
Using Automated Theorem Provers to Certify
Auto-Generated Aerospace Software

Ewen Denney†, Bernd Fischer‡, Johann Schumann‡

†QSS / ‡RIACS, NASA Ames Research Center,
{edenney,fisch,schumann}@email.arc.nasa.gov

Abstract. We describe a system for the automated certification of safety proper-
ties of NASA software. The system uses Hoare-style program verification tech-
nology to generate proof obligations which are then processed by an automated
first-order theorem prover (ATP). For full automation, however, the obligations
must be aggressively preprocessed and simplified. We discuss the unique require-
ments this application places on the ATPs and demonstrate how the individual
simplification stages, which are implemented by rewriting, influence the ability
of the ATPs to solve the proof tasks. Our results are based on 13 certification
experiments that lead to more than 25,000 proof tasks which have each been at-
tempted by Vampire, Spass, and e-setheo.

1 Introduction

Software certification aims to show that the software in question satisfies a certain level
of quality, safety, or security. Its result is a certificate, i.e., independently checkable
evidence of the properties claimed. Certification approaches vary widely, ranging from
code reviews to full formal verification, but the highest degree of confidence is achieved
with approaches that are based on formal methods and use logic and theorem proving
to construct the certificates.

We have developed a certification approach which uses Hoare-style techniques to
demonstrate the safety of aerospace software which has been automatically generated
from high-level specifications. Our core idea is to extend the code generator so that
it simultaneously generates code and detailed annotations, e.g., loop invariants, that
enable a safety proof. A verification condition generator (VCG) processes the annotated
code and produces a set of safety obligations, which are provable if and only if the code
is safe. An automated theorem prover (ATP) then discharges these obligations and the
proofs, which can be verified by an independent proof checker, serve as certificates. This
approach largely decouples code generation and certification and is thus more scalable
than, e.g., verifying the generator or generating code and safety proofs in parallel.

In this paper, we describe and evaluate the application of ATPs to discharge the
emerging safety obligations. This is a crucial aspect of our approach since its practica-
bility hinges on a very high degree of automation. Our first hypothesis is that the current
generation of high-performance ATPs is—in principle—already powerful enough for
practical applications. However, this is still a very demanding area because the num-
ber of obligations is potentially very large and program verification is generally a hard



problem domain for ATPs. Our second hypothesis is thus that the application still needs
to carefully preprocess the proof tasks to make them more tractable for ATPs.

In our case, there are several factors which make a successful ATP application possi-
ble. First, we certify separate aspects of safety and not full functional correctness. This
separation of concerns allows us to show non-trivial properties like matrix symmetry
but results in more tractable obligations. Second, the extensions of the code generator
are specific to the safety properties to be certified and to the algorithms used in the gen-
erated programs. This allows us to fine-tune the annotations which, in turn, also results
in more tractable obligations. Third, we aggressively simplify the obligations before
they are handed over to the prover, taking advantage of domain-specific knowledge.

We have tested our two hypotheses by running five high-performance provers on
seven different versions of the safety obligations resulting from certifying five differ-
ent safety policies for four different programs—in total more than 25,000 obligations
per prover. In Section 2 we give an overview of the system architecture, describing the
safety policies as well as the generation and preprocessing of the proof tasks. In Sec-
tion 3, we outline the experimental set-up used to evaluate the theorem provers over a
range of different preprocessing levels. The detailed results are given in Section 4; they
confirm our hypotheses: the provers are generally able to certify all test programs for
all polices but only after substantial preprocessing of the obligations. Finally, Section 5
draws some conclusions.

Conceptually, this paper continues the work described in [25, 26] but the actual im-
plementation of the certification system has been completely revised and substantially
extended. We have expanded the range of both algorithms and safety properties which
can be certified; in particular, our approach is now fully integrated with the AUTO-
FILTER system [27] as well as with the AUTOBAYES system [9] and the certification
process is now completely automated. We have also implemented a new generic VCG
which can be customized for a given safety policy and which directly processes the
internal code representation instead of Modula-2 as in the previous version. All these
improvements and extensions to the underlying logical framework result in a substan-
tially larger experimental basis than reported before.

Related Work KIV [17, 18] is an interactive verification environment which can use
ATPs but heavily relies on term rewriting and user guidance. Sunrise [11] is a fully
automatic system but uses custom-designed tactics in HOL to discharge the obligations.
Houdini [7] is a similar system. Here the generated proof obligations are discharged by
ESC/Java but again, this relies on a significant amount of user interaction.

2 System Architecture

The certification tool is built as an extension to the AUTOBAYES and AUTOFILTER

program synthesis systems. AUTOBAYES works in the statistical data analysis domain
and generates parameter learning programs while AUTOFILTER generates state estima-
tion code based on variants of the Kalman filter algorithm. The synthesis systems take
as input a high-level problem specification (cf. Section 3.1 for informal examples). The
code that implements the specification is then generated by a schema-based process.
Schemas are generic algorithms which are instantiated in a problem-specific way after



Certification

Analysis

Simplifier

Checker

Proof Certificate

VCG

Theorem

Prover

VCs

Proof

Propagated Code

SVCs

Synthesizer
Annotated Code

Synthesis

policy

Safety

Specification Propagator Code

Fig. 1. Certification system architecture

their applicability conditions are proven to hold for the given problem specification.
Both systems first generate C++-style intermediate code which is then compiled down
into any of the different supported languages and runtime environments. Figure 1 gives
an overview of the overall system architecture.

2.1 Safety Properties and Safety Policies

The certification tool automatically certifies that a program satisfies a given safety prop-
erty, i.e., an operational characterization that the program “does not go wrong”. It uses
a corresponding safety policy, i.e., a set of Hoare-style proof rules and auxiliary defini-
tions which are specifically designed to show that programs satisfy the safety property
of interest. The distinction between safety properties and policies is explored in [2].

We further distinguish between language-specific and domain-specific properties
and policies. Language-specific properties can be expressed in the constructs of the un-
derlying programming language itself (e.g., array accesses), and are sensible for any
given program written in the language. Domain-specific properties typically relate to
high-level concepts outside the language (e.g., matrix multiplication), and must thus be
expressed in terms of program fragments. Since these properties are specific to a partic-
ular application domain, the corresponding policies are not applicable to all programs.

We have defined five different safety properties and implemented the corresponding
safety policies. Array-bounds safety (array) requires each access to an array element
to be within the specified upper and lower bounds of the array. Variable initialization-
before-use (init) asserts that each variable or individual array element has been assigned
a defined value before it is used. Both are typical examples of language-specific prop-
erties. Matrix symmetry (symm) requires certain two-dimensional arrays to be sym-
metric. Sensor input usage (in-use) is a variation of the general init-property which
guarantees that each sensor reading passed as an input to the Kalman filter algorithm
is actually used during the computation of the output estimate. These two examples are
specific to the Kalman filter domain. The final example (norm) ensures that certain one-



safety policy safety condition domain theory
array ∀a[i] ∈ c . alo ≤ i ≤ ahi arithmetic
init ∀ read-var x ∈ c . init(x) propositional
in-use ∀ input-var x ∈ c . use(x) propositional
symm ∀matrix-exp m ∈ c . ∀i, j . m[i, j] = m[j, i] matrices
norm ∀ vector v ∈ c . Σ

size(v)
i=1 v[i] = 1 arithmetic, summations

Table 1. Safety formulas for different policies

dimensional arrays represent normalized vectors, i.e., that their contents add up to one;
it is specific to the data analysis domain.

The safety policies can be expressed in terms of two families of definitions. For each
command the policy defines a safety condition and a substitution, which captures how
the command changes the environmental information relevant to the safety policy. The
rules of the safety policy can then be derived systematically from the standard Hoare
rules of the underlying programming language [2].

From our perspective, the safety conditions are the most interesting aspect since they
have the greatest bearing on the form of the proof obligations. Table 1 summarizes the
different formulas and the domain theories needed to reason about them. Both variable
initialization and usage as well as array bounds certification are logically simple and
rely just on propositional and simple arithmetic reasoning, respectively, but can require
a lot of information to be propagated throughout the program. The symmetry policy
needs reasoning about matrix expressions expressed as a first-order quantification over
all matrix entries. The vector norm policy is formalized in terms of the summation over
entries in a one-dimensional array, and involves symbolic reasoning over finite sums.

2.2 Generating Proof Obligations

For certification purposes, the synthesis system annotates the code with mark-up infor-
mation relevant to the selected safety policy. These annotations are part of the schema
and thus instantiated in parallel with the code fragments. The annotations contain local
information in the form of logical pre- and post-conditions and loop invariants, which
is propagated throughout the code. The fully annotated code is then processed by the
VCG, which applies the rules of the safety policy to the annotated code in order to gen-
erate the safety conditions. As usual, the VCG works backwards through the code. At
each line, safety conditions are generated and the safety substitutions are applied. The
VCG has been designed to be “correct-by-inspection”, i.e., to be sufficiently simple so
that it is straightforward to see that it correctly implements the rules of the logic. Hence,
the VCG does not carry out any simplifications; in particular, it does not actually apply
the substitutions (i.e., execute the specified replacements) but maintains explicit formal
substitution terms. Consequently, the generated verification conditions (VCs) tend to
be large and must be simplified separately; the more manageable simplified verification
conditions (SVCs) which result are then processed by a first order theorem prover. The
resulting proofs can be sent to a proof checker, e.g., Ivy [14]. However, since most ATPs
do not produce explicit proofs—let alone in a standardized format—we will not focus
on proof checking here but concentrate on the simplification and theorem proving steps.



. . . ∀ x, y · 0 ≤ x ≤ 5 ∧ 0 ≤ y ≤ 5 ⇒ sel(id init, x, y) = init

∧ ∀ x, y · 0 ≤ x ≤ 5 ∧ 0 ≤ y ≤ 5 ⇒ sel(tmp1 init, x, y) = init

}

environmental
information

. . . ∀ x, j · 0 ≤ x ≤ i − 1 ∧ 0 ≤ y ≤ 5 ⇒ sel(tmp2 init, x, y) = init

∧ ∀ x, y · 0 ≤ y ≤ 5 ∧ 0 ≤ x ≤ n p − 1 ⇒
(x < i ⇒ sel(tmp2 init, x, y) = init∧
(y < j ∧ x = i ⇒ sel(tmp2 init, x, y) = init)))















invariants

. . . 0 ≤ i ≤ 5 ∧ 0 ≤ j ≤ 5
}

index bounds
⇒ (sel(id init, i, j) = init ∧ sel(tmp1 init, i, j) = init)

}

safety obligation

Fig. 2. Structure of a safety obligation

The structure of a typical safety obligation (after substitution reduction and simpli-
fication) is given in Figure 2. It corresponds to the initialization safety of an assignment
within a nested loop. Most of the hypotheses consist of annotations which have been
propagated through the code and are irrelevant to the line at hand. The proof obligation
also contains the local loop invariants together with bounds on for-loops. Finally, the
conclusion is generated from the safety formula of the corresponding safety policy.

2.3 Processing Proof Obligations and Connecting the Prover

The simplified safety obligations are then exported as a number of individual proof
obligations using TPTP first order logic syntax. A small script then adds the axioms of
the domain theory, before the completed proof task is processed by the theorem prover.
Parts of the domain theory are generated dynamically in order to facilitate reasoning
with (small) integers. The domain theory is described in more detail in Section 3.3.

The connection to a theorem prover is straightforward. For provers that do not ac-
cept the TPTP syntax, the appropriate TPTP2X-converter was used before invoking the
theorem prover. Run-time measurement and prover control (e.g., aborting provers) were
performed with the same TPTP tools as in the CASC competition [22].

3 Experimental Setup

3.1 Program Corpus

As basis for the certification experiments we generated annotated programs from four
different specifications which were written prior to and independently of the exper-
iments. The size of the generated programs ranges from 431 to 1157 lines of com-
mented C-code, including the annotations. Table 2 in Section 4 gives a more detailed
breakdown. The first two examples are AUTOFILTER specifications. ds1 is taken from
the attitude control system of NASA’s Deep Space One mission [27]. iss specifies
a component in a simulation environment for the Space Shuttle docking procedure at
the International Space Station. In both cases, the generated code is based on Kalman
filter algorithms, which make extensive use of matrix operations. The other two exam-
ples are AUTOBAYES specifications which are part of a more comprehensive analysis



of planetary nebula images taken by the Hubble Space Telescope (see [5, 8] for more
details). segm describes an image segmentation problem for which an iterative (nu-
merical) statistical clustering algorithm is synthesized. Finally, gauss fits an image
against a two-dimensional Gaussian curve. This requires a multivariate optimization
which is implemented by the Nelder-Mead simplex method. The code generated for
these two examples has a substantially different structure from the state estimation
examples. First, the numerical optimization code contains many deeply nested loops.
Also, some of the loops are convergence loops which have no fixed upper bounds
but are executed until a dynamically calculated error value gets small enough. In con-
trast, in the Kalman filter code, all loops are executed a fixed (i.e., known at synthesis
time) number of times. Second, the numerical optimization code accesses all arrays
element by element and contains no operations on entire matrices (e.g., matrix multi-
plication). The example specifications and all generated proof obligations can be found
at http://ase.arc.nasa.gov/autobayes/ijcar.

3.2 Simplification

Proof task simplification is an important and integral part of our overall architecture.
However, as observed before [10, 6, 20], simplifications—even on the purely proposi-
tional level—can have a significant impact on the performance of a theorem prover. In
order to evaluate this impact, we used six different rewrite-based simplifiers to generate
multiple versions of the safety obligations. We focus on rewrite-based simplifications
rather than decision procedures because rewriting is easier to certify: each individual
rewrite step T ; S can be traced and checked independently, e.g., by using an ATP to
prove that S ⇒ T holds.

Baseline The baseline is given by the rewrite system T∅ which eliminates the extra-
logical constructs (including explicit formal substitutions) which the VCG employs dur-
ing the construction of the safety obligations. Our original intention was to axiomatize
these constructs in first-order logic and then (ab-) use the provers for this elimination
step, but that turned out to be infeasible. The main problem is that the combination with
equality reasoning produces tremendous search spaces.

Propositional Structure The first two proper simplification levels only work on the
propositional structure of the obligations. T∀,⇒ splits the few but large obligations gen-
erated by the VCG into a large number of smaller obligations. It consists of two rewrite
rules ∀x·P ∧Q ; (∀x·P )∧(∀x·Q) and P ⇒ (Q∧R) ; (P ⇒ Q)∧(P ⇒ R) which
distribute universal quantification and implication, respectively over conjunction. Each
of the resulting conjuncts is then treated as an independent proof task. Tprop simplifies
the propositional structure of the obligations more aggressively. It uses the rewrite rules

¬ true ; false ¬ false ; true
true ∧ P ; P false ∧ P ; false
true ∨ P ; true false ∨ P ; P
P ⇒ true ; true P ⇒ false ; ¬P
true ⇒ P ; P false ⇒ P ; true
P ⇒ P ; true (P ∧ Q) ⇒ P ; true
P ⇒ (Q ⇒ R) ; (P ∧ Q) ⇒ R ∀x · true ; true



in addition to the two rules in T∀,⇒. The rules have been chosen so that they preserve
the overall structure of the obligations as far as possible; in particular, conjunction and
disjunction are not distributed over each other and implications are not eliminated. Their
impact on the clausifier should thus be minimal.

Ground Arithmetic This simplification level additionally handles common exten-
sions of plain first-order logic, i.e., equality, orders, and arithmetic. The rewrite sys-
tem Teval contains rules for the reflexivity of equality and partial orders as well as the
irreflexivity of strict orders, although the latter rules are not invoked on the example
obligations. In addition, it normalizes orders into ≤ and > using the (obvious) rules

x ≥ y ; y ≤ x ¬x > y ; x ≤ y
x < y ; y > x ¬x ≤ y ; x > y

The choice of the specific orders is arbitrary; choosing for example < instead of >
makes no difference. However, a further normalization by elimination of either the par-
tial or the strict order (e.g., using a rule x ≤ y ; x < y ∨ x = y) leads to a substantial
increase in the formula size and thus proves to be counter-productive.

Teval also contains rules to evaluate ground integer operations (i.e., addition, subtrac-
tion, and multiplication), equalities, and partial and strict orders. Moreover, it converts
addition and subtraction with one small integer argument (i.e., n ≤ 5) into Pressburger
notation, using rules of the form n + 1 ; succ(n) and n − 1 ; pred(n). For many
safety policies (e.g., init), such terms are introduced by relativized bounded quantifiers
(e.g., ∀x · 0 ≤ x ≤ n − 1 ⇒ P (x)) and contain the only occurrences of arithmetic
operators. A final group of rules handles the interaction between succ and pred, as well
as with the orders.

succ(pred(x)) ; x pred(succ(x)) ; x
succ(x) ≤ y ; x < y succ(x) > y ; x ≥ y
x ≤ pred(y) ; x < y x > pred(y) ; x ≥ y

Language-Specific Simplification The next level handles constructs which are spe-
cific to the program verification domain, in particular array-expressions and conditional
expressions, encoding the necessary parts of the language semantics. The rewrite system
Tarray adds rewrite formulations of McCarthy’s array axioms [13], i.e., sel(upd(a, i, v), j)
; i = j ? v : sel(a, j) for one-dimensional arrays and similar forms for higher-dimen-
sional arrays. Some safety policies are formulated using arrays of a given dimension-
ality which are uniformly initialized with a specific value. These are represented by a
constarray-term, for which similar rules are required, e.g., sel(constarray(v, d), i) ; v.

Nested sel/upd-terms, which result from sequences of individual assignments to the
same array, lead to nested conditionals which in turn lead to an exponential blow-up
during the subsequent language normalization step. Tarray thus also contains two rules
true?x: y ; x and false?x: y ; y to evaluate conditionals.

In order to evaluate the effect of these domain-specific simplifications properly,
we also experimented with a rewrite system Tarray*, which applies the two sel-rules in
isolation.

Policy-Specific Simplification The most aggressive simplification level Tpolicy uses a
number of rules which are fine-tuned to handle situations that frequently arise with



specific safety policies. The init-policy requires a rule

∀x · 0 ≤ x ≤ n ⇒ (x 6= 0 ∧ . . . ∧ x 6= n ⇒ P ) ; true

which is derived from the finite induction axiom to handle the result of simplifying
nested sel/upd-terms. For in-use, we need a single rule def =use ; false, which follows
from the fact that the two tokens def and use used by the policy are distinct. For symm,
we make use of a lemma about the symmetry of specific matrix expressions: A+BCBT

is already symmetric if (but not only if) the two matrices A and C are symmetric,
regardless of the symmetry of B. The rewrite rule

sel(A + BCBT, i, j) = sel(A + BCBT, j, i)
; sel(A, i, j) = sel(A, j, i) ∧ sel(C, i, j) = sel(C, j, i)

formulates this lemma in an element-wise fashion.
For the norm-policy, the rules become a lot more specialized and complicated. Two

rules are added to handle the inductive nature of finite sums:
∑pred(0)

i=0 x ; 0

P ∧ x =
∑pred(n)

i=0 Q(i) ⇒ x + Q(n) =
∑n

i′=0 Q(i′)

; P ∧ x =
∑pred(n)

i=0 Q(i) ⇒
∑n

i=0 Q(i) =
∑n

i=0 Q(i)

The first rule directly implements the base case of the induction; the second rule, which
implements the step case, is more complicated. It requires alpha-conversion for the
summations as well as higher-order matching for the body expressions. However, both
are under explicit control of this specific rewrite rule and not the general rewrite engine,
and are implemented directly as Prolog-predicates. A similar rule is required in a very
specific situation to substitute an equality into a summation:

P ∧ (∀i · 0 ≤ i ≤ n ⇒ x = sel(f, i)) ⇒
∑n

i=0 sel(f, i) = 1

; P ∧ (∀i · 0 ≤ i ≤ n ⇒ x = sel(f, i)) ⇒
∑n

i=0 x = 1

The above rules capture the central steps of some of the proofs for the norm-policy and
mirror the fact that these are essentially higher-order inferences.

Another set of rewrite rules handles all occurrences of the random number generator
by asserting that the number is within its given range, i.e., l ≤ rand(l, u) ≤ u.

Normalization The final preprocessing step transforms the obligations into pure first-
order logic. It eliminates conditional expressions which occur as top-level arguments of
predicate symbols, using rules of the form P ?T :F = R ; (P ⇒ T = R)∧ (¬P ⇒

F = R) and similarly for partial and strict orders. A number of congruence rules move
nested occurrences of conditional expressions into the required positions. Finite sums,
which only occur in obligations for the norm-policy, are represented with a de Bruijn-
style variable-free notation.

Control The simplifications are performed by a small but reasonably efficient rewrite
engine implemented in Prolog (cf. Table 2 for runtime information). This engine does
not support full AC-rewriting but flattens and orders the arguments of AC-operators.



The rewrite rules, which are implemented as Prolog-clauses, then do their own list
matching but can take the list ordering into account. The rules within each system are
applied exhaustively. However, the two most aggressive simplification levels Tarray and
Tpolicy are followed by a “clean-up” phase. This consists of the language normalization
followed by the propositional simplifications Tprop and the finite induction rule. Sim-
ilarly, Tarray* is followed by the language normalization and then by T∀,⇒ to split the
obligations.

3.3 Domain Theory

Each safety obligation is supplied with a first-order domain theory. In our case, the
domain theory consists of a fixed part which contains 44 axioms, and a set of axioms
which is generated dynamically for each proof task. The static set of axioms defines
the usual properties of equality and the order relations, as well as axioms for simple
Pressburger arithmetic and for the domain-specific operators (e.g., sel/upd or rand).
The dynamic axioms are added because most theorem provers cannot calculate with
integers, and to avoid the generation of large terms of the form succ(. . . (succ(0) . . .).
For all integer literals n,m in the proof task, we generate the corresponding axioms
of the form m > n. For small integers (i.e., n ≤ 5), we also generate axioms for
explicit successor-terms, i.e., n = succn(0) and add a finite induction schema of the
form ∀x : 0 ≤ x ≤ n ⇒ (x = 0 ∨ x = 1 ∨ . . . ∨ x = n). In our application domain,
these axioms are needed for some of the matrix operations; thus n can be limited to the
statically known maximal size of the matrices.

3.4 Theorem Provers

For the experiments, we selected several high-performance theorem provers for un-
typed first-order formulas with equality. Most of the provers participated at the CASC-
19 [21] proving competition in the FOL-category. We used two versions of e-setheo
[15] which were both derived from the CASC-version. For e-setheo-csp03F, the clausi-
fication module has been changed and instead of the clausifier provided by the TPTP
toolset [22], FLOTTER V2.1 [23, 24] was used to convert the formulas into a set of
clauses. e-setheo-new is a recent development version with several improvements over
the original e-setheo-csp03 version. Both versions of Vampire [19] have been taken di-
rectly “out of the box”—they are the versions which were running during CASC-19.
Spass 2.1 was obtained from the developer’s website [23].

In the experiments, we used the default parameter settings and none of the special
features of the provers. For each proof obligation, we limited the run-time to 60 sec-
onds; the CPU-time actually used was measured with the TPTP-tools on a 2.4GHz dual
processor standard PC with 4GB memory.

4 Empirical Results

4.1 Generating and Simplifying Obligations

Table 2 summarizes the results of generating the different versions of the safety obliga-
tions. For each of the example specifications, it lists the size of the generated programs



example loc policy loa T∅ T∀,⇒ Tprop Teval Tarray Tarray∗ Tpolicy

ds1 431 array 0 5.5 11 5.3 103 5.4 55 5.5 1 5.5 1 5.6 103 5.5 1
init 87 9.5 21 14.1 339 11.3 150 11.0 142 10.5 74 20.1 543 11.4 74
in-use 61 7.3 19 12.9 453 7.7 59 7.6 57 7.4 21 16.2 682 8.1 21
symm 75 4.8 17 5.7 101 4.7 21 4.9 21 66.7 858 245.6 2969 70.8 865

iss 755 array 0 24.6 1 28.1 582 24.8 114 24.2 4 24.0 4 27.9 582 24.7 4
init 88 39.5 2 65.9 957 42.3 202 41.8 194 39.2 71 82.6 1378 39.7 71
in-use 60 33.4 2 68.1 672 36.7 120 35.7 117 32.6 28 79.1 2409 31.6 1
symm 87 33.0 1 34.9 185 28.1 35 27.9 35 71.0 479 396.8 3434 66.2 480

segm 517 array 0 3.0 29 3.3 85 2.9 8 2.9 3 3.0 3 3.3 85 3.0 1
init 171 6.5 56 12.1 464 7.8 172 7.7 130 7.6 121 12.8 470 7.6 121
norm 195 3.8 54 5.0 155 3.8 41 3.6 30 3.8 32 5.2 157 3.6 14

gauss 1039 array 20 21.0 69 24.9 687 21.2 98 21.0 20 20.9 20 24.3 687 21.3 20
init 118 49.8 85 65.5 1417 54.1 395 53.2 324 53.9 316 66.2 1434 54.3 316

Table 2. Results of generating safety obligations

(without annotations), the applicable safety policies, the respective size of the generated
annotations (before propagation), and then, for each simplifier, the elapsed time and the
number of generated obligations.

The elapsed times include synthesis of the programs as well as generation, simpli-
fication, and file output of the safety obligations; synthesis alone accounts for approx-
imately 90% of the times listed under the array safety policy. In general, the times for
generating and simplifying the obligations are moderate compared to both generating
the programs and discharging the obligations. All times are CPU-times and have been
measured in seconds using the Unix time-command.

Almost all of the generated obligations are valid, i.e., the generated programs are
safe. The only exception is the in-use-policy which produces one invalid obligation for
each of the ds1 and iss examples. This is a consequence of the respective specifica-
tions which do not use all elements of the initial state vectors. The invalidity is confined
to a single conjunct in one of the original obligations, and since none of the rewrite
systems contains a distributive law, the number of invalid obligations does not change
with simplification.

The first four simplification levels show the expected results. The baseline T∅ yields
relatively few but large obligations which are then split up by T∀,⇒ into a much larger
(on average more than an order of magnitude) number of smaller obligations. The next
two levels then eliminate a large fraction of the obligations. Here, the propositional
simplifier Tprop alone already discharges between 50% and 90% of the obligations while
the additional effect of evaluating ground arithmetic (Teval) is much smaller and generally
well below 25%. The only significant difference occurs for the array-policy where more
than 80% (and in the case of ds1 even all) of the remaining obligations are reduced to
true. This is a consequence of the large number of obligations which have the form
¬n ≤ n ⇒ P for an integer constant n representing the (lower or upper) bound of
an array. The effect of the domain-specific simplifications is at first glance less clear.
Using the array-rules only, Tarray*, generally leads to an increase over T∀,⇒ in the number



of obligations; this even surpasses an order of magnitude for the symm-policy. However,
in combination with the other simplifications (Tarray), most of these obligations can be
discharged again, and we generally end up with less obligations than before; again, the
symm-policy is the only exception. The effect of the final policy-specific simplifications
is, as should be expected, highly dependent on the policy. For in-use and norm a further
reduction is achieved, while the rules for init and symm only reduce the size of the
obligations.

4.2 Running the Theorem Provers

Table 3 summarizes the results obtained from running the theorem provers on all proof
obligations (except for the invalid obligations from the in-use-policy), grouped by the
different simplification levels. Each line in the table corresponds to the proof tasks origi-
nating from a specific safety policy (array, init, in-use, symm, and norm). Then, for each
prover, the percentage of solved proof obligations and the total CPU-time are given.

For the fully simplified version (Tpolicy), all provers are able to find proofs for all tasks
originating from at least one safety policy; e-setheo-csp03F can even discharge all the
emerging safety obligations This result is central for our application since it shows that
current ATPs can in fact be applied to certify the safety of synthesized code, confirming
our first hypothesis.

For the unsimplified safety obligations, however, the picture is quite different. Here,
the provers can only solve a relatively small fraction of the tasks and leave an unaccept-
ably large number of obligations to the user. The only exception is the array-policy,
which produces by far the simplest safety obligations. This confirms our second hy-
pothesis: aggressive preprocessing is absolutely necessary to yield reasonable results.

Let us now look more closely at the different simplification stages. Breaking the
large original formulas into a large number of smaller but independent proof tasks
(T∀,⇒) boosts the relative performance considerably. However, due to the large absolute
number of tasks, the absolute number of failed tasks also increases. With each additional
simplification step, the percentage of solved proof obligations increases further. Inter-
estingly, however, T∀,⇒ and Tarray seem to have the biggest impact on performance. The
reason seems to be that equality reasoning on deeply nested terms and formula struc-
tures can then be avoided, albeit at the cost of the substantial increase in the number of
proof tasks. The results with the simplification strategy Tarray∗ , which only contains the
language-specific rules, also illustrates this behavior. The norm-policy clearly produces
the most difficult proof obligations, requiring essentially inductive and higher-order rea-
soning. Here, all simplification steps are required to make the obligations go through
the first-order ATPs.

The results in Table 3 also indicate there is no single best theorem prover. Even vari-
ants of the “same” prover can differ widely in their results. For some proof obligations,
the choice of the clausification module makes a big difference. The TPTP-converter
implements a straightforward algorithm similar to the one described in [12]. Flotter
has a highly elaborate conversion algorithm which performs many simplifications and
avoids exponential increase in the number of generated clauses. This effect is most
visible on the unsimplified obligations (e.g., T∅ under init), where Spass and e-setheo-



e-setheo03F e-setheo-new SPASS Vampire6.0 Vampire5.0
simp. policy N % Tproof % Tproof % Tproof % Tproof % Tproof

T∅ array 110 96.4 192.4 94.5 284.9 96.4 73.4 95.5 178.1 95.5 102.1
init 164 76.8 3000.8 13.1 1759.8 75.0 2898.3 8.5 9224.9 8.5 8251.0
in-use 19 57.9 610.8 44.4 612.2 68.4 512.8 57.9 773.1 47.4 645.5
symm 18 50.0 387.7 8.3 266.1 38.9 555.3 16.7 744.9 16.7 723.6
norm 54 51.9 1282.4 51.9 1341.0 51.9 1224.2 50.0 1316.5 48.1 1327.1

T∀,⇒ array 1457 99.0 903.4 94.2 5925.0 99.8 217.0 99.9 240.5 99.8 152.4
init 3177 88.4 3969.4 91.7 20784.8 97.4 8732.2 95.0 14482.2 93.5 14203.4
in-use 1123 59.3 819.1 96.4 4100.3 99.1 1733.5 95.3 4183.7 94.3 4206.8
symm 286 93.4 1785.9 90.6 2341.0 88.5 3638.7 90.2 3315.8 91.3 1789.2
norm 155 85.8 1422.1 73.5 2552.5 84.5 1572.0 87.7 1359.9 87.1 1276.0

Tprop array 275 99.3 278.2 76.4 4080.8 99.3 157.5 99.3 187.5 99.3 132.6
init 919 94.7 4239.4 73.0 17472.2 92.8 5469.7 84.9 10598.0 83.2 10546.8
in-use 177 86.4 1854.0 77.4 2768.2 94.9 1008.3 70.1 3806.2 65.0 3960.6
symm 56 66.1 1476.2 51.8 1944.4 48.2 1911.3 58.9 1596.7 58.9 1424.8
norm 41 46.3 1361.2 41.5 1484.6 41.5 1478.2 53.7 1286.7 51.2 1275.3

Teval array 28 100.0 16.2 100.0 19.7 100.0 10.4 100.0 12.7 100.0 1.7
init 790 94.6 3944.2 94.1 8288.0 93.3 4380.1 82.5 10239.0 82.0 9040.2
in-use 172 86.0 1852.2 83.1 2305.2 94.8 1023.1 69.8 3718.1 67.4 3561.1
symm 56 66.1 1451.1 66.1 1500.4 51.8 1716.0 62.5 1455.5 58.9 1389.8
norm 30 53.3 859.4 13.3 1575.8 50.0 940.5 66.7 736.7 53.3 858.0

Tarray array 28 100.0 15.4 100.0 19.8 100.0 10.4 100.0 12.7 100.0 1.7
init 582 100.0 527.6 100.0 823.9 99.7 875.8 100.0 1401.3 99.0 785.1
in-use 47 100.0 323.9 100.0 343.2 100.0 171.3 100.0 262.6 87.2 525.2
symm 1337 100.0 1104.3 99.9 1629.3 99.4 746.4 99.1 963.9 99.0 922.7
norm 32 59.4 678.4 18.8 1583.1 59.4 709.7 62.5 791.7 50.0 858.6

Tarray∗ array 1457 99.9 916.4 94.2 5918.0 99.9 210.8 99.9 240.6 99.9 153.1
init 3825 99.7 3412.3 96.3 13536.1 99.5 4574.9 99.8 4952.1 98.4 6000.1
in-use 3089 99.8 2438.4 99.4 5139.0 99.8 889.2 99.8 793.5 99.6 925.9
symm 6403 99.9 5317.4 99.7 11787.7 99.7 3385.1 99.6 3277.3 99.6 1807.0
norm 157 86.0 1306.8 72.6 2670.8 86.0 1351.3 86.6 1449.9 86.0 1276.2

Tpolicy array 26 100.0 15.0 100.0 17.7 100.0 9.9 100.0 12.0 100.0 1.6
init 582 100.0 529.2 100.0 827.9 99.5 875.2 100.0 1418.9 99.0 782.5
in-use 20 100.0 281.7 100.0 329.7 100.0 170.7 100.0 262.6 70.0 524.8
symm 1345 100.0 1104.6 99.9 1640.5 99.4 760.0 99.1 1048.8 99.0 926.9
norm 14 100.0 9.0 57.1 375.8 100.0 26.2 100.0 108.0 71.4 241.8

Table 3. Certification results and times

csp03F—which both use the Flotter clausifier—perform substantially better than the
other provers.

Since our proof tasks are generated directly by a real application and are not hand-
picked for certain properties, many of them are (almost) trivial—even in the unsimpli-
fied case. Figure 3 shows the resources required for the proof tasks as a series of pie
charts for the different simplification stages. All numbers are obtained with e-setheo-
csp03F; the figures for the other provers look similar. Overall, the charts reflect the



T∅ (N=365) T∀,⇒ (N=6198) Tprop (N=1468) Teval (N=1076) Tarray (N=2026) Tpolicy (N=1987)

Fig. 3. Distribution of easy (Tproof < 1s, white), medium (Tproof < 10s, light grey), difficult
(Tproof < 60s, dark grey) proofs, and failing proof tasks (black) for the different simplification
stages (prover: e-setheo-csp03F). N denotes the total number of proof tasks at each stage.

expected behavior: with additional preprocessing and simplification of the proof obli-
gations, the number of easy proofs increases substantially and the number of failing
proof tasks decreases sharply from approximately 16% to zero. The relative decrease
of easy proofs from T∀,⇒ to Tprop and Teval is a consequence of the large number of easy
proof tasks already discharged by the respective simplifications.

4.3 Difficult Proof Tasks

Since all proof tasks are generated in a uniform manner through the application of a
safety policy by the VCG, it is obvious that many of the difficult proof tasks share some
structural similarities. We have identified three classes of hard examples; these classes
are directly addressed by the rewrite rules of the policy-specific simplifications.

Most safety obligations generated by the VCG are of the form A ⇒ B1 ∧ . . . ∧ Bn

where the Bi are variable disjoint. These obligations can be split up into n smaller
proof obligations of the form A ⇒ Bi and most theorem provers can then handle these
smaller independent obligations much more easily than the large original.

The second class contains formulas of the form symm(r) ⇒ symm(diag-updates(r)).
Here, r is a matrix variable which is updated along its diagonal, and we need to show
that r remains symmetric after the updates. For a 2x2 matrix and two updates (i.e.,
r00 = x and r11 = y), we obtain the following simplified version of an actual proof
task:

∀i, j · (0 ≤ i, j ≤ 1 ⇒ sel(r, i, j) = sel(r, j, i)) ⇒
(∀k, l · (0 ≤ k, l ≤ 1 ⇒

sel(upd(upd(r, 1, 1, y), 0, 0, x), k, l) = sel(upd(upd(r, 1, 1, y), 0, 0, x), l, k))).

This pushes the provers to their limits—e-setheo cannot prove this while Spass succeeds
here but fails if the dimensions are increased to 3x3, or if three updates are made. In
our examples, matrix dimensions up to 6x6 with 36 updates occur, yielding large proof
obligations of this specific form which are not provable by current ATPs without further
preprocessing.

Another class of trivial but hard examples, which frequently shows up in the init-
policy, also results from the expansion of deeply nested sel/upd-terms. These problems
have the form

∀i, j · 0 ≤ i < n ∧ 0 ≤ j ≤ n ⇒ (i 6= 0 ∧ j 6= 0 ∧ . . . i 6= n ∧ j 6= n ⇒ false)



and soon become intractable for the clausifier, even for small n (n = 2 or n = 3),
although the proof would be easy after successful clausification.

5 Conclusions

We have described a system for the automated certification of safety properties of
NASA state estimation and data analysis software. The system uses a generic VCG to-
gether with explicit safety policies to generate policy-specific safety obligations which
are then automatically processed by a first-order ATP. We have evaluated several state-
of-the-art ATPs on more than 25,000 obligations generated by our system. With “out-
of-the-box” provers, only about two-thirds of the obligations could be proven. However,
after aggressive simplification, most of the provers could solve all emerging obligations.
In order to see the effects of simplification more clearly, we experimented with specific
preprocessing stages.

It is well-known that, in contrast to traditional mathematics, software verification
hinges on large numbers of mathematically shallow (in terms of the concepts involved)
but structurally complex proof tasks, yet current provers are not well suited to this.
Since the propositional structure of a formula is of great importance, we believe that
clausification algorithms should integrate more simplification and split goal tasks into
independent subtasks.

Certain application-specific constructs (e.g., sel/upd) can easily lead to proof tasks
which cannot be handled by current ATPs. The reason is that simple manipulations
on deep terms, when combined with equational reasoning, can result in a huge search
space. Although specific parameter settings in a prover might overcome this problem,
this would require a deep knowledge of the individual theorem provers. In our exper-
iments, therefore, we did not use any specific features or parameter settings for the
individual theorem provers.

With our approach to certification of auto-generated code, we are able to automati-
cally produce safety certificates for code of considerable length and structural complex-
ity. By combining rewriting with state-of-the-art automated theorem proving, we obtain
a safety certification tool which compares favorably with tools based on static analy-
sis (see [3] for a comparison). Our current efforts focus on extending the certification
system in a number of areas. One aim is to develop a certificate management system,
along the lines of the Programatica project [16]. We also plan to combine our work on
certification with automated safety and design document generation [4] tools that we
are developing. Finally, we continue to integrate additional safety properties.

References

[1] W. Bibel and P. H. Schmitt, (eds.). Automated Deduction — A Basis for Applications. Kluwer,
1998.

[2] E. Denney and B. Fischer. “Correctness of Source-Level Safety Policies”. In Proc. FM 2003:
Formal Methods, LNCS 2805, pp. 894–913. Springer, 2003.

[3] E. Denney, B. Fischer, and J. Schumann. “Adding Assurance to Automatically Generated
Code”. In Proc. 8th IEEE Intl. Sympl. High Assurance System Engineering, pp. 297–299.
IEEE Comp. Soc. Press, 2004.



[4] E. Denney and R. P. Venkatesan. “A generic software safety document generator”. In Proc.
10th AMAST. To appear, 2004.

[5] B. Fischer, A. Hajian, K. Knuth, and J. Schumann. Automatic Derivation of Statistical Data
Analysis Algorithms: Planetary Nebulae and Beyond. In Proc. 23rd MaxEnt. To appear, 2004.
http://ase.arc.nasa.gov/people/fischer/.

[6] B. Fischer. Deduction-Based Software Component Retrieval. PhD thesis, U. Passau, Ger-
many, 2001. http://elib.ub.uni-passau.de/opus/volltexte/2002/23/.

[7] C. Flanagan and K. R. M. Leino. “Houdini, an Annotation Assistant for ESC/Java”. In Proc.
FME 2001: Formal Methods for Increasing Software Productivity, LNCS 2021, pp. 500–517.
Springer, 2001.

[8] B. Fischer and J. Schumann. “Applying AutoBayes to the Analysis of Planetary Nebulae
Images”. In Proc. 18th ASE, pp. 337–342. IEEE Comp. Soc. Press, 2003.

[9] B. Fischer and J. Schumann. “AutoBayes: A System for Generating Data Analysis Programs
from Statistical Models”. J. Functional Programming, 13(3):483–508, 2003.

[10] B. Fischer, J. Schumann, and G. Snelting. “Deduction-Based Software Component Re-
trieval”. Volume II of Bibel and Schmitt [1], pp. 265–292. 1998.

[11] P. Homeier and D. Martin. “Trustworthy Tools for Trustworthy Programs: A Verified Veri-
fication Condition Generator”. In Proc. TPHOLS 94, pp. 269–284. Springer, 1994.

[12] D. W. Loveland. Automated Theorem Proving: A Logical Basis. North–Holland, 1978.
[13] J. McCarthy. “Towards a Mathematical Science of Computation”. In Proc. IFIP Congress

62, pp. 21–28. North-Holland, 1962.
[14] W. McCune and O. Shumsky. “System description: IVY”. In Proc. 17th CADE, LNAI 1831,

pp. 401–405. Springer, 2000.
[15] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann. and K. Mayr. “The

Model Elimination Provers SETHEO and E-SETHEO”. J. Automated Reasoning, 18:237–246,
1997.

[16] The Programatica Team. “Programatica Tools for Certifiable, Auditable Development of
High-assurance Systems in Haskell”. In Proc. High Confidence Software and Systems Conf.,
Baltimore, MD, April 2003.

[17] W. Reif. “The KIV Approach to Software Verification”. In KORSO: Methods, Languages
and Tools for the Construction of Correct Software, LNCS 1009, pp. 339–370. Springer, 1995.

[18] W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured Specifications and Interactive
Proofs with KIV. Volume II of Bibel and Schmitt [1], pp. 13–40, 1998.

[19] A. Riazanov and A. Voronkov. “The Design and Implementation of Vampire”. AI Commu-
nications, 15(2–3):91–110, 2002.

[20] J. Schumann. Automated Theorem Proving in Software Engineering. Springer, 2001.
[21] G. Sutcliffe and C. Suttner. CASC Home Page. http://www.tptp.org/CASC.
[22] G. Sutcliffe and C. Suttner. TPTP Home Page. http://www.tptp.org.
[23] C. Weidenbach. SPASS Home Page. http://spass.mpi-sb.mpg.de.
[24] C. Weidenbach, B. Gaede, and G. Rock. “Spass and Flotter version 0.42”. In Proc.

13th CADE, LNAI 1104, pp. 141–145. Springer, 1996.
[25] M. Whalen, J. Schumann, and B. Fischer. “AutoBayes/CC — Combining Program Syn-

thesis with Automatic Code Certification (System Description)”. In Proc. 18th CADE, LNAI
2392, pp. 290–294. Springer, 2002.

[26] M. Whalen, J. Schumann, and B. Fischer. “Synthesizing Certified Code”. In Proc. FME
2002: Formal Methods—Getting IT Right, LNCS 2391, pp. 431–450. Springer, 2002.

[27] J. Whittle and J. Schumann. Automating the Implementation of Kalman Filter Algorithms,
2004. In review.


