
Industrial-Strength Certified SAT Solving through
Verified SAT Proof Checking

Ashish Darbari1 and Bernd Fischer2 and Joao Marques-Silva3

1 ARM, Cambridge, CB1 9NJ, England??

2 School of Electronics and Computer Science
University of Southampton, Southampton, SO17 1BJ, UK

3 School of Computer Science and Informatics
University College Dublin, Belfield, Dublin 4, Ireland

Abstract. Boolean Satisfiability (SAT) solvers are now routinely used in the ver-
ification of large industrial problems. However, their application in safety-critical
domains such as the railways, avionics, and automotive industries requires some
form of assurance for the results, as the solvers can (and sometimes do) have bugs.
Unfortunately, the complexity of modern and highly optimized SAT solvers ren-
ders impractical the development of direct formal proofs of their correctness. This
paper presents an alternative approach where an untrusted, industrial-strength,
SAT solver is plugged into a trusted, formally verified, SAT proof checker to
provide industrial-strength certified SAT solving. The key characteristics of our
approach are (i) that the checker is not tied to a specific SAT solver but certi-
fies any solver respecting the agreed format for satisfiability and unsatisfiability
claims, (ii) that the checker is automatically extracted from the formal develop-
ment, and (iii) that the combined system can be used as a standalone executable
program independent of any supporting theorem prover. The core of the system
is a checker for unsatisfiability claims that is formally designed and verified in
Coq. We present its formal design and outline the correctness criteria. The actual
standalone checker is automatically extracted from the the Coq development. An
evaluation of the checker on a representative set of industrial benchmarks from
the SAT Race Competition shows that, albeit it is slower than uncertified SAT
checkers, it is significantly faster than certified checkers implemented on top of
an interactive theorem prover.

1 Introduction

Advances in Boolean satisfiability (SAT) technology have made it possible for SAT
solvers to be routinely used in the verification of large industrial problems, including
problems from safety-critical domains such as the railways, avionics, and automotive
industries [11,16]. However, the use of SAT solvers in such domains requires some ex-
plicit form of assurance for the results since SAT solvers can and sometimes have bugs.
For example, in the SAT 2007 competition, the solver SATzilla CRAFTED reported
incorrect outcomes on several problems [20].

Two alternative methods can be used to provide assurance. First, the solver could
be proven correct once and for all, but this approach had limited success. For example,

?? This author was at the University of Southampton whilst this work was carried out.

Lescuyer et al. [13] formally designed and verified a SAT solver using the Coq proof as-
sistant [3], but without any of the techniques and optimizations used in modern solvers.
Smith and Westfold [24] use a correct-by-construction approach to simultaneously de-
rive code and correctness proofs for a family of SAT solvers, but their performance falls
again short of the current state of the art. Reasoning about the optimizations makes the
formal correctness proofs exceedingly hard. This was shown in the work of Marić [14],
who verified at the pseudo-code level the algorithms used in the ARGO-SAT solver
but did not verify the actual solver itself. In addition, the formal verification has to be
repeated for every new SAT solver (or even a new version of a solver), or else users are
locked into using the specific verified solver.

Alternatively, aproof checkercan be used to validate each individual outcome of the
solver independently; this requires the solver to produce aproof tracethat is viewed as
a certificate justifying its outcome. This approach was popularized by the Certified Un-
satisfiable Track of the SAT 2007 competition [21] and was used in the design of several
SAT solvers such as tts, booleforce, picosat, and zChaff. However, the corresponding
proof checkers are typically implemented by the developers of the solvers whose output
they check, which can lead to problems in practice. In fact, the checkers booleforce-res,
picosat-res, and tts-rpt reported both “proof errors” and “program errors” on some of
the benchmarks, although it is unclear what these errors signify.

Confidence can be increased if the checker is proven correct, once and for all. This
is substantially simpler than proving the solver correct, because the checker is compar-
atively small and straightforward, and avoids system lock-in, because the checker can
work for all solvers that can produce proof traces in the agreed format. This approach
originates in the formal development of a proof checker for zChaff and Minisat proof
traces by Weber and Amjad [26], and we follow it here as well. However, we depart con-
siderably from Weber and Amjad in how we design and implement our solution. Their
checker replays the derivation encoded in the proof traceinsidean LCF-style theorem
prover such as HOL 4 or Isabelle. Since the design and implementation of these provers
relies on using the primitive inference rules of the underlying theorem prover, assur-
ance is very high. However, their checker can runonly inside the supporting prover,
and not as a standalone tool, and performance bottlenecks become prominent when the
size of the problems increases. Our checker, SHRUTI,4 is formally designed and veri-
fied using the higher-order logic based proof assistant Coq [3], but we never use Coq
for execution; instead weautomatically extractan OCaml program from the formal
development that can be compiled and used independently of Coq. This prevents the
user from being locked-in to a specific proof assistant, and allows us to wrap SHRUTI
around an industrial-strength but untrusted solver, to provide an industrial-strength cer-
tified solver that can be used as a regular component in a SAT-based verification work
flow.

Our aim is not a fully formal end-to-end certification, which would in an extreme
view need to include correctness proofs for file operations, the compiler, and even the
hardware. Instead, we focus on the core of the checker, which is based on the resolu-

4 SHRUTI in Sanskrit symbolizes ‘knowledge’ from a spoken word. In our case the outcome of
our verified proof checker provides the knowledge about the correctness of a SAT solver and
is therefore called SHRUTI.

tion inference rule [18], and formally prove its design correct. We then rely on Coq’s
program extraction mechanism and some simple glue code as trusted components to
build the entire checker. This way we are able to combine a high degree of assurance
(much the same way as Amjad and Weber did) with high performance: as we will show
in Section4, SHRUTI is significantly (up to 32 times) faster than Amjad’s checker
implemented in HOL 4.

2 Propositional Satisfiability

2.1 Satisfiability Solving

Given a propositional formula, the goal of satisfiability solving is to determine whether
there is an assignment of the Boolean truth values (i.e., true and false) to the variables
in the formula such that the formula evaluates to true. If such an assignment exists,
the given formula is said to besatisfiableor SAT, otherwise the formula is said to
beunsatisfiableor UNSAT. Many problems of practical interest in system verification
involve proving unsatisfiability, for example bounded model checking [5].

For efficiency purposes, SAT solvers represent the propositional formulas in con-
junctive normal form (CNF), where the entire formula is a conjunction ofclauses. Each
clause itself denotes a disjunction ofliterals, which are simply (Boolean) variables or
negated variables. An efficient CNF representation uses non-zero integers to represent
literals. A positive literal is represented by a positive integer, whilst a negated one is
denoted by a negative integer. Zeroes serve as clause delimiters. As an example, the
(unsatisfiable) formula(a∨ b)∧ (¬a∨ b)∧ (a∨¬b)∧ (¬a∨¬b) over two propositional
variablesa andb is thus represented in the widely used DIMACS notation as follows:

1 2 0 -1 2 0 1 -2 0 -1 -2 0

SAT solvers take a Boolean formula, and produce a SAT/UNSAT claim. Aproof-
generatingSAT solver produces additional evidence (also calledcertificates) to support
its claims. For a SAT claim, the certificate is simply an assignment, i.e., an enumeration
of Boolean variables that need to be set to true in the input problem. It is trivial to check
whether that assignment—and thus the original SAT claim—is correct: we simply sub-
stitute the Boolean values given by the assignment in the formula and then evaluate the
overall formula, checking that it indeed is true. For UNSAT claims, the solvers return a
resolutionproof traceas certificate which is more complicated to check.

2.2 Proof Checking

When a solver claims a given problem is UNSAT and returns a proof trace as certificate,
we can independently re-play the trace to check that its claim is correct: if we can follow
the resolution inferences given in the trace to derive an empty clause, then we know that
the problem is indeed UNSAT, and can conclude that the claim is correct.

A proof trace consists of the subset of the original input clauses used during reso-
lution and the intermediate resolvents obtained by resolving the input clauses. The part
of the proof trace that specifies how the input clauses have been resolved in sequence
to derive a conflict (i.e., the empty clause) is organized aschains. These chains are also

called regular input resolution proofs, or trivial proofs [2,4]. We call the input clauses
in a chain itsantecedentsand its final resolvent simply itsresolvent.

A key correctness constraint for the proof traces (and thus for the proof checker) is
that whenever a pair of clauses is used for resolution,at mostone complementary pair of
literals is deleted, i.e., that the chains represent well-formed trivial resolution proofs [4].
Otherwise, we might erroneously “certify” an UNSAT claim for the satisfiable problem
(a ∨ ¬b) ∧ (¬a ∨ b) by “resolving” over both complementary pairs of literals at once,
to derive the empty clause. For efficiency reasons the chains are assumed to be ordered
in such a way that we need to resolve only adjacent clauses, and, in particular, thatat
leastone pair of complementary literals is deleted in each step. This allows us to avoid
searching for the right clauses during checking, and to design a linear-time (in the size
of the input clauses) algorithm.

2.3 PicoSAT Proof Representation

Most proof-generating SAT solvers [4,9,29] preserve the two criteria given above. We
decided to work with PicoSAT [4] for three reasons. First, PicoSAT is efficient: it ranked
as one of the best solvers in the industrial category of the SAT Competitions 2007 and
2009, and in the SAT Race 2008. Second, PicoSAT’s proof representation is simple and
records only the essential information. For example, it does not contain information
about the pivot literals over which it resolves. Third, the representation is inASCII
format, which makes it easier to read and process than the more compact binary formats
used by other solvers such as Minisat. Together the last two points help us simplify the
design of SHRUTI and minimize the size of the trusted components outside the formal
development.

A PicoSAT proof trace consists of rows representing the input clauses, followed by
rows encoding the proof chains. Each row representing a chain consists of an asterisk
(*) as place-holder for the chain’s resolvent, followed by the identifiers of the clauses
involved in the chain. Each chain row thus contains at least two clause identifiers, and
denotes an application of one or more of the resolution inference rule, describing a triv-
ial resolution derivation. Each row also starts with a non-zero positive integer denoting
the identifier for that row’s (input or resolvent) clause, and ends with a zero as delimiter.
For the UNSAT formula shown in the previous section, the corresponding proof trace
generated from PicoSAT looks as follows:

1 1 2 0 5 * 3 1 0
2 -1 2 0 6 * 4 2 5 0
3 1 -2 0
4 -1 -2 0

Rows 1 to 4 denote the input clauses from the original problem that are used in the
resolution, with their identifiers referring to the original clause numbering, whereas
rows 5 and 6 represent the proof chains. For example, in row 6 first the original clauses
4 and 2 are resolved and then the resulting clause is resolved against the resolvent from
the previous chain, in total using two resolution steps.

By default, PicoSAT creates a compacted form of proof traces, where the antecedents
for the derived clauses are not ordered properly within the chain. This means that there

SAT solver
- Industrial Strength
- Large & Complex
- Un-trusted (ad-hoc)
- Proof Generating

Certified SAT Checker

- Standalone Executable
- Small & Clear
- Trusted (formal)
- Proof Checking

cnf proof

cnf
Yes/
Don’t Know/
Error

Sat/Unsat

Comparator

SHRUTI

Sat/Unsat

Fig. 1: SHRUTI’s high-Level architecture

are instances in the chain where we “resolve” a pair of adjacent clauses but no lit-
eral is deleted. In this case we cannot deduce an existence of an empty clause for this
trace unless we re-order the antecedents in the chain. However, PicoSAT comes with
an uncertified proof checker called Tracecheck that can not only check the outcome of
PicoSAT but also corrects this mis-ordering of traces. The outcome of Tracecheck is
an extended proof trace and this then becomes the input to SHRUTI, i.e., we consider
the combination of PicoSAT and Tracecheck as the solver to be checked. Hence, we
can detect errors both in PicoSAT and Tracecheck’s re-ordering algorithm, but do not
distinguish them.

Similarly, it is possible to integrate other SAT solvers into SHRUTI, even if their
proof traces use a different format, by developing a proof translator. This is usually
straightforward [25]. As a proof of concept, we developed a translator from zChaff’s
proof format to PicoSAT’s proof format. We again consider the combination of the core
solver (i.e., zChaff), post-processor (i.e., the proof translator) and Tracecheck (used for
extending the proof trace) as the system to be checked.

3 The SHRUTI System

3.1 High-level Architecture

SHRUTI consists of a formally certified proof checker and a simple comparator that de-
cides whether the solver’s claim was correct. It takes as input a CNF file which contains
the original problem description and a certificate (i.e., an assignment for a SAT claim or
a resolution proof trace for an UNSAT claim). The checker evaluates the certificate and
checks whether the two together denote a matching pair of SAT/UNSAT problem and
solution. If this is the case, SHRUTI will accept the claim and output “yes”, otherwise
it will reject the claim and output “don’t know”. Note that the latter response does not
imply that the solver’s original claim is wrong—the problem may well be satisfiable or
unsatisfiable as claimed. It only indicates that the given evidence (i.e., the assignment
or the proof trace) is insufficient to corroborate the claim of the solver (i.e., the assign-
ment does not evaluate to true, or the proof trace is not correct). This can happen due to
mis-alignment of chains in the resolution proof as explained in Sect2.3, or because the
proof trace is not well-formed.

The crucial cases are where the problem is satisfiable (resp. unsatisfiable) but the
solver claims the opposite, and produces a well-formed certificate for this wrong claim.
SHRUTI contains a legitimacy check to prevent it from accepting forged certificates: it
outputs “error” if it detects that the certificate is not legitimate, i.e., refers to variables
(for a SAT claim) or clauses (for an UNSAT claim) that do not exist in the input prob-
lem. Hence, the only possibility under which SHRUTI would certify a wrong claim is if
itself contained an error, but (accepting our characterization of the resolution function
as correct) this is ruled out by our formal development. A high-level architectural view
of our approach is shown in Figure1.

We designed, formalized, and verified checkers for both satisfiability and unsat-
isfiability claims. In this paper, we focus on the more interesting aspect of checking
unsatisfiability claims; satisfiability claims are significantly easier to check. The core
component of the unsatisfiability checker is the development of the binary resolution
inference rule inside the Coq proof assistant [3]. We show that the resolvent of a given
pair of clauses is logically entailed by the two clauses (see Sect.3.3), and that our im-
plementation has the properties of the resolution inference rule [18,19] (see Sect.3.4).
In addition, we show that it maintains well-formedness of the clauses (see Sect.3.5).

Once the formalization and proofs are complete, OCaml code is extracted from the
development through the extraction API included in Coq. The extracted OCaml code
expects its input in data structures such as tables and lists. These data structures are built
by some glue code that also handles file I/O and pre-processes the proof traces (e.g.,
removes the zeroes used as separators for the clauses). Together with the comparator,
the glue code is wrapped around the extracted checker and the result is then compiled
to a native machine code executable that can be run independently of Coq.

letcheckUnsat(cnf , trace) = let (clauses, chains) = split trace in
if checkLegal(clauses, cnf)
then let res = resolve(clauses, chains) in

if (res = []) then print “yes”
else print “don ′t know”

else print “error”

The top-level functioncheckUnsat first splits the given trace into its constituent
input clauses and the proof chains. It then checks whether the clauses used in the reso-
lution proof are legitimate, i.e., whether all clauses used in the resolution proof trace are
contained in the original problem CNF, or are derived by applying the resolution infer-
ence rule on legitimate clauses. Note that this checks only which clauses are used, not
whether the result of an inference is correct. If the certificate is legitimate, thenresolve,
which is a wrapper around the formally verified binary resolution function, is used to
derive the empty clause by re-playing the proof steps in the chains.

3.2 Formalization of Resolution in Coq

Coq is based on the Calculus of Inductive Constructions [7,8] and encapsulates the con-
cepts of typed higher-order logic. It uses the notion of proofs as types, and allows con-
structive proofs and use of dependent types. It has been successfully used in the design
and implementation of large scale certification of software such as in the CompCert [12]

project. Our formal development in Coq follows the LCF style [22]; in particular, we
only use definitional extensions, i.e., new theorems can only be derived by applying
previously derived inference rules. We never use axiomatic extensions, which would
allow us to assume the existence of a theorem without a proof, and thus invalidate the
correctness guarantees of the extracted code.

In this section we present the formalization of SHRUTI in Coq. Its core logic is
formalized as a shallow [1,17] embedding in Coq. In a shallow embedding we identify
the object data types (i.e., the types used for SHRUTI) with the types of the meta-
language (i.e., the Coq datatypes). Thus, inside Coq, we denote literals by integers, and
clauses by lists of integers. Antecedents (denoting the input clauses) in a proof chain
are represented by integers and a proof chain itself by a list of integers. We then define
our resolution function to work directly on this integer-based representation.

The choice of a shallow embedding and the use of the integer-based representation
were conscious design decisions, which make the internal data representation concep-
tually identical to the external problem representation. Consequently, our parsing func-
tions can remain simple (and efficient), which minimizes the size of the trusted comput-
ing base. This is also a difference to Amjad’s approach where external C++ functions
were used for parsing and translating the integers into Booleans [27].

The main data structures that we used in the Coq formalization are lists and finite
maps. The maps are used to represent resolution proofs internally. Their keys are the row
identifiers obtained from the proof trace file. Their values are the actual clauses obtained
by resolving the clauses specified in the proof trace—note that these are not part of the
traces but must be reconstructed. When the trace is read, the identifier corresponding
to the first proof chain becomes the starting point for checking. Once the resolvent is
calculated for this, the process is repeated for all remaining chain rows, until we reach
the end of the trace. If the entry for the last row is the empty clause, we conclude that
the given problem and its trace represent an UNSAT instance.

We use the usual notation for quantifiers and logical connectives but distinguish
implication over propositions (⊃) and over types (→) for presentation clarity, though
they are the same inside Coq. The notation⇒ is used during pattern matching (using
match− with) as in other functional languages. For type annotation we use:, the set
of integers is denoted byZ, polymorphic lists bylist and list of integers bylist Z. The
empty list is denoted bynil , and for the cons operation we use::. List membership
is represented by∈ and its negation by/∈. The functionabs computes the absolute
value of an integer. We use the keywordDefinition to present our function definitions
implemented in Coq but uselet to define a function implemented directly in OCaml.

We define our resolution function (./) with the help of two auxiliary functions
union andauxunion. Both functions expect the input clauses to respect three well-
formedness criteria: there should be no duplicates in the clauses (NoDup); there should
be no complementary pair of literalswithin any clause (NoCompPair), and the clauses
should be sorted by absolute value (Sorted). The first two assumptions are essentially
the constraints imposed on input clauses when the resolution function is applied in
practice. Sorting is enforced by us to keep our algorithm efficient. The predicateWf
encapsulates these properties.

Definition Wf c = NoCompPair c ∧ NoDup c ∧ Sorted c

Bothunion andauxunion use an accumulator to merge two clauses represented as
sorted (by absolute value) integer lists, but differ in their behavior for complementary
literals.union computes the resolvent by pointwise comparison of the literals. When it
encounters a complementary pair of literals itremovesboth the complementary literals
and callsauxunion to process the remainder of the lists. Whenauxunion encounters a
complementary pair of literals it simplycopiesboth the literals into the accumulator and
recurses. Ideally, the proof traces contain only one pair of complementary literals for
any pair of clauses that are resolved. However in reality, a solver or its proof trace can
have bugs and it can create instances of clauses in the trace with multiple complemen-
tary pair of literals in a pair of clauses. Hence, we employ the two auxiliary functions to
ensure that the resolution function deals with this in a sound way. Both functions also
implement factoring, i.e., if they find the same literal in both clauses, only one copy is
kept in the accumulator. Both functions also keep the accumulator sorted, which can be
done by simply reversing, since all elements are in descending order.

Definition c1 ./ c2 = union c1 c2 nil

Definition union (c1 c2 : list Z)(acc : list Z) = match c1 , c2 with
| nil , c2 ⇒ app (rev acc) c2
| c1 ,nil ⇒ app (rev acc) c1
| x :: xs, y :: ys ⇒ if (x + y = 0) then auxunion xs ys acc

else if (abs x < abs y) then union xs (y :: ys)(x :: acc)
else if (abs y < abs x) then union (x :: xs) ys (y :: acc)
else union xs ys (x :: acc)

end

Definition auxunion (c1 c2 : list Z)(acc : list Z) = match c1 , c2 with
| nil , c2 ⇒ app (rev acc) c2
| c1 ,nil ⇒ app (rev acc) c1
| x :: xs, y :: ys ⇒ if (abs x < abs y) then auxunion xs (y :: ys) (x :: acc)

else if (abs y < abs x) then auxunion (x :: xs) ys (y :: acc)
else if x=y then auxunion xs ys (x :: acc)
else auxunion xs ys (x :: y :: acc)

end

3.3 Logical Characterization of the Resolution Function

The implementation of the checker is based on the operational characterization of the
resolution inference rule, and in the next section, we will prove it correct with respect to
this. However, we can also use the logical characterization of resolution, and prove the
checker sound with respect to this. We need to prove that the resolvent of a given pair
of clauses is logically entailed by the two clauses. Thus at an appropriate meta-level
(since clauses are lists of non-zero integers, not Booleans), we need to prove a theorem
of the following form∀c1 c2 c3 · ({c1, c2} `./ c3) =⇒ {c1, c2} |= c3.

Here,{c1, c2} `./ c3 denotes thatc3 is derivable fromc1 andc2 using the resolu-
tion function./, and|= denotes logical entailment. We can use the deduction theorem
∀a b c · {a, b} |= c ≡ (a ∧ b =⇒ c) and the fact that{c1, c2} `./ c3 is equivalent

to c1 ./ c2 = c3 to re-state this as∀c1 c2 · (c1 ∧ c2) =⇒ (c1 ./ c2) which we prove
its contrapositive form,∀c1c2 · ¬(c1 ./ c2) =⇒ ¬(c1 ∧ c2)

In order to actually do this proof, we need to lift the interpretation of clauses and
CNF from the level of the integer-based representation to the logical level. We thus
define two evaluation functionsEvalClause andEvalCNF that map an interpretation
functionI of typeZ → Bool over the underlying lists.

Definition EvalClause nil I = False
EvalClause (x :: xs) I = I x ∨ (EvalClause xs I)

Definition EvalCNF nil I = True
EvalCNF (x :: xs) I = (EvalClause x I) ∧ (EvalCNF xs I)

Definition Logical I = ∀(x : Z) · I(−x) = ¬(I x)

The interpretation function must be logical in the sense that it maps the negation on
the representation level to the negation on the logical level. With this, we can now state
the soundness theorem that we proved.

Theorem 1. (Soundness theorem)
∀c1c2 · ∀ I · Logical I ⊃ ¬(EvalClause (c1 ./ c2) I) ⊃ ¬(EvalCNF [c1, c2] I)

Proof.The proof proceeds by structural induction onc1 andc2. The first three sub-goals
are easily proven by term rewriting and simplification by unfolding the definitions of
./, EvalClause andEvalCNF . The last sub-goal is proven by doing a case split on if-
then-else and then using a combination of induction hypothesis and generating conflict
among some of the assumptions. A detailed transcription of the Coq proof is available
from http://www.darbari.org/ashish/research/shruti/. ut

The soundness proof provides an explicit argument that the resolution function
“does the right thing.” This is different from Amjad and Weber’s approach, who im-
plemented their checker to work on the Bool representation of literals inside HOL and
therefore relied on the implicit assurance obtained from using the inference rules of the
HOL logic. They provide no explicit proof that their encoding is correct and soundness
was never explicitly proven.

3.4 Correctness of the Resolution Function

In this section we prove that our implementation of the resolution function is oper-
ationally correct i.e., has the properties expected of the resolution function [18,19].
These properties can also be seen as steps towards a completeness proof, however, this
is outside the scope of this paper. These are:
1. A pair of complementary literals is deleted in the resolvent obtained from resolving

a given pair of clauses (Theorem2).
2. All non-complementary pair of literals that are unequal are retained in the resolvent

(Theorem3).
3. For a given pair of clauses, if there are no duplicate literals within each clause, then

for a literal that exists in both the clauses of the pair, only one copy of the literal is
retained in the resolvent (Theorem4).

For Theorem2 to ensure that only a single pair of complementary literals is deleted
we need to assume that there is a unique complementary pair (UniqueCompPair). The
theorem will not hold in this form for the case with multiple complementary pairs.

Theorem 2. A pair of complementary literals is deleted.
∀c1 c2 · Wf c1 ⊃ Wf c2 ⊃ UniqueCompPair c1 c2 ⊃

∀`1 `2 · (`1 ∈ c1) ⊃ (`2 ∈ c2) ⊃ (`1 + `2 = 0) ⊃
(`1 /∈ (c1 ./ c2)) ∧ (`2 /∈ (c1 ./ c2))

In the following theorem,NoCompLit ` c asserts that the clausec contains no literal
that is complementary to the given literal`.

Theorem 3. All non-complementary, unequal literals are retained.
∀c1 c2 · Wf c1 ⊃ Wf c2 ⊃

∀`1 `2 · (`1 ∈ c1) ⊃ (`2 ∈ c2) ⊃
(NoCompLit `1 c2) ⊃ (NoCompLit `2 c1) ⊃
(`1 6= `2) ⊃ (`1 ∈ (c1 ./ c2)) ∧ (`2 ∈ (c1 ./ c2))

Our last correctness theorem is about factoring. We show that for equal literals in a
given pair of clauses only one is copied in the resolvent.

Theorem 4. Only one copy of equal literals is retained (factoring).

∀c1 c2 · Wf c1 ⊃ Wf c2 ⊃
∀`1 `2 · (`1 ∈ c1) ⊃ (`2 ∈ c2) ⊃ (`1 = `2) ⊃

((`1 ∈ (c1 ./ c2)) ∧ (count `1 (c1 ./ c2) = 1))

3.5 Preservation of Well-Formedness

Our implementation of the resolution function works correctly if the input clauses are
well-formed. This implies that we prove that when we use the resolution function on a
pair of well-formed clauses where there is only a single pair of literals to be resolved,
we guarantee that the resolvent will be well-formed. This is shown in theorem below.

Theorem 5. The resolvent of a pair of well-formed clauses is well-formed as well.

∀c1 c2 · Wf c1 ⊃ Wf c2 ⊃ UniqueCompPair c1 c2 ⊃ Wf (c1 ./ c2)

Note that we assume the existence of a unique complementary pair of literals between
the clausesc1 andc2 because the well-formedness only matters when the resolution
function is applied on well-formed proof traces (i.e., one complementary pair of literals
between any pair of clauses resolved).

3.6 Glue Code and Program Extraction

For the complete checker, we need to wrap a couple of auxiliary functions in Coq around
the resolution function. These includefindAndResolve which starts the checking pro-
cess by first obtaining the clause identifiers from the proof trace file, and then invoking
findClause to collect all the clauses for each row in the proof part of the proof trace

file. A function calledcheckResolution recursively calls the functionfindAndResolve
to apply the resolution function./ on each proof chain.

The top-level function in OCamlcheckUnsat shown in Sect.3.1relies on the func-
tion resolve. This function (implemented in OCaml) first computes the number of proof
steps from the chains (by counting the number of lines with an ‘*’), and then obtains
the chains themselves and stores them in a table. This table is passed as an argument
together with the number of proof steps and an empty table (to store resolvents) to the
functioncheckResolution which calculates the resolvents for each step. Once the resol-
vent is obtained for the last row, its value is queried from the updated resolvent table and
the value is returned as the final resolvent. These functions are implemented in OCaml
directly because they handle file I/O, a feature not possible to implement inside Coq.
An important observation is that the design of these OCaml functions though trivial is
still necessary for using the core of the checker which is proven correct inside Coq.

We extract the OCaml code using the built-in extraction API in Coq. By default
the extracted code would be implemented in terms of Coq datatypes. But this causes
the implementation to be very inefficient at run time. A well-known technique [3] is
to replace the Coq datatypes with equivalent OCaml datatypes. This is easily done by
providing a mapping (between types) as an option when we do extraction. An important
consequence of extraction is that only some datatypes, and data structures get mapped to
OCaml’s; the key logical functionality is unmodified. The decision for making changes
in data types and data structures is a standard procedure used in any large-scale Coq
related work such as the CompCert project [12]. For optimization purposes we thus
made the following replacements:
1. Coq Booleans by OCaml Booleans.
2. Coq integers (Z) by OCamlint .
3. Coq lists by OCaml lists.
4. Coq finite map by OCaml’s finite map.
5. The combination ofapp andrev on lists in the functionunion, andauxunion was

replaced by the tail-recursive List.revappend in OCaml.
Replacing Coq’sZ with OCaml integers gave a performance boost by a factor of 7-10.
The largest integer (literal) we can denote depends on the choice of a 32-bit or a 64-
bit OCaml int . The current mapping is done on a 32-bit signed integer; if SHRUTI
encounters an integer greater than±2 billion (approx) it aborts with an error message.
Making minor adjustments by replacing the Coq finite maps by OCaml ones and using
tail recursive functions gave a further 20% improvement.

The Coq formalization consists of eight main function definitions amounting to 114
lines (not counting blank lines and comments), and the proofs of five main theorems
shown in the paper and four more that are about maps (not shown here due to space
limitations). The entire proof development is organized in several modules and is built
interactively using the primitive inference rules of higher-order logic. The extracted
code in OCaml is approximately 320 lines and the glue code implemented in OCaml
is nearly 200 lines, including comments and print statements. The size of the extracted
code is slightly larger than the original development in Coq because the Coq extractor
produces code related to the libraries (integer, lists, and finite maps) used in our defini-
tions. However, the actual size of the extracted code is not significant since it has been

Table 1: Comparison of our results with HOL 4 and Tracecheck.

No. Benchmark HOL 4 SHRUTI Tracecheck
Resolutions Timeinf/secResolutions Time inf/s Time inf/s

1. een-tip-uns-numsv-t5.B 89136 4.61 19335 122816 0.86142809 0.36341155
2. een-pico-prop01-75 205807 5.70 36106 246430 1.67147562 0.48513395
3. een-pico-prop05-50 1804983 58.41 30901 2804173 20.76135075 8.11345767
4. hoons-vbmc-lucky7 3460518 59.65 58013 4359478 35.1812391912.95336639
5. ibm-2002-26r-k45 1448 24.76 58 1105 0.004276250 0.04 27625
6. ibm-2004-26-k25 1020 11.78 86 1132 0.004283000 0.04 28300
7. ibm-2004-3 02 1-k95 69454 5.03 13807 114794 0.71161681 0.35327982
8. ibm-2004-6 02 3-k100 111415 7.04 15825 126873 0.90140970 0.40317182
9. ibm-2002-07r-k100 141501 2.82 50177 255159 1.62157505 0.54472516

10. ibm-2004-1 11-k25 534002 13.88 38472 255544 1.77144375 0.75340725
11. ibm-2004-2 14-k45 988995 31.16 31739 701430 5.42129415 1.85379151
12. ibm-2004-2 02 1-k100 1589429 24.17 65760 1009393 7.42136036 3.02334236
13. ibm-2004-3 11-k60 z? z? - 13982558133.0510509259.27235912
14. manol-pipe-g6bi 82890 2.12 39099 245222 1.59154227 0.50490444
15. manol-pipe-c9nidws 700084 26.79 26132 265931 1.81146923 0.54492464
16. manol-pipe-c10ids 36682 11.23 3266 395897 2.60152268 0.82482801
17. manol-pipe-c10nidws z? z? - 458042 3.06149686 1.21381701
18. manol-pipe-g7nidw 325509 8.82 36905 788790 5.40146072 1.98398378
19. manol-pipe-c9 198446 3.15 62998 863749 6.29137320 2.50345499
20. manol-pipe-f6bi 104401 5.07 20591 1058871 7.89134204 2.97356522
21. manol-pipe-c7bi 806583 13.76 58617 4666001 38.0312269215.54300257
22. manol-pipe-c7b 824716 14.31 57632 4901713 42.3111585218.00272317
23. manol-pipe-g10id 775605 23.21 33416 6092862 50.8211989121.08289035
24. manol-pipe-g10b 2719959 52.90 51416 7827637 64.6912100226.85291532
25. manol-pipe-f7idw 956072 35.17 27184 7665865 68.1411250130.74249377
26. manol-pipe-g10bidw 4107275125.8232644 14776611134.9210952168.13216888

produced automatically using the extraction utility in Coq, which we believe to be cor-
rect much in the same way as we believe that the OCaml compiler and the underlying
hardware are both correct.

4 Experimental Results

We evaluated SHRUTI on a set of industrial benchmarks from the SAT Races of 2006
and 2008 and the SAT Competition of 2007, and compared it to the Amjad and Weber’s
checkers that run inside the provers [28], and to the uncertified checker Tracecheck. We
present our results on a sample of the SAT Race Benchmarks in Table1. The results for
SHRUTI shown in the table are for validating proof traces obtained from the PicoSAT
solver. Our experiments were carried out on a server running Red Hat on a dual-core 3
GHz, Intel Xeon CPU with 28GB memory. Times shown for all the three checkers in
the table are the total times including time spent on actual resolution checking, file I/O
and garbage collection.

The HOL 4 and Isabelle checkers [28] were also evaluated on the SAT Race Bench-
marks. The Isabelle-based version reported segmentation faults on most of the prob-

lems [27], but results for the HOL 4 implementation are summarized along with ours
in Table1. The symbol z? denotes that the underlying zChaff solver timed out after
an hour. Since we were unable to get the HOL 4 implementation working on our sys-
tem, it was run on a (comparable) AMD dual-core 3.2 GHz processor running Ubuntu
with 4GB of memory. Amjad reported that the version of the checker he has used on
these benchmarks is much faster than the one published in [28]. Since Amjad’s work is
based on proof traces obtained from ZVerify, the uncertified checker for zChaff, the ac-
tual proof traces checked by the HOL 4 implementation differ substantially from those
checked by SHRUTI. We thus compare the speed in terms of resolution steps (i.e., in-
ferences) checked per second, and observe that SHRUTI is 1.5 to 32 times faster than
HOL 4. In addition, as a proof of concept we also validated the proof traces from zChaff
by translating them to PicoSAT’s trace format. The performance of SHRUTI in terms
of inferences per second on the translated proof traces (from zChaff to PicoSAT) was
similar to the performance of SHRUTI when it checked PicoSAT’s traces obtained di-
rectly from the PicoSAT solver—something that is to be expected. We also compare
our timings with that obtained from the uncertified checker Tracecheck; here, SHRUTI
is about 2.5 times slower, on exactly the same proof traces.

We noticed that OCaml’s native code compilation produces efficient binaries but the
default settings for automatic garbage collection were not useful, and for large proof
traces it ended up consuming (and thereby delaying the overall computation) as much
as 60% of the total time. By increasing the initial size of major heap and making the
garbage collection less eager, we reduced the computation times of our checker by
almost an order of magnitude on proof traces with over one million inferences.

5 Related Work
Recent work on checking the result of SAT solvers can be traced to the work of Zhang
and Malik [29] and Goldberg and Novikov [10], with additional insights provided in
recent work [2,25]. The work closest to ours is that by Amjad and Weber, which we
have already discussed throughout the paper. Bulwahn et al. [6] also have advocated
the use of a checker, and experimented with the idea of reflective theorem proving
in Isabelle, suggesting that it can be used for designing a SAT checker. However, no
performance results were given. Shankar [23] proposed an approach generally based on
a verified SAT solver, for checking a variety of checkers.

Marić [14], presented a formalization in Isabelle of SAT solving algorithms that
are used in modern day SAT solvers. An important difference is that while we have
formalized a SAT checker andextractedan executable code from the formalization
itself, Marić formalizes a SAT solver (at the abstract level of state machines) and then
implements the verified algorithm in the SAT solveroff-line.

An alternative line of work involves the formal development of SAT solvers. Les-
cuyer and Conchon [13] have formalized a simplified SAT solver in Coq and extracted
an executable. However, they have not formalized several of the key techniques used
in modern SAT solvers, and have not reported performance results on any industrial
benchmarks. The work of of Smith and Westfold [24] involves the formal synthesis of a
SAT solver from a high level description. Albeit ambitious, this work does not include
the most effective techniques used in modern SAT solvers.

There has also been interest in the area of certifying SMT solvers. M. Moskal re-
cently provided an efficient certification technique for SMT solvers [15] using term-
rewriting systems. The soundness of the proof checker is guaranteed through a formal-
ization using inference rules provided in a term-rewriting formalism.

6 Conclusion

In this paper we presented a methodology for performing efficient yet formally certified
SAT solving. The key feature of our approach is that we can combine a formally de-
signed and verified proof checker with industrial-strength SAT solvers such as PicoSAT
and zChaff to achieve industrial-strength certified SAT solving. We used the Coq proof-
assistant for the formal development, but relied on its program extraction mechanism
to obtain an OCaml program which was used as a standalone executable to check the
outcome of the solvers. Any proof generating SAT solver that supports the PicoSAT’s
proof format can be plugged directly into our checker; different formats require only a
simple proof translation step.

On the one hand, our checker provides much higher assurance compared to uncerti-
fied checkers such as Tracecheck and on the other it enhances usability and performance
over certified checkers implemented inside provers such as HOL 4 and Isabelle. In this
regard our approach provides an arguably optimal middle ground between the two ex-
tremes. We believe that such verified result checkers can be developed for other problem
classes as well, and that this is a viable approach to verified software development. We
are investigating on optimizing the overall performance of our checker even further so
that the slight difference to uncertified checkers can be further minimized. We are also
investigating checking SMT proofs.

Acknowledgements. We thank H. Herbelin, Y. Bertot, P. Letouzey, and other people on the
Coq mailing list who helped us with Coq questions. J. Harrison gave useful suggestions on the
soundness proof. We also thank T. Weber and H. Amjad for answering our questions on their work
and also carrying out industrial benchmark evaluation on their checker. This work was partially
funded by EPSRC Grant EP/E012973/1, and EU Grants ICT/217069 and IST/033709.

References

1. C. M. Angelo, L. Claesen, and H. De Man. Degrees of formality in shallow embedding
hardware description languages in HOL. InProc. 6th Intl. Workshop Higher Order Logic
Theorem Proving and its Applications, LNCS780, pp. 89–100. Springer, 1994.

2. P. Beame, H. A. Kautz, and A. Sabharwal. Towards understanding and harnessing the poten-
tial of clause learning.J. Artif. Intell. Res., 22:319–351, 2004.

3. Y. Bertot and P. Castéran. Interactive theorem proving and program development. Coq’Art:
The calculus of inductive constructions, 2004.

4. A. Biere. PicoSAT essentials.J. Satisfiability, Boolean Modeling and Computation, 4:75–97,
2008.

5. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model Checking, in
Advances in Computers, Academic Press, 2003.

6. L. Bulwahn, A. Krauss, F. Haftmann, L. Erkök, and J. Matthews. Imperative functional
programming with Isabelle/HOL. InProc. 21st Intl. Conf. Theorem Proving in Higher Order
Logic, LNCS5170, pp. 134–149. Springer, 2008.

7. T. Coquand and G. Huet. The Calculus of Constructions.Inf. Comput., 76(2-3):95–120,
1988.

8. T. Coquand and C. Paulin. Inductively defined types. InProc. Intl. Conf. Computer Logic
(COLOG-88), LNCS417, pp. 50–66. Springer, 1990.

9. N. Een and N. Sorensson. An extensible sat-solver. InProc. 6th Intl. Conf. Theory and
Applications of Satisfiability Testing, LNCS2919, pp. 502–518. Springer, 2003.

10. E. I. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF formulas.
In Proc. Design, Automation and Test in Europe, pp. 10886–10891. IEEE, 2003.

11. J. Hammarberg and S. Nadjm-Tehrani. Formal verification of fault tolerance in safety-critical
reconfigurable modules.J. Software Tools for Technology Transfer, 7(3):268–279, 2005.

12. X. Leroy and S. Blazy. Formal Verification of a C-like Memory Model and its uses for
Verifying Program Transformations.J. Automated Reasoning, 41(1):1–31, 2008.

13. S. Lescuyer and S. Conchon. A reflexive formalization of a SAT solver in Coq. InProc.
Emerging Trends of TPHOLs, 2008.

14. F. Marić. Formalization and implementation of modern SAT solvers.J. Automated Reason-
ing, 43(1):81–119, 2009.

15. M. Moskal. Rocket-fast proof checking for SMT solvers. InProc. Tools and Algorithms for
the Construction and Analysis of Systems, LNCS4963, pp. 486–500. Springer, 2008.

16. M. Penicka. Formal approach to railway applications. InFormal Methods and Hybrid Real-
Time Systems, LNCS4700, pp. 504–520. Springer, 2007.

17. R. Boulton, A. Gordon, M.J.C. Gordon, J. Herbert, and J. van Tassel. Experience with em-
bedding hardware description languages in HOL. InProc. of the International Conference on
Theorem Provers in Circuit Design: Theory, Practice and Experience, pp. 129–156. North-
Holland, 1992.

18. J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.J. ACM,
12(1):23–41, 1965.

19. S. J. Russell and P. Norvig.Artificial Intelligence: A Modern Approach (Second Edition).
Prentice Hall, 2003.

20. SAT 2007 Competition.http://www.cril.univ-artois.fr/SAT07/results/
globalbysolver.php?idev=11&det=1 .

21. SAT 2007 Competition - Phase 2. http://users.soe.ucsc.edu/~avg/
ProofChecker/cert-poster-sat07.pdf .

22. D. S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY.Theor. Comput. Sci.,
121(1-2):411–440, 1993.

23. N. Shankar. Trust and Automation in Verification Tools. InProc. 6th Intl. Symposium
Automated Technology for Verification and Analysis, LNCS5311, pp. 4–17. Springer, 2008.

24. D. R. Smith and S. J. Westfold. Synthesis of propositional satisfiability solvers. Technical
report, Kestrel Institute, April 2008.

25. A. Van Gelder. Verifying propositional unsatisfiability: Pitfalls to avoid. InProc. 10th Intl.
Conf. Theory and Applications of Satisfiability Testing, LNCS4501, pp. 328–333. Springer,
2003.

26. T. Weber. Efficiently checking propositional resolution proofs in Isabelle/HOL.6th Intl.
Workshop Implementation of Logics, Phnom Penh 2006.

27. T. Weber and H. Amjad. Private communication.
28. T. Weber and H. Amjad. Efficiently checking propositional refutations in HOL theorem

provers.J. Applied Logic, 7(1):26–40, 2009.
29. L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based

checker: Practical implementations and other applications. InProc. Design, Automation
and Test in Europe, pp. 10880–10885. IEEE, 2003.

http://www.cril.univ-artois.fr/SAT07/results/globalbysolver.php?idev=11&det=1
http://www.cril.univ-artois.fr/SAT07/results/globalbysolver.php?idev=11&det=1
http://users.soe.ucsc.edu/~avg/ProofChecker/cert-poster-sat07.pdf
http://users.soe.ucsc.edu/~avg/ProofChecker/cert-poster-sat07.pdf

	Industrial-Strength Certified SAT Solving through Verified SAT Proof Checking
	Ashish Darbari and Bernd Fischer and Joao Marques-Silva

