like lists or sets, so we will not pursue such representation and instead
we will in these cases focus on how to go from one value to the next. The process
of generating all lists (enum sz s) which have a specific sum can be thought of
recursively as two cases:

1. (enum 1 s) =̂ (list (list s))

2. (enum sz s) =̂ ((cons i (enum (− sz 1) (− s i))) . . .)

0 1 2 3 · · ·
0

1

2

3

...

0 1 2 3 4 · · ·
0

1

2

Fig. 4. Diagrammatic representation of enumeration of pairs in N×N (on the left) and
{0, 1, 2} × N (on the right)

card(si)
0 s0

1 s1, s2, s4, s5, s8, s9, s11, s12

2 s3, s6, s10, s13

3 s7, s14

4 s15

0
1
2
3
4

Fig. 5. Diagrammatic representation of set enumeration with step = 2

The first case is the base case that returns a list of all the lists of size 1 and a
given sum. The second case builds all the lists of size sz and sum s by noting
that the problem can be reduced by building on the lists one element smaller
thus generating a recursive solution to the problem.

The enumeration for sets is analogous to lists, with the constraint that two
elements in a set cannot be the same and that we need to generate sets of different
sizes in a fair order. We have a parameter which we called step that defines how
many sets of size n we have to generate until we generate a set of size n + 1. As
such, we can then lazily enumerate all the sets fairly by starting with the empty
set and increasing their size. Figure 5 explains how the step parameter works,
where f(i) = si, and f is a powerset enumeration.

3.2 Model Checking

In what follows we explain the search method used to find an invariant violation
in Eboc through an example and discussing some important details in the end.
Consider again the machine Example in Figure 2 and the part of the generated
search tree in Figure 6.

In Figure 6, each of the shaded rectangles represent a state and the white
rectangles with rounded corners represent choice points.

The simulation starts by setting up a choice point for the initial states. A
choice point represents a suspension of an assignment, which might possibly have
infinite results. This happens whenever a choice is required, as for example in

Choice Value
(1) [0/x, red/y]
(2) [0/xx, red/yy]
(3) [0/xx, green/yy]
(4) [−1/xx, green/yy]
(5) [0/xx, red/yy]
(6) [2/xx, red/yy]

x = 0, y = red

x = 0, y = red

xx ∈ Z, yy ∈ Colors

(2)

x = 0, y = green

xx ∈ Z, yy ∈ Colors

x = 0, y = red

(5)

. . . x = 2, y = red

(6)

. . .

.

Event e Triggered

(3)

x = −1, y = green

(4)

. . .

.

Event e Triggered

Initialisation, (1)

ha
sh
ed

Fig. 6. Search space of the model shown in Figure 2

the case of choosing a value for the parameters of an event or in the use of
quantifiers.

In this case there is only one initial state since the initialization is determin-
istic, x = 0, y = red, and therefore the choice point does not branch. Then, all
events generate a suspension which represents a choice point for all the param-
eters. Event e generates a suspension for the choice of two parameters: xx ∈ Z,
yy ∈ Colors. As it can be seen in 6 we are representing states with rectangles
with a gradient background and choice points with rectangles with rounded cor-
ners and white background. The choice points are where the lazy enumeration
happens. In this case the scheduler will enumerate values of the for Z× Colors.
The first enumeration xx = 0, yy = red generates no state since it violates one
of the guards: yy 6= y. Note the thickness of the lines out of choice points, rep-
resenting the priority with which a state is generated from a given choice. The
next enumeration is: xx = 0, yy = green generating the state x = 0, y = green.
This state generates again a suspension for the triggering of event e. At this
point it is important to note the relevance of priorities in the search. The choice
point has still infinitely many states to generate, but their priorities decrease as
it generates more and more states from this. The second choice point has a in-
finitely more states to generate but the first state has again the highest possible
priority and that will be the one that will be generated. The first enumeration
is xx ∈ Z, yy ∈ red generating the state x = 0. y = red but since states are
hashed, the state is promptly discarded. From this point, both choice points will

Event Mean b=
any

v
where

v > 0 ∧ v < 0
then

. . .
end

v > 0 ∧ v < 0

[0/
v]

[−
1/

v] [1/v]

[−
2/v]

.

Fig. 7. Event and tree presenting an impossible guard to satisfy

generate new states whose order will depend on their priorities. Once the second
choice point tries the enumeration x = 2, y = red, generating the state x = 2,
y = red the invariant evaluator, signals a violation and the process stops return-
ing the trace: Initialisation, Event e(xx = 0, yy = green), (x = 0, y = green),
Event e(xx = 2, yy = red), (x = 2, y = red). This is exactly the path shaded in
Figure 6 and represents the path to the state violating the invariant.

This lazy method assures that all the space will be searched and if the model
is finite the process will stop. If the model is infinite, the user either aborts the
search after some time, or sets up the number of states that should be searched.
This method generates a search tree that mixes depth with breadth first search
and focusses the attention on the values which have the highest priority of gen-
erating a state which violates the invariant. For example, the enumeration of the
integers starts at zero but it is possible to change the enumeration to allow it
to start at any other point by adding to each of the values of the enumeration a
specified offset. The priorities, which can be thought of as probabilities, are gen-
erated from a normal distribution. Note, that they are not exactly probabilities
because their values range from 0 to 1, and the sum of all the priorities from a
choice point does not sum 1.

Consider the event shown in Figure 7. This event has an impossible guard to
satisfy which generates a choice point during the search that will never succeed
in generating a state. The only reason why the search does not stop here in an
infinite loop is because choice points generate branches with decreasing priority.
After a while, depending on what the scheduler has on queue, the search will
focus on some other part of the tree. This does not mean this choice point will
be forgotten, but it will not be tried out as often as the rest. This is so that
cases like v > 1000000 have a chance of ever generating a state.

Event-B supports definitions of constants whose value is constrained by a
set of predicates, known as axioms. The model checking process handles them
in the example same way as parameters. Constants are left undefined in the
beginning and their value is only searched for once we notice an event needs
their value. In this case, the choice point of the event will contain a choice for all
the constants defined by the model constrained by all the axioms of the model

Event-B
Spec.

Parser
& Static
Checker

Simplifier Code Gen-
erator

Answer Event-B
Lib. Scheduler Simulator

Fig. 8. Eboc system architecture

and from that point onwards the scheduler will not worry about them anymore
since below that branch their value is already assigned. This is highly inefficient:
a value is assigned to all the constants once one of them is referenced, however,
it should only be required to assign a value to the constants referenced in the
event and those that require a value because they share the same constraint. For
example, if an event uses a constant x constrained by the axioms x < y, then
we need to assign a value to x and y but no other constant that might exist. We
hope to address this in the future to improve the efficiency of Eboc on models
dealing with a lot of constants.

4 System Architecture

Eboc is fully implemented in PLT-Scheme [12] and was designed to be an easily
extensible tool to work with Event-B models. Even though we implemented a
model checker in the backend, it would be very easy to integrate other types of
tools. We will focus this section on the system architecture and some implemen-
tation details which are important to understand how Eboc performs the lazy
model checking.

Eboc is a command line tool that in its simplest form receives a file describing
an Event-B specification and a natural number (the number of states to verify)
and returns either that the verification was successful, or a trace to a state
that violates one of the invariants. Figure 8 shows the system architecture. An
Event-B specification is received as an argument and passed into the parser
and static checker. The parser is responsible for generating an abstract syntax
tree and the static checker besides assigning a type to each node through type
inference, check that the tree is legible. The type inference and legibility rules
for Event-B can be found in [11]. After the static check has been performed
the simplifier does a series of simplifications to the model in order to simplify
the simulation without affecting its performance. The code generator outputs
the simulator code specific to the simulation of the input model which is linked
to the scheduler and the Event-B library to produce the final answer.

4.1 Scheduling

The scheduling is performed by a function which given a search structure and
the number of states to explore explores the state space of the model until either
a violation is found or the number of states to explore has been reached.

The search structure
(define-struct search (ns igen evgen props))

has four elements, the number of states to explore, the initialization suspension,
a list of suspension generators representing the events and a list of procedures
that represent the properties that each state needs to verify.

Figure 9 shows a simplification of the scheduling algorithm. The functions
pq:enq!, pq:next-el, and pq:empty? act on a global priority queue that contains sus-
pensions and their respective priorities. These functions enqueue a suspension
with a given priority, dequeue and remove the element with the highest prior-
ity from the queue and check if the queue is empty respectively. The scheduling
function begins by enqueueing the initialization suspension which corresponds to
the suspension that will generate all possible initialization states. Then it enters
a loop that only stops on one of three conditions:

1. Either the number of violations found until now is not zero, in which case it
returns the violations;

2. the number of states to explore as been reached, in which case it returns
that no violations where found, or;

3. the queue is empty, which means that no states are left to explore and the
whole state space has been explored.

Otherwise the procedures enters the else clause of the cond in the loop. Here we
get the element with the highest priority in the queue. If this element is empty,
meaning that no states are left to generate from this suspension, then we loop,
otherwise we proceed by getting the new state the suspension has to generate
(new-state) and the priority of the next state of the suspension (new-prt). Since the
element was not empty, it is enqueued with the new priority and the code that
follows handles the new state. If the new state has already been explored, then
we loop and forget the new state, otherwise we increment the number of explored
states and verify which properties have been violated in this state (vprops). If the
number of violated properties is non-zero we loop with the violated properties
to return to the user. If there are no violated properties in this state we hash
the new state and enqueue all event suspensions that are not empty, meaning
they generate some state and then we loop.

4.2 Code Generation and Simulation

Eboc makes use of units [13] in order to plugin automatically generated code.
Code that simulates this model is generated, linked with the scheduler and the
Event-B library, plugged into the main system and executed. Once the simu-
lator terminates, its code is discarded and an answer is provided to the user.

(define (begin-search! n s)
(pq:enq! (search-igen s) ((search-igen s) ’prt))
(let loop ((violations ’()))

(cond ((not (null? violations)) violations)
((> (search-ns s) n) ’()) ; State bound achieved
((pq:empty?) ’()) ; State space fully explored
(else
(let∗ ((element (pq:next-el!))) ;; Returns Removes high priority element

(if (element ’empty?)
(loop ’())
(let ((new-state (element ’stt)) (new-prt (element ’prt)))

(pq:enq! element new-prt)
(if (hashed? new-state)

(loop ’())
(let ((vprops (foldl (λ (p acum)

(if (p new-state)
acum
(cons p acum)))

’()
(search-props s))))

(inc1! (set-search-ns! s))
(if (not (null? vprops))

(loop vprops)
(begin

(hash! new-state)
(for-each (λ (proc)

(let∗ ((gen (proc new-state)))
(when (not (gen ’empty?))

(pq:enq! gen (gen ’prt)))))
(search-evgen s))

(loop ’()))))))))))))

Fig. 9. Simplified algorithm of the scheduler in pseudo-Scheme code

The most important thing to consider is what are suspensions? Suspensions
are closures over some variables that dictate how the next state is generated.
Consider the following non-deterministic event NDet:

Event NDet b= any x when x > 0 then y := y + x end

The code generated for this particular event is shown in Figure 10. Each event
generates a pair: guard/action procedures and it is the guard procedure that
handles all the complexity related to non-determinism. The actions are always
deterministic (which is not a restriction as described in section 2). The variable
enum is a function that generates a lazy stream of values whose types are listed
in the argument for type-list-enumerator, in this case INT . The closure receives a
message which is then handled as appropriate. If a state is requested through
the message ’stt, then the local state is generated, the guard is evaluated and if
the guard evaluates to true, the action is then invoked returning a new state. A
pair of procedures, as shown in Figure 10, is generated per each event besides
initialization code that sets up the search structure discussed in section 4.1 and
the initial call to the begin-search! procedure. All this code is wrapped around a
unit, which can be thought of as a pluggable module, compiled on the fly and
linked to the main Eboc components.

(define (NDet-guard state)
(let∗ ((enum (type-list-enumerator ’(INT)))

(next-enum (enum))
(next-prt (enum ’prt)))

(λ (msg)
(case msg

((empty?) (not next-enum))
((stt)
(let ((local-state (map cons ’(var:x) next-enum)))

(begin0
(if (eval-predicate ’(> var:x 0) state local-state)

(NDet-action state local-state)
#f)

(set! next-enum (enum))
(set! next-prt (enum ’prt)))))

((prt) next-prt)))))

(define (NDet-action state local-state)
(foldl (λ (assign-pair acum)

(state-update acum
(car assign-pair)
(eval-expression (cdr assign-pair) state local-state)))

state
(list (cons ’var:y ’(+ var:y var:x)))))

Fig. 10. Code generated for deterministic event NDet.

4.3 Event-B Library

The Event-B deals with the evaluation of expressions and predicates. It mainly
implements the operations of Event-B and provides two function: eval-predicate

and eval-expression which evaluate a predicate or an expression respectively in a
given state. Note that during the code generation each event guard and action
contains symbolic expressions that represent Event-B predicates and expres-
sions. All of this is done through code generation and the simulation is performed
on a symbolic expression representation of Event-B.

5 Experiments

In this section we will report some preliminary experiments with Eboc. We will
present four different models, show some results of their execution in ProB and
Eboc and comment on the results.

All experiments were run on a Pentium-D 3.2GHz, with 2Gb of memory under
a 64bit Gentoo Linux operating system with a timeout of 1200 seconds. Eboc was
ran from the console and ProB was executed from its GUI. The measured time is
shown always in seconds and in ProB reflects the time from the button to start
the model checking is pushed until the experiment is completed (either because a
violation is found or because the number of state to explore has been reached. For
the remainder of this section, by run we mean a single execution of the model
checkers with a given bound. Unless noted otherwise all the ProB runs were
executed using the default settings of ProB-1.3.0-rc3 (compiled for 64bit). More

100 States 1000 States 10000 States 100000 States
Eboc ProB Eboc ProB Eboc ProB Eboc ProB

Bakery1 3 1 4 2 13 11 141 317
Jukebox 3 1 4 59 10 217 108 >1200
Huffman 3 1 5 3 49 40 820 >1200
Consts 3 1 4 3 23 42 26 >1200

Table 1. Experimental results of running Eboc and ProB on four different models
(runtime is shown in seconds).

over, ProB was set to only verify the invariants during model checking (which
differs from the default option which includes also the check for deadlocks).

The first model is the Bakery1 model, which is distributed with ProB. It is
a B model that we converted to Event-B syntax so that we could model check
it with Eboc. This is a simple deterministic model where the invariants are not
violated. The first row of Table 1 shows the timings for the execution of Eboc
and ProB for different number of states to explore.

The Bakery1 model has four integer variables whose value is updated by six
different events through simple arithmetic operations. One interesting point is
that even though ProB is very fast for small number of states it gets slower as
more and more states are explored until the point that it gets slower than Eboc.
Given that this model has no invariant violation, none of the model checkers
reported a violation.

The following model is the Jukebox and its experimentation table is shown in
the second row of Table 1. The Jukebox is a model from a book about classical
B [14], which is also distributed by ProB as an example. Once again we converted
the model from classical B to Event-B so that we could use it with Eboc.
The Jukebox machine sees a context that declares a deferred set and a constant,
all of the machine events are non-deterministic and the update rules are set
expressions.

In this example, after the first case ProB asked to increase the bound on
the number of computed initializations because otherwise it would have no more
states to explore. So, for all the bounds higher than 100, ProB default setting
of computing 4 initializations was changed to 100. This is the reason why ProB
got slower than Eboc for the remaining tests. Again, since there no violation of
invariants in the model, none was reported.

Third row of Table 1 shows the experiments regarding the Huffman model by
John Colley [15]. The model simulates the encoding and decoding of an infinite
string of vowels from a fixed huffman tree. The model, which has 14 events,
is non-deterministic and declares an enumerated set among several variables.
The variables are sets or integers and most of the update rules deal with set
expressions.

Eboc deals very well with these models and scaled very well. However ProB
after a certain number of nodes have been explored the performance deteriorates

very quickly. No invariant is violated and none of the model checker report a
violation.

The Consts model is an artificial model created by us (ref. appendix A) to
explore the handling of the constants when under a lot of non-determinism and
which has a violation very far from the initial of the search. Last row of Table 1
shows the results for this experiment.

For the first 3 runs, neither of the model checkers found a violation and
had similar performance (even though ProB already took three times more than
Eboc on its third run). However, on the fourth run, Eboc found a violation after
26 seconds and ProB ran past the timeout without returning any violation. This
is a case where ProB would not find the bug due to its default bounds and where
Eboc had no problem finding the bound if given enough freedom to search the
state space.

In conclusion, ProB is a very mature model checker with a wide range of
options and model checking techniques. ProB seems to be extremelly fast for
a small number of states (< 1000) but then its performance detiorates quickly.
Unfortunately, at this point we did not any find real world examples that violate
its invariant and where ProB is unable to detect it due to its restrictive bounds.

6 Related Work

Traditionally formal languages are supported by automated theorem provers
with the notable exception of Alloy [16] which is supported by KodKod [17], a
model finder.

However, other formal languages, more notably classical B, Z and CSP,
have already included a model checker to their available tools, but none has
attempted to perform lazy unbounded model checking. Since the languages
Event-B and classical B are closely related we will concentrate our discussion
in the B model checker, ProB.

ProB [9] is an animator, constraint-based checker and temporal bounded
model checker for classical B developed in SICStus Prolog. We will focus on
its use as a bounded model checker. ProB requires the input of several types
of bounds: bound on the size of the set of integers, bound on the number of
computed initializations, and bound on the number of computed enablings (along
with a timeout for computing them). Even though ProB provides default values
for each of these, in practice there might be models whose faults lie outside
the state space set by these bounds forcing the user to tweak them so that a
faulty state can be reached. ProB as a model checker tries to find whether a
machine violates its invariant by finding a sequence of operations that, starting
from the initial state of the machine, navigates the machine into a state in which
the invariant is violated. The exploration is done using an adaptation of the A*
algorithm with cycle detection, and can be tuned to perform in the extreme
cases as either a depth-first or breadth-first search. By default every node had
25% chance of being treated in a depth-first manner. ProB has been adapted
over the years to check goals written in Linear Temporal Logic (LTL), and to

model check Z, CSP and Promela [18]. ProB integrates symmetry reduction [19]
and more recently, introduced support for Event-B.

On the subject of Event-B model checking, besides ProB we know about an
attempt to use SAL, KodKod and BDDs to model check Event-B [20] however,
at the time of writing there is no software available to experiment with.

7 Conclusions

In this paper we presented a new model checker for Event-B based on a lazy
strategy to explore the state space of the models in an unbounded way. We fo-
cused our discussion around the problem we were trying to solve: how to perform
explicit state model checking and yet avoid bounding our domains? We presented
techniques to fairly enumerate the space of values of Event-B expressions, the
model checking algorithm that makes use of these enumerations to lazily explore
the state space and the Eboc system architecture details.

The work proposed in this paper is based on lazy streams coupled with a
priority scheme and seems to work well in theory as well as in practice, even
though there are still improvements to be made to the implementation in order
to improve the efficiency of Eboc. Another important step is in finding complex
case studies that demonstrate the importance of this approach and that Eboc is
successful in finding invariants violations in these case studies, which would be
otherwise impossible using bounded approaches.

A Consts Model

Machine cons t s

Sees cons t s

Variables x

Event e1 b=
any

xx
where
>

then
x := x + xx

end

Initialisation b=
x := 0

Invariants
c1 = 2⇒ x 6= 150
(x ≥ −5000) ∧ (x ≤ 5000)

End

Event e2 b=
any

xx
where

xx > c2
then

x := xx + x + c1
end

Event e3 b=
when
>

then
x := c1 + c2 + x

end

Context cons t s
Constants c1 c2
Axioms

c1 < c2
End

References

1. Smith, G., Wildman, L.: Model checking Z specifications using SAL. In Proc. 4th
Intl. Conf. of B and Z Users, LNCS 3455, pp. 85–103. Springer, 2005

2. Derrick, J., North, S., Simons, T.: Issues in implementing a model checker for Z.
In Proc. 8th Intl. Conf. Formal Engineering Methods, LNCS 4260, pp. 678–696.
Springer, 2006

3. Derrick, J., North, S., Simons, A.J.H.: Z2SAL - building a model checker for Z. In
Proc. 1st Intl. Conf. Abstract State Machines, B and Z, LNCS 5238, pp. 280–293.
Springer, 2008

4. Hoare, C.A.: Communicating Sequential Processes. Prentice Hall, 1986
5. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University

Press, 1996
6. Behm, P., Benoit, P., Faivre, A., Meynadier, J.M.: Météor: A successful application

of B in a large project. In Proc. of World Congress on Formal Methods, LNCS
1708, pp. 369–387. Springer, 1999

7. Abrial, J.R.: Modeling in Event-B: Systems and Software Engineering. To be
published by Cambridge University Press, 2009

8. Hallerstede, S.: On the purpose of Event-B proof obligations. In Proc. 1st Intl. Con-
ference on Abstract State Machines, B and Z, LNCS 5238, pp. 125–138. Springer,
2008

9. Leuschel, M., Butler, M.: ProB: A model checker for B. In Proc. Intl. Symposium
of Formal Methods Europe, LNCS 2805, pp. 855–874. Springer, 2003

10. Hallerstede, S.: Justifications for the Event-B modelling notation. In Proc. 7th
Intl. Conf. of B Users, LNCS 4355, pp. 49–63. Springer, 2006

11. Métayer, C., Voisin, L.: The Event-B mathematical language. http://wiki.event-
b.org/index.php/Event-B_Mathematical_Language, March 2009

12. Flatt, M., et al.: Reference: PLT Scheme. Reference Manual PLT-TR2009-
reference-v4.2, PLT Scheme Inc., June 2009

13. Flatt, M., Felleisen, M.: Units: Cool modules for hot languages. In Proc. Conf.
on Programming Language Design and Implementation, SIGPLAN Notices, 33(5),
pp. 236–248. ACM, 1998

14. Schneider, S.: The B-method — an introduction. Palgrave Macmillan, 2001
15. Colley, J.: An Investigation into using Event-B for sub-system development in a

SystemC TLM flow. Private Communication, July 2007
16. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,

2006
17. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In Proc. 13th Intl.

Conf. Tools and Algorithms for the Construction and Analysis of Systems, LNCS
4424, pp. 632–647. Springer, 2007

18. Leuschel, M., Plagge, D.: Seven at one stroke: LTL model checking for high-level
specifications in B, Z, CSP, and more. Technical Report STUPS/2007/02, Institut
für Informatik, Heinrich-Heine-Universität Düsseldorf, 2007

19. Spermann, C., Leuschel, M.: ProB gets nauty: Effective symmetry reduction for
B and Z models. In Proc. 2nd Intl. Symposium on Theoretical Aspects of Software
Engineering, pp. 15–22. IEEE, 2008

20. Plagge, D., Leuschel, M., Lopatkin, I., Iliasov, A., Romanovsky, A.: SAL, Kodkod,
and BDDs for validation of B models. lessons and outlook. In Proc. 4th Workshop
on Automated Formal Methods, June 2009

