
Experiments with ATP Integration in a Software

Engineering Appli
ation

Thomas Baar

1

, Bernd Fis
her

2

, and Dirk Fu
hs

3

1

Inst. f. Mathematik, HU Berlin

baar�mathematik.hu-berlin.de

2

Abt. Softwarete
hnologie, TU Brauns
hweig

fis
h�ips.
s.tu-bs.de

3

Fa
hberei
h Informatik, U Kaiserslautern

dfu
hs�informatik.uni-kl.de

Abstra
t. We des
ribe a
ombination of the NORA/HAMMR software

omponent retrieval tool and the ILF system whi
h provides the ne
es-

sary infrastru
ture to apply di�erent �rst-order theorem provers to the

emerging proof problems. This framework allows the
ooperation of inde-

pendent dedu
tive subsystems in two di�erent modes. Our results show

that both modes|
ompetition between problem variants or provers and

proper
ooperation following the TECHS approa
h|improve the su

ess

rate
onsiderably.

1 Introdu
tion

In this paper, we report on work in the NORA/HAMMR-proje
t to integrate and

ombine di�erent ATPs for a spe
i�
 software engineering appli
ation, dedu
tion-

based software
omponent retrieval. In a nutshell (
f. [FSS98℄ for a more detailed

a

ount), dedu
tive retrieval uses formal spe
i�
ations as indexes and queries,

builds proof tasks from these, and
he
ks the validity of the tasks using an ATP.

A
omponent is retrieved if the prover su

eeds on the asso
iated task|retrieval

be
omes a dedu
tive problem.

As earlier experien
e shows, no ATP yields a

eptable results if the proof

problems are translated na��vely from the appli
ation logi
s (given by a formal

spe
i�
ation framework) into its input language. Thus, NORA/HAMMR provides

several me
hanisms to
ontrol this transformation pro
ess and to simplify the

proof tasks. Here, we investigate the question whether one of the possible (se-

manti
 equivalent) forms of a proof task is the best one for ATPs.

Experien
e also shows that the proof-times of ATPs are notoriously diÆ
ult

to predi
t and may vary erati
ally for \similar" problems. Moreover, the di�erent

ATPs deliver their best results on di�erent subsets of the emerging proof tasks

whi
h makes it hard to pi
k the \right" prover. In NORA/HAMMR, we turn

this diÆ
ulty into an advantage and use the ATPs in
ompetition to improve

the overall results of retrieval. Further improvement
an then be a
hieved by a

proper
ooperation of ATPs. However, both approa
hes require a
ompli
ated

infrastru
ture (e.g., for s
heduling, information ex
hange, and
ontrol) whi
h is

not be provided by NORA/HAMMR. Instead, we use the ILF tool [DGHW97℄

whi
h was spe
i�
ally developed for su
h tasks.

2 Experimental Settings

Dedu
tion-based
omponent retrieval [MW95,PBA95,MMM97,FSS98℄ exploits

semanti
 information to lo
ate software
omponents, e.g., PASCAL-pro
edures,

in a library. The
omponents are des
ribed exa
tly by
ontra
ts|formal spe
i-

�
ations of their pre- and post
onditions. Queries are spe
i�ed in the same way.

A query q is implemented by a
andidate
 if the following theorem holds:

(pre

q

) pre

) ^ (pre

q

^ post

) post

q

)

As we have argued in [FSS98℄,
ontra
ts should not be formulated in pure

FOL but in a ri
her \
ustom logi
s", e.g., VDM-SL. A �rst integration step re-

moves these
ustom
onstru
ts, e.g., let-expressions or pattern mat
hing. In

NORA/HAMMR, this is done via LPF (Logi
 of Partial Fun
tions) as inter-

mediate layer. A se
ond integration step translates the three-valued LPF into

FOL, using a standard algorithm [JM94℄. However, utmost
are must be taken

to
ontrol the size of the resulting formulas.

Sin
e none of the ATPs we apply is a proper indu
tive prover, this step also

approximates indu
tively de�ned sorts (e.g., lists). It en
odes the free generation

property by additional �rst-order axioms, i.e., it en
odes (i) the
onstru
tor

property of the
onstru
tor fun
tions (i.e. that terms with di�erent top-level

onstru
tors are never equal), (ii) the surje
tivity of the
onstru
tors wrt. to

the data type domain (i.e. that the top-level fun
tion symbol of ea
h element

in the domain is one of the
onstru
tor fun
tions), and (iii) the freeness or

inje
tivity of the
onstru
tor fun
tions (i.e. if two terms with the same top-

level
onstru
tor are equal then their respe
tive arguments are equal, too.) For

example, in the usual theory of lists whi
h is freely generated by nil and
ons,

the three properties give rise to the following axioms (i) 8i : item ; l : list � nil 6=

ons(i; l), (ii) 8l : list � l = nil _ 9i : item ; m : list � l =
ons(i;m), and (iii)

8i; j : item; l;m : list �
ons(i; l) =
ons(j;m)) i = j ^ l = m. Obviously, the

indu
tion s
heme whi
h follows from a data type de�nition
annot be en
oded

by �rst-order axioms. However, the spe
ial nature of our proof tasks allows the

powerful heuristi
 to use the formal parameter(s) of
andidate
omponent as

indu
tion variable(s) and to instantiate the indu
tion s
heme appropriately.

Sin
e the proof tasks are automati
ally generated, they often
ontain un-

ne
essary
onstru
ts and thus allow rigorous simpli�
ation. In NORA/HAMMR,

we use rewrite-based simpli�
ations whi
h eliminate propositional
onstants,

rewrite into
onjun
tive normal form and then further into anti-prenex form to

minimize the quanti�er s
opes. Some of the rules are domain spe
i�
, e.g., a

lemma memNil indu
es a rule mem(x;nil) ; false . The
onstru
tor properties

as inje
tivity and surje
tivity indu
e other rules like 9x : List � x = t ; true.

If it is possible to rewrite a proof task to true (false), simpli�
ation
an within

NORA/HAMMR also be regarded as a
on�rmation (reje
tion) �lter.

In our experiments, the simpli�ed tasks were proved in a theory over lists

whi
h is organized in several subtheories introdu
ing axioms and/or lemmas. The

large number of usable formulas
ontained in su
h a theory database requires

a redu
tion me
hanism whi
h sele
ts only those whi
h are ne
essary to �nd a

proof at all or are likely to shorten it and omits all those whi
h only in
rease

the sear
h spa
e.

In NORA/HAMMR, we use signature-based heuristi
s similar to that of Reif

and S
hellhorn [RS98℄. Their basi
 assumption is that rules are redundant if they

ontain no symbols whi
h o

ur in the problem, or more pre
isely, if they are

de�ned in redundant theories. A theory is redundant if it introdu
es only symbols

not o

urring in the problem and is not referred (dire
tly or indire
tly) by other

non-redundant theories. NORA/HAMMR implements this sele
tion me
hanism

and provides two sele
tion strategies: (i) sele
t only axioms, (ii) sele
t all axioms

and lemmas from non-redundant theories.

3 Competition Experiments

With
ompetition we denote that the ATPs work in parallel on basi
ally the

same problem but do not ex
hange information. We
an distinguish two di�erent

ompetition modes whi
h work along independent dimensions:

{ variant
ompetition: multiple identi
al instan
es of a single prover work on

di�erent task formulations of a problem.

{ system
ompetition: di�erent provers or di�erent instan
es of a prover (e.g.,

using di�erent strategies or
ontrol parameters) work on the same proof task.

In NORA/HAMMR, we have experimented with both
ompetition modes. For

these experiments, we used a library
omprising 119 spe
i�
ations of list pro
ess-

ing fun
tions and
ross-mat
hed ea
h spe
i�
ation against the entire library. This

yielded 14161 proof tasks where 1839 or 13.0% were valid.

3.1 Variant
ompetition using SPASS

The theory database used in the experiments
omprises 65 theories, in whi
h

24 di�erent fun
tion and predi
ate symbols are axiomatized. The axiomatization

onsists of 38
ore axioms and approximately 100 additional lemmas whi
h are

(�rst-order or indu
tive)
onsequen
es of the axioms.

The di�erent axiom sele
tion me
hanisms give rise to quite di�erent sear
h

spa
es. To exploit these, we used the te
hniques des
ribed above and generated

di�erent axiom sets for ea
h problem where
ore and lemmas denote the se-

le
tion of axioms only and axioms and lemmas from non-redundant theories,

respe
tively, while the full set
ontains the entire theory database (
f. Table 1).

We then used the SPASS [WGR96℄ prover to solve the three sets of proof

tasks. Table 1 shows the results for di�erent timeouts.

1

As expe
ted, the smaller

1

All results were obtained using SPASS V0.80 on a 200MHz PentiumPC with 64MB

running Linux.

T

max

(se
s.)
ore lemmas full
omp
l
omp
f
omp lf
omp all

1 1089 969 933 1128 1124 973 1129

10 1200 1201 1190 1284 1299 1243 1321

30 1236 1235 1280 1329 1379 1317 1390

60 1250 1258 1321 1346 1413 1356 1420

Table 1. Results of variant
ompetition experiments

sear
h spa
es indu
ed by the
ore sele
tion me
hanism lead to a signi�
antly

(approx. 15%) higher number of fast proofs whi
h is espe
ially important for

our appli
ation. Surprisingly, however, and in
ontrast to the observations of

[RS98℄, none of the heuristi
s pays in the long run: for timeouts greater than

10 se
s., SPASS was able to solve more problems when redundant axioms and

lemmas were added. We
onje
ture that some of them des
ribe properties of, e.g.,

the hd - and tl -fun
tions whi
h indire
tly also apply to, e.g., the append -fun
tion

but are not expli
itly formulated as lemmas for append.

However, these problems do not invalidate the entire sele
tion me
hanism: as

expe
ted,
ompetition between the di�erent variants signi�
antly in
reases the

number of proofs found. The bene�ts vary with the timeout and the sele
ted

variants and rea
h a maximum of 12.5%
ompared to the best single variant

and an overall in
rease of 7.5% for a timeout of 60 se
s. and full
ompetition

between all variants. For timeouts shorter than 20 se
s. we
an even observe a

\superlinear" in
rease. E.g., for a timeout of 10 se
s.,
ompetition between all

three variants solves 3.2% more problems than the best variant with a timeout

of 30 se
s. At the same time, the total elapsed runtime drops by approx. 6%.

3.2 System
ompetition
ontrolled by ILF

Within NORA/HAMMR the ILF-system
an be used as a shell for ATPs. ILF

laun
hes several ATPs on di�erent ma
hines of a lo
al network at the same time.

The experiments for system
ompetition are based on a representative subset

of the original library. We sele
ted 24
omponents; in the resulting 576 tasks, the

prepro
essing methods integrated in NORA/HAMMR identi�ed 23 provable and

336 unprovable tasks, whi
h
an be simpli�ed to true and false, respe
tively.

For the remaining 217 tasks, the provers OTTER, SPASS, and SETHEO were

started, ea
h with a timeout of 120 se
s. For SPASS and SETHEO we used dif-

ferent type-en
oding te
hniques provided by ILF. Su
h te
hniques are needed to

transform formulas from sorted logi
 into an unsorted logi
.

Table 2
ontains the results; SPASS

te

and SETHEO

te

denote variants were

a simple term-en
oding te
hnique was used (this was also used for OTTER),

SPASS

rel

denotes a variant with standard predi
ate relativization te
hnique,

and SETHEO

sub

a more
ompli
ated term-en
oding te
hnique where the type-

subtype relation is
oded by a term-instan
e relation on the
odeterms for types.

Ea
h prover (variant) is
ompared with the every other one. For instan
e, the

OTTER SETHEO

sub

SETHEO

te

SPASS

rel

SPASS

te

omp

OTTER 46 25 14 4 12 {

SETHEO

sub

3 24 6 1 3 {

SETHEO

te

9 23 41 3 6 {

SPASS

rel

21 40 25 63 17 {

SPASS

te

13 26 12 1 47 {

omp { { { { { 70

Table 2. Results for provable tasks within ILF

�rst row shows that OTTER solved 46 proof tasks, and of these 25
ould not be

solved by SETHEO

sub

, 14 not by SETHEO

te

, 4 not by SPASS

rel

, and 12 not by

SPASS

te

. If all provers are run
ompetetively, a total of 70 tasks
an be solved,

i.e.,
ompared to the results of the best ATP, the re
all rate
an be in
reased

signi�
antly by 11%. As a further remarkable point, we observe that no prover

variant is "subsumed" by another variant. Even for SPASS whi
h has built-in

support for sorts, the term en
oding yields an additional proof.

However, in order to show formally for every
ase, whether the query mat
hes

or not, the remaining 147 tasks have to be shown unprovable. We thus started

all provers on the negated goals and obtained even better results as in the \aÆr-

mative"
ase{
ompetition
an solve 56% more tasks than the best single system.

OTTER SETHEO

sub

SETHEO

te

SPASS

rel

SPASS

te

omp

OTTER 41 31 27 16 24 {

SETHEO

sub

7 17 7 9 12 {

SETHEO

te

13 17 27 12 14 {

SPASS

rel

14 31 24 39 14 {

SPASS

te

9 21 13 1 26 {

omp { { { { { 64

Table 3. Results for unprovable tasks within ILF

4 Cooperation Experiments

The ILF system allows|as already mentioned|for a proper
ooperation of dif-

ferent theorem provers by using the TECHS approa
h [FD97,DF98℄.

TECHS requires several di�erent provers running in parallel on di�erent
om-

puting nodes. All provers ta
kle the same proof problem (whi
h is given to the

provers in an initialization phase) independently during working phases. The

general idea of the TECHS approa
h is to a
hieve
ooperation between these

provers by periodi
ally inter
hanging sele
ted
lauses in
ooperation phases. The

sele
tion of
lauses is performed by so-
alled send- and re
eive-referees . These

referees allow for a su

ess-driven and demand-driven ex
hange of
lauses be-

tween di�erent provers. Note that a team based on the TECHS approa
h
an

easily be integrated into the ILF system. It is only ne
essary that ILF laun
hes

the provers and gives them information on the proof problem and their
ooper-

ation partners. After that, the provers
an
ooperate independently of ILF.

For our experimental study regarding
ooperative provers we restri
ted our-

selves so far to the provers SPASS and SETHEO. More exa
tly, we even restri
ted

the dire
tion of the information ex
hange and allowed only SPASS to give some

lauses to SETHEO. Indeed, SETHEO is able to produ
e lemmas whi
h
an be

given to SPASS. However, sin
e these lemmas are|due to instantiations needed

to
lose tableau bran
hes not needed for deriving the lemmas|not as general

as they
ould be. Hen
e, they usually
annot be used in
ontra
ting inferen
es

whi
h are the most important inferen
es of a saturation-based prover like SPASS

(w.r.t. performan
e) and do not entail mu
h gain. Thus, our
ooperating team

onsists of the prover SPASS whi
h essentially works as sequentially and one or

more instan
es of SETHEO (see below) whi
h pro
ess the lemmas from SPASS.

Cooperative runs were performed as follows. In ea
h initialization phase both

provers obtained as initial
lause set the results of SPASS' normal form translator

FLOTTER. Sin
e SETHEO is not able to utilize built-ins for equality the usual

equality axioms were added to its
lause set. Note that|when using SETHEO

in ILF|it usually obtains
lauses from a di�erent normal form translator. It

turned out, however, that for
ooperation purposes the use of identi
al normal

forms is unavoidable. If the provers work on di�erent kinds of normal forms (in-

luding di�erent signatures due to di�erent Skolemization pro
edures) SETHEO

is in general not able to
lose many tableau bran
hes with the help of SPASS

lemmas be
ause uni�
ation failures arise immediately. It is to be emphasized

that SETHEO's performan
e (when working alone) was not weakened when em-

ploying the FLOTTER normal form.

In the working phases we let the provers work with following options. SPASS

employed its standard setting. However, we did not allow SPASS to use its split-

ting rule. This rule realizes some kind of
ase analysis entailing that the prover

has to work with semanti
ally invalid
lauses during the proof run. This is no

problem for SPASS sin
e it manages the dependen
ies between di�erent sub-

problems. But su
h
lauses
annot be given to SETHEO. Be
ause of the fa
t

that in our experiments SPASS very often used the splitting rule and hen
e did

only produ
e very few valid (unit)
lauses whi
h
ould be given to SETHEO,

we did not use the splitting rule. Note that for our test set the performan
e of

SPASS was identi
al regardless whether or not it used splitting. For SETHEO

we
hose options whi
h were automati
ally generated as des
ribed in [MIL

+

97℄.

Spe
i�
ally, the weighted-depth bound [MIL

+

97℄ was automati
ally
hosen. We

experimented additionally with the depth bound ([LMG94℄).

In a
ooperation phase at most 35 units were transferred to an instan
e of

SETHEO. Experiments with non-unit
lauses did not lead to better results. We

employed a �xed setting for the referee parameters (see [FD97℄).

We performed our �rst experimental studies in the light of the same problems

as in Se
tion 3.2. All in all, we ta
kled 81 provable problems. Results
an be

found in Table 4. Results of SPASS, SETHEO using the weighted depth bound

(SETHEO wd), and SETHEO using the depth bound (SETHEO d) are displayed

in
olumns 2{4. Columns 5{7 present results of our
ooperating system. Columns

5 and 6 display runtimes of a 2-prover team
onsisting of SPASS and SETHEO

using the weighted depth (
oop wd) and the depth bound (
oop d), respe
tively.

Column 7 shows the results of a 3-prover team
onsisting of SPASS, SETHEO

using the weighted depth bound, and SETHEO using the depth bound (
oop all).

Finally,
olumn 8 gives the results of an analogous
ompetitive 3-prover team.

solved SPASS SETHEO wd SETHEO d
oop wd
oop d
oop all
omp

� 10 37 39 37 49 48 50 48

� 30 47 39 40 57 56 58 54

� 60 48 45 40 57 57 58 55

� 120 50 48 40 60 58 61 56

Table 4. Experiments with
ooperating theorem provers

Table 4 reveals the high potential of
ooperation. The number of solved

problems
ould be in
reased, additionally the runtimes
ould be de
reased. It is

to be expe
ted that the results
an further be improved. Firstly, [Fu98℄ shows

a way of how to extra
t information from SETHEO whi
h might improve the

performan
e of SPASS. Se
ondly, in
reasing the team of
ooperating provers,

e.g. by additionally using DISCOUNT, may lead to a further gain of eÆ
ien
y.

5 Con
lusions

In this paper, we reported on the pra
ti
al advantages we gained from the inte-

gration of several dedu
tive methods into NORA/HAMMR.

It turns out that reasonable simpli�
ation during the task generation is ne
es-

sary in order to get a

eptable results. Furthermore the
omplexity of the usable

theory requires a sele
tion of axioms. Proper theorem sele
tion is a generally

problem in automated dedu
tion, in our experiments the best results for SPASS

an be a
hieved by a
ompetitive run of
ore- and full- sele
tion strategy. Even

greater is the advantage of ATP-
ompetition
ompared with ea
h single prover.

Here we have an improvement till 56% for some kinds of proof tasks.

Not only the
ombination of ATPs in a
ompetitive way, also the proper

ooperation of ATPs
an in
rease the su

ess rate in some
ases.

Referen
es

[BS98℄ W. Bibel and P. H. S
hmitt, (eds.). Automated Dedu
tion - A Basis for Appli-

ations. Kluwer, Dordre
ht, 1998. To Appear.

[DF98℄ J. Denzinger and D. Fu
hs. Enhan
ing
onventional sear
h systems with multi-

agent te
hniques: a
ase study. In Pro
. Int. Conf. on Multi Agent Systems (ICMAS)

98, Paris, Fran
e, 1998. To Appear.

[DGHW97℄ B. I. Dahn, J. Gehne, Th. Honigmann, A. Wolf. "Integration of Automated

and Intera
tive Theorem Proving in Ilf\. In Pro
. CADE-14, LNAI 1249, pp. 57-60,

Springer, 1997.

[FD97℄ D. Fu
hs and J. Denzinger. Knowledge-based
ooperation between theorem

provers by TECHS. Te
hni
al Report SR-97-11, U. Kaiserslautern, 1997.

[Fu98℄ D. Fu
hs. Cooperation between Top-Down and Bottom-Up Theorem Provers

by Subgoal Clause Transfer. In Pro
. 4th Int. Conf. on Arti�
ial Intelligen
e and

Symboli
 Computation (AISC), Plattsburgh, NY, USA, 1998. To Appear.

[FSS98℄ B. Fis
her, J. M. P. S
humann, and G. Snelting. "Dedu
tion-Based Software

Component Retrieval". In Bibel and S
hmitt [BS98℄. To Appear.

Pro
. Aspen

Pro
.

[JM94℄ C. B. Jones and K. Middelburg. "A Typed Logi
 of Partial Fun
tions Re
on-

stru
ted Classi
ally". A
ta Informati
a, 31(5):399{430, 1994.

[LMG94℄ R. Letz, K. Mayr, and C. Goller. Controlled Integration of the Cut Rule into

Conne
tion Tableau Cal
uli. J. Automated Reasoning, 13:297{337, 1994.

Constru
ting

1988.

formal

[MIL

+

97℄ M. Moser, O. Ibens, R. Letz, J. Steinba
h, C. Goller, J. S
humann, and

K. Mayr. The Model Elimination Provers SETHEO and E-SETHEO. J. Automated

Reasoning, 18:237{246, 1997.

[MMM97℄ A. Mili, R. Mili, and R. Mittermeir. "Storing and Retrieving Software

Components: A Re�nement-Based System". IEEE Trans. Software Engineering,

SE-23(7):445{460, 1997.

[MW95℄ A. Moorman Zaremski and J. M. Wing. "Spe
i�
ation Mat
hing of Soft-

ware Components". In Pro
. 3rd ACM SIGSOFT Symp. Foundations of Software

Engineering, pp. 6{17, Washington, O
t. 1995. ACM Press.

Comp.

[PBA95℄ J. Penix, P. Baraona, and P. Alexander. "Classi�
ation and Retrieval of

Reusable Components Using Semanti
 Features". In Pro
. 10th Knowledge-Based

Software Engineering Conf., pp. 131{138, Boston, Nov. 1995. IEEE Comp. So
. Press.

1991.

[RS98℄ W. Reif and G. S
hellhorn. "Theorem Proving in Large Theories". In Bibel

and S
hmitt [BS98℄. To Appear.

Retrieval

Arti�
al

[WGR96℄ C. Weidenba
h, B. Gaede and G. Ro
k. "Spass and Flotter version 0.42".

In Pro
. CADE-13, LNAI 1104, pp. 57-60, Springer, 1996.

