
DERIVING SAFETY CASES FROM AUTOMATICALLY
CONSTRUCTED PROOFS

Nurlida Basir*, Ewen Denney and Bernd Fischer*

* ECS, University of Southampton, Southampton, SO17 1BJ, UK
 (nb206r, b.fischer)@ecs.soton.ac.uk

 SGT / NASA Ames Research Center Mountain View, CA 94035, USA
 Ewen.W.Denney@nasa.gov

Keywords: formal proofs, safety case, natural deduction,
automated theorem provers.

Abstract
Formal proofs provide detailed justification for the validity of
claims and are widely used in formal software development
methods. However, they are often complex and difficult to
understand, because the formalism in which they are con-
structed and encoded is usually machine-oriented, and they
may also be based on assumptions that are not justified. This
causes concerns about the trustworthiness of using formal
proofs as arguments in safety-critical applications. Here, we
present an approach to develop safety cases that correspond to
formal proofs found by automated theorem provers and reveal
the underlying argumentation structure and top-level assump-
tions. We concentrate on natural deduction style proofs,
which are closer to human reasoning than resolution proofs,
and show how to construct the safety cases by covering the
natural deduction proof tree with corresponding safety case
fragments. We also abstract away logical book-keeping steps,
which reduces the size of the constructed safety cases. We
show how the approach can be applied to the proofs found by
the Muscadet prover.

1 Introduction
Demonstrating the correctness of large and complex software-
intensive systems requires marshalling large amounts of di-
verse information, including models, code, specifications,
mathematical equations and formulas, and tables of engineer-
ing constants. Tools supported by automated analyses can be
used to produce a traceable safety argument [10] that shows
in particular where the code, verification artifacts and the ar-
gument itself depends on any external assumptions.

However, many tools commonly applied to ensure software
safety rely on black-box techniques such as static analysis
[22] or model checking [7] that produce only opaque claims
about the safety of the software but not enough evidence to
justify their claim. They can thus not provide any further in-
sights or arguments. In contrast, in formal software safety
certification [8], as in other formal software development
methods [3, 5], formal proofs can in principle be used as evi-
dence. Such proofs use mathematical and logical reasoning to

show that the software satisfies certain requirements, which
typically include program execution safety properties such as
absence of array-out-of-bounds violations, as well as func-
tional correctness properties. However, in practice there are
reservations about the use of formal proofs as evidence (or
even arguments) in safety-critical applications. Concerns that
the proofs may be based on assumptions that are not valid, or
may contain steps that are not justified, can undermine the
reasoning used to support the assurance claim. Moreover,
these proofs are typically constructed automatically by auto-
mated theorem provers (ATPs) based on machine-oriented
calculi such as resolution which are often too complex and
too difficult to understand by engineers, because the formal-
isms spell out too many low-level details. In this paper we
address these issues by systematically constructing safety
cases that correspond to formal proofs found by ATPs and
explicitly call out the use of external assumptions. The safety
cases highlight the argument structure underlying the proof
construction, and help showing how the truth of the theorem
follows from the different assertions and subgoals.

The approach presented here combines abstraction and visu-

u-
mentation structure and top-level assumptions. We work with
natural deduction (ND) style proofs, which are goal-directed
and thus closer to human reasoning than resolution proofs,
and we show how the approach can be applied to the proofs
found by the Muscadet ATP [21]. We explain how to con-
struct the safety cases by covering the ND proof tree with
corresponding safety case fragments. The argument is built in
the same top-down way as the proof: it starts with the original
theorem to be proved as the top goal and follows the deduc-
tive reasoning into subgoals, using the applied inference rules
as strategies to derive the goals. However, we abstract away

-keeping steps, which reduce the size of the
constructed safety cases. The safety cases thus provide a

understand the claims without having to understand all the
technical details of the formal proof machinery. This paper is
a continuation of our previous work to construct safety cases
from information collected during the formal verification of
the code [4], but here we concentrate on the certification
components, i.e., the domain theory and the ATP used to sup-
port the software safety assurance process.

2 Formal Software Safety Certification
Our work is set in the context of formal software safety certi-
fication [8], where we use formal source code analysis tech-
niques based on program logics to show that the program
does not violate certain conditions during its execution. A
safety property is an exact characterization of these condi-
tions, based on the operational semantics of the programming
language. In our work we consider each violation of the
safety property a potential of hazard. Each safety property
thus describes a class of hazards. In our framework, the safety
property is enforced by a safety policy, i.e., a set of verifica-
tion rules that derived from initial set of safety requirements
that formally represent the specific property identified by a
safety engineer, and derive a number of logical proof obliga-
tions. Showing the safety of a program is thus reduced to
formally showing the validity of these proof obligations: a
program is considered safe wrt. a given safety property if
proofs for the corresponding safety proof obligations can be
found. Formally, this amounts to showing

D A P C (1)
for each obligation, i.e., the formalization of the underlying
domain theory D and a set of formal certification assumptions
A entail a conjecture, which consists of a set of preconditions
P that have to imply the safety condition C. The domain the-
ory formalizes the extra-logical operations that occur in the
obligations; it includes arithmetic functions and relations,
programming language operations such as array indexing as
well as application-specific operations such as matrix inver-
sion. Assumptions typically specify global properties required
by the component (e.g., the physical units of the input sig-
nals), while preconditions and safety conditions refer to prop-
erties at intermediate locations in the code.

The different elements of these proof obligations have differ-
ent origins, and thus different levels of trustworthiness, and a
safety case should reflect this. The premises and the safety
condition are inferred from the program by a trusted software
component implementing the safety policy, and their con-
struction can already be explained in a safety case [4]. In con-
trast, both the domain theory and the assumptions are
manually constructed artifacts that require particular care. The
main hazard that we address in the safety cases here, by mak-
ing explicit the use of hypotheses, is the unintended introduc-
tion of logical inconsistencies that can be exploited by the
ATPs to construct logically correct but vacuous proofs.

The necessary analysis is hampered by the fact that the prover
does not work on the obligations in the form as given in (1)
but uses the form

 (D A) P C (2)
which is logically equivalent but blurs the distinction between
domain theory, assumptions, and preconditions, and lumps
them all together as logical premises. However, proofs typi-
cally use only a subset of these premises as hypotheses, and
the safety case should make explicit those that are actually
used. In particular, it needs to highlight the use of assump-

tions. These have been formulated in isolation by the safety
engineer and may not necessarily be justified, and the possi-
bility of a logical inconsistency with the domain theory is
substantially higher. Moreover, fragments of the domain the-
ory and the assumptions may be used in different contexts, so
the safety case must reflect which of them are available at
each context. By elucidating the reasoning behind the certifi-
cation process and drawing attention to potential certification
problems, there is less of a need to trust the certification tools,
and in particular, the manually constructed artifacts.

3 Converting Natural Deduction Proofs into
Safety Arguments

3.1 Natural Deduction

Natural deduction [14, 15] is a form of proof that attempts to
provide a foundational yet intuitive system to construct for-
mal proofs. It consists of a collection of proof rules that ma-
nipulate logical formulas and transform premises into
conclusions. A conjecture is proven from a set of assumptions
if a repeated application of the rules can establish it as con-
clusion. The proof rules can be divided into basic rules, de-
rived rules (which can be seen as proof macros that group
together multiple inference steps) and replacement rules
(which are derived rules for equivalence and equality han-
dling). Here, we focus on some of the basic rules; a full expo-
sition of natural deduction can be found in the literature [17].

Natural deduction uses two sets of rules for each logical con-
nective or quantifier (,), where one introduces the
symbol, while the other eliminates it. In the introduction
rules, the connective or quantifier is used as the top-level op-
erator symbol of the unique conclusion, while it occurs in the
elimination rules in the same role in one of the premises.

3.2 Conversion Process

Natural deduction proofs are simply trees that start with the
conjecture to be proven as root, and have given axioms or
assumed hypotheses at each leaf. Each non-leaf node is recur-
sively justified by the proofs that start with its children as new
conjectures. The edges between a node and all of its children
correspond to the inference rule applied in this proof step.
The proof tree structure is thus a representation of the under-
lying argumentation structure. We can use this interpretation
to present the proofs as safety cases [18], which are structured
arguments as well and represent the linkage between evidence
(i.e., the deductive reasoning of the proofs from the assump-
tions to the derived conclusions) and claims (i.e., the original
theorem to be proved). The general idea of the conversion
from ND proofs to safety cases is thus fairly straightforward.
We consider the conclusion as a goal to be met and the prem-
ise(s) as a subgoal(s); we further consider the applied infer-
ence rule as the strategy that shows how the conclusion is
met. For each inference rule, we define a safety case template
that represents the same argumentation. The underlying simi-
larity of proofs and safety cases has already been indicated in

[18] but as far as we know, this idea has never been fully ex-
plored or even been applied to machine-generated proofs.

The conversion we present here preserves the inferences and
formulas of the original proof, but avoids overloading the
constructed arguments with trivial proof steps. We identify
semantically related or repeated identical inferences that can
be abstracted away in order to construct a more concise ar-
gument. In the following we describe the safety case tem-
plates for the base rules of the calculus. We use the Goal
Structuring Notation [18] to explicitly represent the logical

3.3 Conjunctions

The rules for conjunction introduction and elimination shown
in Figure 1 directly represent the intuitive interpretation of
conjunctions: if A is true and B is true, then evidently A B is
true as well (-i), and if A B is true, then both A and B must
be as well (-e1 resp. -e2). The hypotheses that are available
to show A B true are also available to show A (resp. B) true
as well. Similarly in the case of -e1 (resp. -e2) where the
available hypotheses to show each conjunct true are also
available to show A B true.

Figure 1: Safety Case Templates for -Rules.

The -rules can be directly converted into safety cases. In the
case of -introduction, the satisfaction of the conclusion (i.e.,
goal of the safety case) is implied by the satisfaction of the
two premises (i.e., subgoals of the safety case) based on the
strategy of -introduction rule. For the -elimination rule, the
strategy shows a logically stronger goal we can conclude A
(resp.B) if we have a proof of A B. Figure 1 shows the safety
case fragments for the conjunction rules.

3.4 Disjunctions

A disjunction can be introduced as long as one of the dis-
juncts is already known i.e., if A (resp. B) is true, then evi-
dently A B is true as well. In the safety case, a goal A B is
constructed, which is justified by the subgoal A (resp. B) via
the strategy (-i1) (resp. -i2). The hypotheses that are avail-
able to show A B true are also available to show subgoal A
(resp. B) true.

In contrast, in disjunction elimination, we only know that
A B holds, but not which of A or B is true, so that we need to
reason by cases to conclude C from A B, i.e., separately con-
sider each of the two cases for the disjunction to be true. In

the first case we thus assume A together with the available
hypotheses and try to derive C, in the second case we assume
B together with the available hypotheses and try to derive C.
If both cases succeed, we can conclude C. The safety case
fragment makes this argument explicit, and, in particular,
explicitly justifies the use of the respective assumptions in the
two cases. Figure 2 shows the safety case fragments for the
disjunction rules.

Figure 2: Safety Case Templates for -Rules.

3.5 Implications

The implication elimination follows the standard pattern but
in the introduction rule we again temporarily assume A as
hypothesis together with the list of other available hypothe-
ses, rather than deriving a proof for it. We then proceed to
derive B, and discharge the hypothesis by the introduction of
the implication. The hypothesis A can be used in the proof of
B, but the conclusion A=>B no longer depends on the hy-
pothesis A after B has been proved.

Figure 3: Safety Case Templates for =>-Rules.

In the safety case fragment (see Figure 3), we use a justifica-
tion to record the use of the hypothesis A, and thus to make
sure that the introduced hypotheses are tracked properly.

3.6 Universal Quantifiers

The natural deduction calculus can also be used for proofs in
predicate logic. The proof rules focus on the replacement of
the bound variables with objects and vice versa. For example,
in the elimination rule for universal quantifiers, we can con-
clude the validity of the formula for any chosen domain ele-
ment tx. In the introduction rule, however, we need to show it
for an arbitrary but fresh object tx (that is, a domain element
which does not appear elsewhere in H, A, or the domain the-
ory and assumptions). If we can derive a proof of A, where x

is replaced by the object tx, we can then discharge this as-
sumption by introduction of the quantifier. The safety case
fragments (see Figure 4) record this replacement as justifica-
tion. The hypotheses available for the subgoals in the -rules
are the same as those in the original goals.

Figure 4: Safety Case Templates for -Rules.

4 Safety Case Generation Process
To automatically construct the ND proof safety case, we inte-
grate the Muscadet [21] theorem
tool [1]. We convert the proofs that are generated by the Mus-
cadet prover into an XML format (i.e., PROOF-XML in Fig-
ure 5). The XML file contains all the relevant information
that is required for the automatic safety case construction.
Subsequently, an XSLT program is used to transform the
proofs into another XML (i.e., file GSN-XML in Figure 5)
logically representing a safety case, by applying the templates
that have been defined in Section 3. The file format was de-
signed so that the derived safety cases can be easily be
adapted to different tools or applications. Finally, to present
the resulting safety case graphically, we use a Java program
to layout the logical information which involved some
mathematical calculations in positioning the argument and to
convert it into the standard Adelard ASCE file format. Figure
5 summarizes the safety case generation process.

Figure 5: Safety Case Generation Process.

5 Hypothesis Handling
An automated prover typically treats the domain theory D and
the certification assumptions A as premises and tries to derive

 (D A) P => C from an empty set of hypotheses. As the
proof tree grows, these premises will be turned into hypothe-
ses, using the =>-introduction rule (see Figure 3). In all other
rules, the hypotheses are simply inherited from the goal to the
subgoals. However, not all premises will actually be used as

hypotheses in the proof, and the safety case should highlight
those that are actually used. This is particularly important for
the certification assumptions. We can achieve this by modify-
ing the template for the =>-introduction (see Figure 6). We
distinguish between the hypotheses that are actually used in
the proof of the conclusion (i.e., A1,...,Ak) and those that are
vacuously discharged by the =>-introduction (i.e., Ak+1,..,An).
We can thus use two different justifications to mark this dis-
tinction. Note that this is only a simplification of the presenta-
tion and does not change the structure of the underlying
proof, nor the validity of the original goal. It is thus different
from using a relevant implication [2] under which A => B is
only valid if the hypothesis A is actually used.

Figure 6: Hypotheses Handling in =>-Introduction Rule.

In order to minimize the number of hypotheses tracked by the
safety case, we need to analyze the proof tree from the leaves
up, and propagate the used hypotheses towards the root. By
revealing only the used hypotheses as assumptions, the valid-
ity of their use in deriving the proof can be checked more
easily. In our work, we also highlight the use of the external
certification assumptions that have been formulated in isola-
tion by the safety engineer. For example in Figure 7, the use
of the hypothesis has_unit(tptp_float_7_0e_minus_1,
ang_vel), meaning that a particular floating point variable
represents an angular velocity, which has been specified as
external assumption, is tracked properly in the safety case,
and the validity of its use in deriving the proofs can be
checked easily.

Figure 7: External Hypothesis.

6 Application to Muscadet
We illustrate our approach by converting proofs created by
the AutoCert certification tool [12], which takes a set of re-
quirements, and a domain theory consisting of logical axioms
and so-called annotation schemas. These are used to infer
logical annotations and construct proof tasks which are sent to
the ATP in order to create proofs that the code complies with
the requirements.

Prolog XSLT

Proof.dtd ASCE.dtd

Java

Doctype

GSN.dtd

PROOF
XML INF

Doctype Doctype

MUSCADET
proof
Info

proof
Info

proof
Info

GSN
XML

ASCE
AXML

For these experiments, we used the Muscadet [21] theorem
prover during the formal certification of the initialization
safety of a component of an attitude control system. Muscadet
is based on natural deduction, but to improve performance, it
implements a variety of derived rules in addition to the basic
rules of the calculus. This includes rules for dedicated equal-
ity handling, as well as rules that the system builds from the
definitions and lemmas, and that correspond to the application
of the given definitions and lemmas. Figure 8 shows the re-
sulting safety case for a proof found by Muscadet. For some

- , the elimination of function
applications in the elifun-rule in Figure 8) we have not yet
defined dedicated safety case templates; these rules are repre-
sented by a generic strategy node.

Figure 8: ND Proof Safety Case

7 Proof Abstraction
Directly converting the Muscadet-proofs into safety cases is
unfeasible in most practical cases because the proofs contain
too many elementary and book-keeping steps. It is thus neces-
sary to abstract the proof. Here, we can apply different ap-
proaches. For example, we can remove some of the book-
keeping rules (e.g., return_proof) that are not central to the
overall argumentation structure. Similarly, we can collapse
sequences of identical book-keeping rules into a single node.
In general, however, we try to restructure the resulting proof
presentation to help in emphasizing the essential proof steps.
In particular, we can group sub-proofs that apply only axioms
and lemmas from certain obvious parts of the domain theory
(e.g., ground arithmetic or partial order reasoning) and repre-
sent them as a single strategy application. Figure 9 shows an
example of this. Here, the first abstraction step collapses the
sequences rooted in G13 and G14, noting the lemmas which
had been used as strategies as justifications, but keeping the
branching that is typical for the transitivity. A second step
then abstracts this away as well.

8 Related Work

Other approaches have been used to address concerns with
using proofs for assurance purposes. Many of them try to
bring formal proofs into a form closer to human reasoning, to
aid with their understanding. Proof visualization tools (e.g.,
[23]) present the proof in a graphical form, but quickly get
overwhelmed by the proof size. Proof verbalization (e.g., [6,
16]) transforms the proofs into natural language but the ex-
planations are often too detailed. Proof abstraction groups
multiple low-level steps that represent recurring argumenta-
tion patterns into individual abstract steps and thus accentu-
ates the hierarchical structure of the proof [11] but has so far
only been applied to interactively constructed proofs. Our
work combines abstraction, verbalization and visualization to
re
structure and top-level assumptions.

Alternatively, proof checkers [20, 24] have been used to in-
crease trust in formal proofs, by demonstrating that every
individual step in the proof is correct. However, proof check-
ing does not address the real problem: while errors in the im-
plementations of provers do occur, they are very rare [13];
errors and inconsistencies in the formalization of the domain
theory in contrast are much more common, but these are not
detected by the standard proof checking techniques.

9 Conclusions
We have described an approach to derive safety cases from
software safety proofs found by ATPs. The safety cases serve
as a traceable argument that shows validity of the proof. They
also highlight and properly track hypotheses that are actually
used in deriving the proof, and thus reveal where the proofs
depend on top-level assumptions. Greater confidence in the
assurance claim can be placed if the rationale behind validity
of the proof can be shown. As pointed out by Littlewood et al.
[19], the probability of a claim, which has been shown by a
formal proof, being false, is very low, when the assumptions
and evidence are valid. However, there is a non-zero prob-
ability that these are not in fact valid. Multi-legged safety
cases have been suggested [19] as a technique to compensate
for this weakness.

Here, the safety cases provide a structured reading guide for
the safety proofs and make clear the interactions underlying
the proofs. Hence, assurance is no longer implied by the trust
in the ATP but follows from an explicitly constructed argu-
ment for the proofs. The work we have described here is still
in progress. So far, we have automatically derived safety
cases for ND proofs found by the Muscadet prover [21]. We
are currently working on safety case templates for the remain-
ing inference rules used by Muscadet. We plan to make this
technique applicable to generally more powerful resolution
provers by converting the resolution proofs to ND style [15].
The straightforward conversion of ND proofs into safety
cases is far from satisfactory as they typically contain too

Figure 9: Abstraction of Safety Cases

many details. In practice, a careful use of abstraction is
needed [11] and we are working on more abstraction tech-
niques. This work complements our previous work [4] where
we used the high-level structure of annotation inference to
explicate the top-level structure of such software safety cases.
We consider the safety cases as a first step towards a fully-
fledged software certificate management system [9] which
will provide storage and reporting capabilities for all artifacts.
We also believe that the result of our research will be a com-
prehensive safety case (i.e., for the program being certified, as
well as the safety logic and the certification system) that will
clearly communicate the safety claims, key safety require-
ments, and evidence required to trust the software.

Acknowledgements: The first author is funded by the Malay-
sian Government, IPTA Academic Training Scheme. This
material is based upon work supported by NASA under
awards NCC2-1426 and NNA07BB97C.

References
[1] Adelard ASCE home page, http://www.adelard.com (2007).
[2]
 (1975).
[3]
 dison-Wesley (2003).
[4] N. Basir, E. Denney, B. Fischer.
 for Automatically Generated Code from Formal Program
 in: Proc. SAFECOMP 08,
 LNCS 5219, pp. 249-262 (2008).
[5] J.C. Bicarregui, J.S. Fitzgerald, P.A. Lindsay, R. Moore, B.
 Springer
 (1993).
[6]
 Artificial Intelligence 7(3), pp. 261-278 (1976).
[7]
 ACM Computing Surveys 28(4),
 pp. 626-643 (1996).
[8] E. Denney, B. Fischer. -level safety
 n: Proc. FM 2003: Formal Methods, LNCS 2805,
 pp. 894 913 (2003).
[9] E. Denney, B. Fischer. Software certification and software
 certificate management systems (Position paper) in: Proc.
 ASE Workshop on Software Certificate Management Systems,
 ACM, pp.1-5 (2005).

[10] E. Denney, B. Fischer. A verification-driven approach to
 traceability and documentation for auto-generated mathe
 matical software. in: Proc. ASE '09, (to appear 2009).
[11] E. Denney, J. Power, K. Tourlas. Hiproofs: A hierarchical
 notion of proof tree ENTCS, 155, pp.341-359 (2006).
[12] E. Denney, S. Trac, "A Software Safety Certification Tool for
 Automatically Generated Guidance, Navigation and Control
 Code", in: Proc. IEEE Aerospace Conference Big Sky, MT,
 (2008).
[13] M. Garnacho, M. Prin. Convincing Proofs for Program
 Certification in: Proc. Intl. Workshop SafeCert,
 ENTCS 17693, pp. 41-56 (2008).
[14]
 Collected Papers of Gerhard Gentzen, M.E.Szabo (ed),
 North-Holland, Amsterdam. pp. 68-131 (1969).
[15] X. Huang. Translating Machine-Generated Resolution Proofs
 into ND-Proofs at the Assertion Level in: Proc. 4th Pacific
 Rim Intl. Conference on Artificial Intelligence, LNCS
 1114, pp. 399-410 (1996).
[16]
 in: Proc 15th Intl. Joint Conference on Artificial
 Intelligence, Morgan Kaufmann, pp. 965 970 (1997).
 [17] M. Huth, Logic in Computer Science Modelling
 and Reasoning about Systems , 2nd Edition, Cambridge
 University Press (2004).
[18] Arguing safety a systematic approach to
 managing safety cases , PhD Thesis, University of York
 (1998).
[19] B. Littlewood, D. Wright. u
 ments to Increase Confidence in Safety Claims for Software-
 Based Systems: A Study Based on a BBN Analysis of an Ide
 a , IEEE Trans. Software Eng. 33(5),
 pp. 347-365 (2007).
[20] W. McCune, O. Shumsky-Matlin. Ivy: A Preprocessor and
 Proof Checker for First-Order Logic Computer-Aided
 Reasoning: ACL2 Case Studies, Advances in Formal Methods
 (4), Kluwer Academic Publishers, pp. 265 282 (2000).
[21] D. Pastre. MUSCADET 2.3: A Knowledge-Based Theorem
 Pr in: Proc Intl. Joint
 Conference on Automated Reasoning, LNCS 2083,
 pp. 685-689 (2001).
[22] PolySpace Technologies, http://www.polyspace.com, 2007.
[23] S. Trac, Y. Puzis, G. Sutcliffe. An interactive derivation
 viewer , in: Proc. Intl. Workshop User Interfaces for
 Theorem Provers, ENTCS 174, Elsevier, pp.109-123 (2007).
[24] G. Sutcliffe, D. Belfiore. Semantic Derivation Verification
 in: Proc. 18th Florida Artificial Intelligence Research
 Symposium, pp.641 646 (2005).

