Experiments with ATP Integration in a Software
Engineering Application

Thomas Baar', Bernd Fischer?, and Dirk Fuchs®

! Tnst. f. Mathematik, HU Berlin
baar@mathematik.hu-berlin.de
2 Abt. Softwaretechnologie, TU Braunschweig
fischQips.cs.tu-bs.de
3 Fachbereich Informatik, U Kaiserslautern
dfuchs@informatik.uni-kl.de

Abstract. We describe a combination of the NORA/HAMMR software
component retrieval tool and the ILF system which provides the neces-
sary infrastructure to apply different first-order theorem provers to the
emerging proof problems. This framework allows the cooperation of inde-
pendent deductive subsystems in two different modes. Our results show
that both modes—competition between problem variants or provers and
proper cooperation following the TECHS approach—improve the success
rate considerably.

1 Introduction

In this paper, we report on work in the NORA/HAMMR-project to integrate and
combine different ATPs for a specific software engineering application, deduction-
based software component retrieval. In a nutshell (cf. [FSS98] for a more detailed
account), deductive retrieval uses formal specifications as indexes and queries,
builds proof tasks from these, and checks the validity of the tasks using an ATP.
A component is retrieved if the prover succeeds on the associated task—retrieval
becomes a deductive problem.

As earlier experience shows, no ATP yields acceptable results if the proof
problems are translated naively from the application logics (given by a formal
specification framework) into its input language. Thus, NORA/HAMMR provides
several mechanisms to control this transformation process and to simplify the
proof tasks. Here, we investigate the question whether one of the possible (se-
mantic equivalent) forms of a proof task is the best one for ATPs.

Experience also shows that the proof-times of ATPs are notoriously difficult
to predict and may vary eratically for “similar” problems. Moreover, the different
ATPs deliver their best results on different subsets of the emerging proof tasks
which makes it hard to pick the “right” prover. In NORA/HAMMR, we turn
this difficulty into an advantage and use the ATPs in competition to improve
the overall results of retrieval. Further improvement can then be achieved by a
proper cooperation of ATPs. However, both approaches require a complicated
infrastructure (e.g., for scheduling, information exchange, and control) which is

not be provided by NORA/HAMMR. Instead, we use the ILF tool [DGHW97]
which was specifically developed for such tasks.

2 Experimental Settings

Deduction-based component retrieval [MW95,PBA95 MMM97,FSS98] exploits
semantic information to locate software components, e.g., PASCAL-procedures,
in a library. The components are described exactly by contracts—formal speci-
fications of their pre- and postconditions. Queries are specified in the same way.
A query ¢ is implemented by a candidate ¢ if the following theorem holds:

(pre, = pre.) A (pre, A post. = post,)

As we have argued in [FSS98], contracts should not be formulated in pure
FOL but in a richer “custom logics”, e.g., VDM-SL. A first integration step re-
moves these custom constructs, e.g., let-expressions or pattern matching. In
NORA/HAMMR, this is done via LPF (Logic of Partial Functions) as inter-
mediate layer. A second integration step translates the three-valued LPF into
FOL, using a standard algorithm [JM94]. However, utmost care must be taken
to control the size of the resulting formulas.

Since none of the ATPs we apply is a proper inductive prover, this step also
approximates inductively defined sorts (e.g., lists). It encodes the free generation
property by additional first-order axioms, i.e., it encodes (4) the constructor
property of the constructor functions (i.e. that terms with different top-level
constructors are never equal), (i) the surjectivity of the constructors wrt. to
the data type domain (i.e. that the top-level function symbol of each element
in the domain is one of the constructor functions), and (i) the freeness or
injectivity of the constructor functions (i.e. if two terms with the same top-
level constructor are equal then their respective arguments are equal, too.) For
example, in the usual theory of lists which is freely generated by nil and cons,
the three properties give rise to the following axioms (%) Vi : item, [: list - nil #
cons(i,l), (i) Yl : list -1 = nil v i : item, m : list -1 = cons(i,m), and (ii7)
Vi, j :item, I, m : list - cons(i,l) = cons(j,m) = i = j Al = m. Obviously, the
induction scheme which follows from a data type definition cannot be encoded
by first-order axioms. However, the special nature of our proof tasks allows the
powerful heuristic to use the formal parameter(s) of candidate component as
induction variable(s) and to instantiate the induction scheme appropriately.

Since the proof tasks are automatically generated, they often contain un-
necessary constructs and thus allow rigorous simplification. In NORA/HAMMR,
we use rewrite-based simplifications which eliminate propositional constants,
rewrite into conjunctive normal form and then further into anti-prenex form to
minimize the quantifier scopes. Some of the rules are domain specific, e.g., a
lemma memNil induces a rule mem(z, nil) ~ false. The constructor properties
as injectivity and surjectivity induce other rules like Jx : List - x = t ~ true.
If it is possible to rewrite a proof task to true (false), simplification can within
NORA/HAMMR also be regarded as a confirmation (rejection) filter.

In our experiments, the simplified tasks were proved in a theory over lists
which is organized in several subtheories introducing axioms and/or lemmas. The
large number of usable formulas contained in such a theory database requires
a reduction mechanism which selects only those which are necessary to find a
proof at all or are likely to shorten it and omits all those which only increase
the search space.

In NORA/HAMMR, we use signature-based heuristics similar to that of Reif
and Schellhorn [RS98]. Their basic assumption is that rules are redundant if they
contain no symbols which occur in the problem, or more precisely, if they are
defined in redundant theories. A theory is redundant if it introduces only symbols
not occurring in the problem and is not referred (directly or indirectly) by other
non-redundant theories. NORA/HAMMR implements this selection mechanism
and provides two selection strategies: (i) select only axioms, (#7) select all axioms
and lemmas from non-redundant theories.

3 Competition Experiments

With competition we denote that the ATPs work in parallel on basically the
same problem but do not exchange information. We can distinguish two different
competition modes which work along independent dimensions:

— variant competition: multiple identical instances of a single prover work on
different task formulations of a problem.

— system competition: different provers or different instances of a prover (e.g.,
using different strategies or control parameters) work on the same proof task.

In NORA/HAMMR, we have experimented with both competition modes. For
these experiments, we used a library comprising 119 specifications of list process-
ing functions and cross-matched each specification against the entire library. This
yielded 14161 proof tasks where 1839 or 13.0% were valid.

3.1 Variant competition using SPASS

The theory database used in the experiments comprises 65 theories, in which
24 different function and predicate symbols are axiomatized. The axiomatization
consists of 38 core axioms and approximately 100 additional lemmas which are
(first-order or inductive) consequences of the axioms.

The different axiom selection mechanisms give rise to quite different search
spaces. To exploit these, we used the techniques described above and generated
different axiom sets for each problem where core and lemmas denote the se-
lection of axioms only and axioms and lemmas from non-redundant theories,
respectively, while the full set contains the entire theory database (cf. Table 1).

We then used the SPASS [WGR96] prover to solve the three sets of proof
tasks. Table 1 shows the results for different timeouts.! As expected, the smaller

L All results were obtained using SPASS V0.80 on a 200MHz PentiumPC with 64MB

running Linux.

|Tmax (secs.)| core |lemmas| full |comp cl|comp cf|comp lf|comp all|

11 1089 | 969 933 | 1128 1124 973 1129
10| 1200 | 1201 | 1190 | 1284 1299 | 1243 1321
30| 1236 | 1235 | 1280 | 1329 1379 | 1317 1390
60| 1250 | 1258 | 1321 | 1346 1413 | 1356 1420

Table 1. Results of variant competition experiments

search spaces induced by the core selection mechanism lead to a significantly
(approx. 15%) higher number of fast proofs which is especially important for
our application. Surprisingly, however, and in contrast to the observations of
[RS98], none of the heuristics pays in the long run: for timeouts greater than
10 secs., SPASS was able to solve more problems when redundant axioms and
lemmas were added. We conjecture that some of them describe properties of, e.g.,
the hd- and tl-functions which indirectly also apply to, e.g., the append-function
but are not explicitly formulated as lemmas for append.

However, these problems do not invalidate the entire selection mechanism: as
expected, competition between the different variants significantly increases the
number of proofs found. The benefits vary with the timeout and the selected
variants and reach a maximum of 12.5% compared to the best single variant
and an overall increase of 7.5% for a timeout of 60 secs. and full competition
between all variants. For timeouts shorter than 20 secs. we can even observe a
“superlinear” increase. E.g., for a timeout of 10 secs., competition between all
three variants solves 3.2% more problems than the best variant with a timeout
of 30 secs. At the same time, the total elapsed runtime drops by approx. 6%.

3.2 System competition controlled by ILF

Within NORA/HAMMR the ILF-system can be used as a shell for ATPs. ILF
launches several ATPs on different machines of a local network at the same time.

The experiments for system competition are based on a representative subset
of the original library. We selected 24 components; in the resulting 576 tasks, the
preprocessing methods integrated in NORA/HAMMR identified 23 provable and
336 unprovable tasks, which can be simplified to true and false, respectively.

For the remaining 217 tasks, the provers OTTER, SPASS, and SETHEO were
started, each with a timeout of 120 secs. For SPASS and SETHEO we used dif-
ferent type-encoding techniques provided by ILF. Such techniques are needed to
transform formulas from sorted logic into an unsorted logic.

Table 2 contains the results; SPASS;, and SETHEO¢, denote variants were
a simple term-encoding technique was used (this was also used for OTTER),
SPASS,. denotes a variant with standard predicate relativization technique,
and SETHEOg,}, a more complicated term-encoding technique where the type-
subtype relation is coded by a term-instance relation on the codeterms for types.
Each prover (variant) is compared with the every other one. For instance, the

‘OTTER‘SETHEO

sub |SETHEO o |SPASS, 1 |SPASS;e|comp|
OTTER 46 25 14 4 2 | -
SETHEOg;,| 3 24 6 1 3 -
SETHEO¢, | 9 23 41 3 6 -
SPASS,q 21 40 25 63 17| -
SPASS 13 26 12 1 ar | -
comp - - - - - 70

Table 2. Results for provable tasks within ILF

first row shows that OTTER. solved 46 proof tasks, and of these 25 could not be
solved by SETHEOg},, 14 not by SETHEO4e, 4 not by SPASS.,, and 12 not by
SPASS;e. If all provers are run competetively, a total of 70 tasks can be solved,
i.e., compared to the results of the best ATP, the recall rate can be increased
significantly by 11%. As a further remarkable point, we observe that no prover
variant is ”subsumed” by another variant. Even for SPASS which has built-in
support for sorts, the term encoding yields an additional proof.

However, in order to show formally for every case, whether the query matches
or not, the remaining 147 tasks have to be shown unprovable. We thus started
all provers on the negated goals and obtained even better results as in the “affir-
mative” case-competition can solve 56% more tasks than the best single system.

[OTTER|SETHEO},[SETHEO ¢[SPASS, 41 [SPASS;e |comp]

sub
OTTER 41 31 27 16 24 -
SETHEOg, 7 17 7 9 12 -
SETHEO¢, 13 17 27 12 14 -
SPASS, o) 14 31 24 39 14 -
SPASS;, 9 21 13 1 26 -
comp - - - - - 64

Table 3. Results for unprovable tasks within ILF

4 Cooperation Experiments

The ILF system allows—as already mentioned—for a proper cooperation of dif-
ferent theorem provers by using the TECHS approach [FD97,DF98].

TECHS requires several different provers running in parallel on different com-
puting nodes. All provers tackle the same proof problem (which is given to the

provers in an initialization phase) independently during working phases. The
general idea of the TECHS approach is to achieve cooperation between these
provers by periodically interchanging selected clauses in cooperation phases. The
selection of clauses is performed by so-called send- and receive-referees. These
referees allow for a success-driven and demand-driven exchange of clauses be-
tween different provers. Note that a team based on the TECHS approach can
easily be integrated into the ILF system. It is only necessary that ILF launches
the provers and gives them information on the proof problem and their cooper-
ation partners. After that, the provers can cooperate independently of ILF.

For our experimental study regarding cooperative provers we restricted our-
selves so far to the provers SPASS and SETHEO. More exactly, we even restricted
the direction of the information exchange and allowed only SPASS to give some
clauses to SETHEO. Indeed, SETHEO is able to produce lemmas which can be
given to SPASS. However, since these lemmas are—due to instantiations needed
to close tableau branches not needed for deriving the lemmas—mnot as general
as they could be. Hence, they usually cannot be used in contracting inferences
which are the most important inferences of a saturation-based prover like SPASS
(w.r.t. performance) and do not entail much gain. Thus, our cooperating team
consists of the prover SPASS which essentially works as sequentially and one or
more instances of SETHEO (see below) which process the lemmas from SPASS.

Cooperative runs were performed as follows. In each initialization phase both
provers obtained as initial clause set the results of SPASS’ normal form translator
FLOTTER. Since SETHEO is not able to utilize built-ins for equality the usual
equality axioms were added to its clause set. Note that—when using SETHEO
in ILF—it usually obtains clauses from a different normal form translator. It
turned out, however, that for cooperation purposes the use of identical normal
forms is unavoidable. If the provers work on different kinds of normal forms (in-
cluding different signatures due to different Skolemization procedures) SETHEO
is in general not able to close many tableau branches with the help of SPASS
lemmas because unification failures arise immediately. It is to be emphasized
that SETHEO’s performance (when working alone) was not weakened when em-
ploying the FLOTTER normal form.

In the working phases we let the provers work with following options. SPASS
employed its standard setting. However, we did not allow SPASS to use its split-
ting rule. This rule realizes some kind of case analysis entailing that the prover
has to work with semantically invalid clauses during the proof run. This is no
problem for SPASS since it manages the dependencies between different sub-
problems. But such clauses cannot be given to SETHEO. Because of the fact
that in our experiments SPASS very often used the splitting rule and hence did
only produce very few valid (unit) clauses which could be given to SETHEO,
we did not use the splitting rule. Note that for our test set the performance of
SPASS was identical regardless whether or not it used splitting. For SETHEO
we chose options which were automatically generated as described in [MILT97].
Specifically, the weighted-depth bound [MILT97] was automatically chosen. We
experimented additionally with the depth bound ([LMG94]).

In a cooperation phase at most 35 units were transferred to an instance of
SETHEO. Experiments with non-unit clauses did not lead to better results. We
employed a fixed setting for the referee parameters (see [FD97]).

We performed our first experimental studies in the light of the same problems
as in Section 3.2. All in all, we tackled 81 provable problems. Results can be
found in Table 4. Results of SPASS, SETHEO using the weighted depth bound
(SETHEO wd), and SETHEO using the depth bound (SETHEO d) are displayed
in columns 2—4. Columns 5-7 present results of our cooperating system. Columns
5 and 6 display runtimes of a 2-prover team consisting of SPASS and SETHEO
using the weighted depth (coop wd) and the depth bound (coop d), respectively.
Column 7 shows the results of a 3-prover team consisting of SPASS, SETHEO
using the weighted depth bound, and SETHEO using the depth bound (coop all).
Finally, column 8 gives the results of an analogous competitive 3-prover team.

|solved|SPASS|SETHEO wd|SETHEO d|coop wd|coop d|coop all|comp|

<10| 37 39 37 49 48 50 48
< 30| 47 39 40 57 56 58 54
< 60| 48 45 40 57 57 58 55
<120f 50 48 40 60 58 61 56

Table 4. Experiments with cooperating theorem provers

Table 4 reveals the high potential of cooperation. The number of solved
problems could be increased, additionally the runtimes could be decreased. It is
to be expected that the results can further be improved. Firstly, [Fu98] shows
a way of how to extract information from SETHEO which might improve the
performance of SPASS. Secondly, increasing the team of cooperating provers,
e.g. by additionally using DISCOUNT, may lead to a further gain of efficiency.

5 Conclusions

In this paper, we reported on the practical advantages we gained from the inte-
gration of several deductive methods into NORA/HAMMR.

It turns out that reasonable simplification during the task generation is neces-
sary in order to get acceptable results. Furthermore the complexity of the usable
theory requires a selection of axioms. Proper theorem selection is a generally
problem in automated deduction, in our experiments the best results for SPASS
can be achieved by a competitive run of core- and full- selection strategy. Even
greater is the advantage of ATP-competition compared with each single prover.
Here we have an improvement till 56% for some kinds of proof tasks.

Not only the combination of ATPs in a competitive way, also the proper
cooperation of ATPs can increase the success rate in some cases.

References

[BS98] W. Bibel and P. H. Schmitt, (eds.). Automated Deduction - A Basis for Appli-
cations. Kluwer, Dordrecht, 1998. To Appear.

[DF98] J. Denzinger and D. Fuchs. Enhancing conventional search systems with multi-
agent techniques: a case study. In Proc. Int. Conf. on Multi Agent Systems (ICMAS)
98, Paris, France, 1998. To Appear.

[DGHW97] B.I. Dahn, J. Gehne, Th. Honigmann, A. Wolf. ”Integration of Automated
and Interactive Theorem Proving in ILF“. In Proc. CADE-14, LNAI 1249, pp. 57-60,
Springer, 1997.

[FDI97] D. Fuchs and J. Denzinger. Knowledge-based cooperation between theorem
provers by TECHS. Technical Report SR-97-11, U. Kaiserslautern, 1997.

[Fu98] D. Fuchs. Cooperation between Top-Down and Bottom-Up Theorem Provers
by Subgoal Clause Transfer. In Proc. fth Int. Conf. on Artificial Intelligence and
Symbolic Computation (AISC), Plattsburgh, NY, USA, 1998. To Appear.

[FSS98] B. Fischer, J. M. P. Schumann, and G. Snelting. ”Deduction-Based Software
Component Retrieval”. In Bibel and Schmitt [BS98]. To Appear.

Proc. Aspen
Proc.

[TM94] C. B. Jones and K. Middelburg. ”A Typed Logic of Partial Functions Recon-
structed Classically”. Acta Informatica, 31(5):399-430, 1994.

[LMGY94] R. Letz, K. Mayr, and C. Goller. Controlled Integration of the Cut Rule into
Connection Tableau Calculi. J. Automated Reasoning, 13:297-337, 1994.
Constructing
1988.
formal

[MIL*97] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and
K. Mayr. The Model Elimination Provers SETHEO and E-SETHEO. J. Automated
Reasoning, 18:237-246, 1997.

[MMM97] A. Mili, R. Mili, and R. Mittermeir. ”Storing and Retrieving Software
Components: A Refinement-Based System”. IEEE Trans. Software Engineering,
SE-23(7):445-460, 1997.

[MW95] A. Moorman Zaremski and J. M. Wing. ”Specification Matching of Soft-
ware Components”. In Proc. 8rd ACM SIGSOFT Symp. Foundations of Software
Engineering, pp. 6-17, Washington, Oct. 1995. ACM Press.

Comp.

[PBA95] J. Penix, P. Baraona, and P. Alexander. ”Classification and Retrieval of
Reusable Components Using Semantic Features”. In Proc. 10th Knowledge-Based
Software Engineering Conf., pp. 131-138, Boston, Nov. 1995. IEEE Comp. Soc. Press.
1991.

[RS98] W. Reif and G. Schellhorn. ”Theorem Proving in Large Theories”. In Bibel
and Schmitt [BS98]. To Appear.

Retrieval
Artifical

[WGR96] C. Weidenbach, B. Gaede and G. Rock. ”Spass and Flotter version 0.42”.

In Proc. CADE-13, LNAT 1104, pp. 57-60, Springer, 1996.

