
Int J Parallel Prog
DOI 10.1007/s10766-015-0359-4

Synthesizing MPI Implementations from Functional
Data-Parallel Programs

Tristan Aubrey-Jones1 · Bernd Fischer2

Received: 11 August 2014 / Accepted: 10 March 2015
© Springer Science+Business Media New York 2015

Abstract Distributed memory architectures such as Linux clusters have become
increasingly common but remain difficult to program. We target this problem and
present a novel technique to automatically generate data distribution plans, and sub-
sequently MPI implementations in C++, from programs written in a functional core
language. The main novelty of our approach is that we support distributed arrays, maps,
and lists in the same framework, rather than just arrays. We formalize distributed data
layouts as types, which are then used both to search (via type inference) for optimal
data distribution plans and to generate the MPI implementations. We introduce the
core language and explain our formalization of distributed data layouts. We describe
how we search for data distribution plans using an adaptation of the Damas–Milner
type inference algorithm, and how we generate MPI implementations in C++ from
such plans.

Keywords Data parallelism · Data distribution · Type inference · Code generation ·
MPI

1 Introduction

Functional languages provide good high-level notations for data parallelism (e.g.,
[15,22,23,29,35]), but their automatic translation into efficient low-level code for

B Tristan Aubrey-Jones
taj105@ecs.soton.ac.uk

Bernd Fischer
bfischer@cs.sun.ac.za

1 University of Southampton, Southampton, UK

2 University of Stellenbosch, Stellenbosch, South Africa

123

Int J Parallel Prog

distributed memory architectures remains a problem, due to the many possible data
distributions. Many techniques only support a fixed model such as MapReduce [15]
that is not necessarily suitable for all problems [18], or do not support distributed
memory at all [29]. We present a flexible, type-based technique to search through the
space of possible data distributions, and to generate efficient MPI implementations in
C++ from the solutions.

We use a high-level core language called Functional language on compute clus-
ters (Flocc) to demonstrate our approach. Like PigLatin [27] and PQL [32], Flocc takes
inspiration from relational algebra. Figure 1 illustrates this data-parallel programming
style with a matrix multiplication in SQL and relational algebra. Here, A ��p B is the
join of A and B over the predicate p; R1 thus contains all pairs of elements (Ai,k, Bk, j)

that contribute to the result. ρe/x is a renaming that creates a new column x with values
e; R2 thus contains all products Ai,k ∗ Bk, j . Finally, Gi, f is a group-reduce operation
that reduces the groups of all tuples that have the same values in the columns i using the
function f ; C thus contains at (i, j) the sum of all products Ai,k ∗ Bk, j . This formula-
tion is implicitly parallel and abstracts away from global state, iteration and recursion,
and individual element accesses, which helps us to derive data distribution plans. For
example, we know from its syntactic structure that the operation G〈A.i,B. j〉,sum(v)(R2)

only ever reduces groups of v-elements that come from tuples with the same values
in the A.i- and B. j-columns of R2, respectively. Hence, if we distribute R2 so that all
these tuples are co-located, then the group reduce operation requires no further data
exchanges and can run locally.

Our key insight is that we can use types to formalize this knowledge about the
data distribution characteristics of data parallel operations (also called skeletons or
combinators), as well as the distribution of the data itself, and type inference to derive
data distribution plans for Flocc programs, in a way that works for multiple collection
types and not just arrays. We call these types distributed data layout (DDL) types; they
combine the usual (functional) types with layout information. For example, the DDL
type DArr (Int, Int) Float fst D1 D2 characterizes a two-dimensional
array of Float values that is partitioned by row and distributed and mirrored over
different dimensions of a cluster’s node topology. Here, the third argument fst of the
DDL type constructor DArr is the partition function that describes which dimensions
of the array are partitioned over the nodes in the cluster along the dimension D1 given
as the fourth argument. The final argument D2 gives any dimensions along which each
partition selected by the partition function is mirrored. Note that the DDL types are
only used by the compiler, and not exposed to the programmer.

The compiler provides different functionally equivalent implementations of the
combinators that work for different data distributions, and are thus characterized by
different DDL types. For example, the declaration

SELECT A.i as i, B.j as j,
sum (A.v * B.v) as v

FROM A JOIN B ON A.j = B.i
GROUP BY A.i, B.j;

R1 = A.j=B.i B

R2 = ρA.v∗B.v/v(R1)

C = G A.i,B.j ,sum(v)(R2)

Fig. 1 Matrix multiplication: SQL (left) and Relational Algebra (right)

123

Int J Parallel Prog

groupReduceArr2 :: Π(pf,_,_,_) :
(i1->i2, (i1,v1)->v2, (v2,v2)->v2, DArr i1 v1 pf d m) -> DArr i2 v2 id d m

expresses that groupReduceArr2 binds the value of its first parameter, which is an
array partition function, to pf and then uses this specific pf as partition function for
the array it reduces. The compiler instantiates the combinators in the user program with
the different implementations, and then uses a variant of the standard Damas–Milner
type inference algorithm to derive the DDL types that represent data distribution plans
for these variants. In a final step, it generates efficient MPI implementations in C++
from these DDL plans.

1.1 Contributions

In this paper we describe the first technique (to our knowledge) to automate the data dis-
tribution of data-parallel programs that supports multiple distributed collection types,
including arrays, lists, and maps. Our approach can easily be extended with further
collection types and data-parallel combinators, making it flexible and applicable for a
wide variety of data-parallel tasks. This is in contrast to existing approaches that focus
on automatically finding the best data distributions for array-based algorithms, where
input programs are either nested loops with affine array references [1,3,5], or combi-
nations of array section and reduction operators [13]. We demonstrate our approach
for a small domain-specific language for data-parallel functional programming that is
inspired by relational algebra. In particular, we formalize distributed data layouts by
polymorphic dependent type schemes and use a variant of the standard Damas–Milner
type inference algorithm to infer DDLs for different plans in a type-directed way. We
have implemented a prototype code generator for DDL plans that targets MPI and
C++.

2 Data-Parallel Programming in Flocc

Flocc’s expression and type syntax are shown in Fig. 2. Expressions e can be identifiers,
literals, function abstractions, function applications, tuples, let bindings, or if-then-
else expressions. Function abstraction arguments and let expressions bind values to
tuples of identifiers x . List, array, and map literal expressions are also supported but not
shown. Flocc uses Damas–Milner type inference [14] to infer types for all expressions,
though function abstractions and let-bindings support optional type declarations which
the compiler checks.

At the high-level (i.e., executed on a single processor with a single address space),
Flocc has a standard call-by-value reduction semantics. All parallelism in the language
is expressed via data-parallel operations applied to the collections. These operations
include predefined combinators for arrays, maps, and lists shown in Fig. 3; there are
many further combinators not shown here for brevity. In the following we illustrate
the language with several examples.

123

Int J Parallel Prog

e ::= Id | v | (e1 , . . . , en) | \ x [:: t] -> e | e1 e2 | let x [:: t] = e1 in e2
| if e1 then e2 else e3

x ::= Id | _ | (x1 , . . . , xn)

v ::= Int | Float | True | False | ()
s ::= ∀Id·s | t

t ::= Id | Int | Float | Bool | Null | (t1, . . . , tn) | t1 → t2 | Map t1 t2 | Arr Int+ t | List t

Fig. 2 Flocc expression and type syntax

subArr :: (i, i, Arr i v) -> Arr i v
shiftArr :: (i, Arr i v) -> Arr i v
mapArrInv :: (i->j, (i,v)->w, j->i, Arr i v) -> Arr j w
eqJoinArr :: (i->k, j->k, Arr i v, Arr j w) -> Arr (i,j) (v,w)
groupReduceArr :: (i->j, (i,v)->w, (w,w)->w, Arr i v) -> Arr j w

map :: ((i,v)->(j,w), Map i v) -> Map j w
eqJoin :: ((i,v)->k, (j,w)->k, Map i v, Map j w) -> Map (i,j) (v,w)
allPairs :: ((i,v)->k, Map i v) -> Map (i,i) (v,v)
reduce :: ((i,v)->s, (s,s)->s, Map i v) -> s
groupReduce :: ((i,v)->j, (i,v)->w, (w,w)->w, Map i v) -> Map j w
union :: (Map i v, Map i v) -> Map i v

zip :: (List v, List w) -> List (v,w)
mapList :: (v->w, List v) -> List w
reduceList :: ((v,v)->v, v, List v) -> v

Fig. 3 Predefined data-parallel combinators for arrays, maps, and lists

let mmul = (\(A,B) :: (Arr (Int ,Int) Float , Arr (Int ,Int) Float) ->
-- zip all combinations of rows from A and cols from B
let R1 = eqJoinArr (snd , fst A, B) in
-- multiply values from A and B
let R2 = mapArrInv (id, Float.*, id , R1) in
-- group by dest & sum -reduce
let C = groupReduceArr (\((ai,aj),(bi ,bj)) -> (ai ,bj),

snd , Float.+, R2) in C) in ...

Fig. 4 Matrix–matrix multiplication program

2.1 Matrix Multiplication

In Flocc, the matrix multiplication (cf. Fig. 4) closely follows the relational algebra
version (cf. Fig. 1). Here, A and B are arrays with pairs of integers as indices, and
floating point values. The array join eqJoinArr computes the Cartesian product
of both arrays, restricted to entries where the snd index from A is equal to the fst
index from B. It thus returns an array with four indices that contains all pairs of
Floats that contribute to the result. mapArrInv multiplies each of these pairs (like
the renaming), and the aggregation groupReduceArr then groups these values
using new keys (ai,bj) (i.e., the row from A and column from B), and sums up
all the values in each group using Float.+. We use a standard distributed-memory
implementation of this dense matrix multiplication, which partitions A by row, B by
column, and C by A’s row and B’s column, as our main running example in this paper.

123

Int J Parallel Prog

let hist = (\(N,D) :: (Int , Map k Float) ->
-- use min/max vals as x-axis bounds
let (minV , maxV) = reduce (\(_,v) -> (v,v),

\((x1 ,y1),(x2,y2)) -> (Float.min(x1 ,x2),Float.max(y1,y2)),D) in
-- scaling coefficient to get bucket ids
let i = Float./ (toFloat (Int.- (N,1)), Float.- (maxV ,minV)) in
let D’ = map (\(k,v) -> (k, toInt (Float.* (v,i))), D) in
-- group by bucket & count group sizes
groupReduce (snd , _ -> 1, addi , D’)) in ...

Fig. 5 N-bucket histogram

let dotp = (\(A,B) :: (List Float , List Float) ->
let AB = mapList (Float.*, zip (A,B)) in
reduceList (Float.+, 0.0, AB)) in ...

Fig. 6 Dot product

2.2 Histograms

The functionhist (cf. Fig. 5) shows a use of maps in Flocc. It takes a pair of arguments
N and D, where D is a map from keys of arbitrary type k to floating point values, and
computes a histogram of these values. This histogram has N equally spaced buckets
such that bucket 0 contains the minimum value in D and bucket N-1 contains the
maximum. The reduce combinator projects the values from the map D into pairs
and finds the minimum and maximum values. These values are used to calculate the
scaling coefficient i, which in turn is used to calculate each value’s bucket index with
the map combinator. Here, the key remains unchanged, so map’s first argument is id.
groupReduce then uses these bucket indices as the keys for the result map, where
snd projects them out of the original key-value pairs. For each key-value pair a 1
is projected out (using _ -> 1), and then each group of ones is aggregated using
Float.+, thus counting the entries in each bucket.

2.3 Dot Product

The function dotp (cf. Fig. 6) shows a use of lists in Flocc. It takes a pair of lists of
floats, and returns their dot product, computed by zipping together the lists, multiplying
the pairs, and then sum reducing them.

2.4 Comparison of Code Sizes

Figure 7 compares the code sizes for a number of programs written in Flocc and
other languages.1 The Flocc implementations are between 3 (Histogram) and 32 %
(K-means) of the size of the comparative implementations (12 % on average). This
illustrates the potential productivity gains of such a high-level language approach.

1 See http://www.flocc.net/hlpp14/codesizes.html for details.

123

http://www.flocc.net/hlpp14/codesizes.html

Int J Parallel Prog

Problem Flocc Comparison Types
Matrix multiply (cf. Fig 4) 5 C/MPI 89 Arr
Floyd’s all pairs shortest path 15 C/MPI 88 Arr
Jacobi 2D 8 C++/MPI 120 Arr
SOR red/black 18 C/MPI 289 Arr
N-body (gravitational) 38 C/MPI 153 Arr
K-means clustering 36 C/MPI 114 Map
Triangle enum (cf. Fig 15) 12 C++/MR-MPI 263 Map
R-MAT graph generation 35 C++/MR-MPI 148 Map
PageRank 11 Java/Hadoop 157 Map
Histogram (cf. Fig 5) 6 C++/MPI 204 Map
Apriori association mining 14 Java/Hadoop 371 Map
Dot product (cf. Fig 6) 3 C++/MPI 35 List
Standard deviation 6 C/MPI 38 List
Simple linear regression 10 C++/MPI 47 List
Word count 3 Java/Hadoop 48 List & Map
Grep 2 Java/Hadoop 59 List

Fig. 7 Comparative code sizes (code lines without comments and IO code)

Fig. 8 Array distributions (left, center). Map distribution (right)

3 Distributed Data Layouts as Types

3.1 Distributing Collections on Clusters

MPI allows the definition of virtual node topologies where nodes are addressable via
Cartesian coordinates. The MPI implementation then decides how best to map these
onto physical nodes. This abstraction is useful, since it allows us to describe where
collections are stored and replicated relative to each other, without considering the
physical interconnect. We therefore identify nodes using n-dimensional grids with
dimensions D1 to Dn .

Collections can be split into partitions and distributed over the nodes in some of
the dimensions, replicated across other dimensions, and are stored at the nodes on the
axis of any remaining dimensions. Figure 8 illustrates on the left an input distribution
for a matrix multiply on an 8-node cluster organized as a 3D grid. Matrix A is split
into two partitions A1 and A2 distributed along D1, and mirrored across D2, but only
stored at the axis of D3. B is partitioned along D2, and mirrored across D1, also only
at the axis of D3. Hence, the node (0, 1, 0) contains the partitions A2 and B2 while
(1, 1, 1) remains empty. This (without D3) illustrates the data layouts of our standard
mmul implementation’s input matrices A and B, where A is partitioned by row, and B
by column. This mmul implementation is the main running example in the sections
that follow. Figure 8 (center) illustrates the 2D partitioning of our mmul example’s

123

Int J Parallel Prog

dts ::= ∀Id · dts | Πx : dt1 → dt2 | dt
dt ::= Id | Int | Float | Bool | Null | (dt1, . . . , dtn) | dt1 → dt2

| Arr i t | Map t1 t2 | List t
| DArr i t f m? d1 d2 | DMap t1 t2 f d1 d2 | DList t m? d1 d2 | . . .

m ::= blk | cyc | (m1, . . . , mn)
i ::= Int | (i1, . . . , in)
x ::= Id | _ | (x1 , . . . , xn)

d ::= Id | (d1, . . . , dn)
f ::= \x [:: t] -> e | g | f1 · f2 | f1 ⊗ f2 | id | Δ | nullF | fst | snd | lft | rht | hash(d)
g ::= fstFun f | sndFun f | lftFun f | rhtFun f

Fig. 9 Distributed data layout (DDL) type syntax

output array C , and shows (on the right) a map M partitioned along D1 and only at
the axis of D2. We use such node arrangements to describe data distributions in the
sections that follow.

3.2 Distributed Data Layout Types

In our system, every high-level collection has a corresponding distributed collection
type which, in addition to describing the data type, has extra parameters which specify
how it should be distributed on the cluster. It is important to note that the user does
not see these types, but the compiler uses them to plan the data distribution. The
syntax for these distributed data layout (DDL) types is given in Fig. 9. In addition
to standard type schemes these include a polyadic version of dependent Π -types
that we call dependent type schemes and explain in Sect. 3.4. The DDL types dt
extend types t with distributed arrays, maps, and lists (DArr, DMap, and DList).
Additional type parameters include partition functions f, distribution modes m, and
dimension identifiers d, which are described below. Partition functions can contain
function generators g which are described in Sect. 3.5.

The DArr type formally describes how to store an array on a cluster. It takes a
partition function f , an optional tuple of distribution modes m, and two tuples of
dimension identifiers d1 and d2. f is an actual (projection) function that consists of
lambda terms from the input program and the operators listed under f in Fig. 9, and
defined in Fig. 10. It identifies the dimensions of the array along which it should be
partitioned. Dimension identifiers d1 and d2 are just tuples of type variables. d1 has
the same arity as f ’s co-domain, and specifies over which dimensions of the cluster
the partition dimensions should be distributed. d2 specifies over which dimensions
to mirror. Array partitions only exist at the zero-position position in any remaining
dimensions. m is an optional tuple of distribution modes (blk or cyc; default blk),
with the same arity as d1; it specifies a mode for each of the array dimensions returned
by f . Here blk describes contiguous blocks of an array on successive nodes (e.g.
a[0:9] on n0, a[10:19] on n1), and cyc describes storing alternate elements on
successive nodes (e.g. a[0] on n0, a[1] on n1, a[5] on n0, where |d1| = 5). For
example, the arrays for our mmul implementation example have DDL types

123

Int J Parallel Prog

β · α ⇒ \x→(β(α x))

α⊗β ⇒ \(x,y)→(α x, β y)

id ⇒ \x→x

Δ ⇒ \x→(x,x)

nullF ⇒ \ →()

fst ⇒ \(x,y)→x

snd ⇒ \(x,y)→y

lft ⇒ fst·fst⊗fst·snd
rht ⇒ snd·fst⊗snd·snd

Fig. 10 Built-in functions

A :: DArr (Int,Int) Float fst blk D1 D2
B :: DArr (Int,Int) Float snd blk D2 D1
C :: DArr (Int,Int) Float id blk (D1,D2)

where A is 1D partitioned by row using fst, B by column using snd, and C is 2D
partitioned by row and column using id, which returns the row and column of C.
Similarly, DMaps describe how to store Maps on clusters. d1 and d2 work in the same
way as for DArr, but f takes key-value pairs rather than indices, mapping them onto
specific node indices in d1. f can use the function hash(d) which takes a tuple of
dimension identifiers d, and returns a function from any value type to node indices for
the dimensions in d. For example, the value M in Fig. 8 (right) is partitioned by z and
so has type

DMap (Int,Int) Float (hash(D1) ·snd) D1 ()

DList’s parameters d1 and d2 work in the same way, but instead of a partition
function, DLists just have a partition mode m.

Top-level scalars and lambda terms are always mirrored on all nodes in the clus-
ter. For DArrs and DMaps, if the partition function is nullF the collection is not
partitioned. The ·-operator sequentially composes two functions, and the ⊗-operator
composes pairwise, as defined in Fig. 10.

3.3 Distributed Function Types

For each high-level combinator (cf. Fig. 3), the compiler internally provides different
functionally equivalent implementations that work for different data distributions. We
use DDL types to characterize how these different implementations store their inputs
and outputs. These types then allow us to infer concrete DDLs for programs that use
these different implementations. For example, our mmul implementation’s DDLs can
be inferred using eqJoinArr3, mapArrInv2, and groupReduceArr2’s DDL
types. The implementations and their types are hidden from the user; they only see
the high-level combinators.

The DDL type schemes for some of these implementations are shown in Fig. 11,
where different implementations of the same combinator are distinguished using suffix
numbers. For example, groupReduce1 locally groups and reduces the values stored

123

Int J Parallel Prog

mapArrInv1 :: Π(f,_,_,_) : (i->j, (i,v)->w, j->i,
DArr i v (g · f) d m) -> DArr j w g d m

mapArrInv2 :: Π(_,_,f−1,_) : (i->j, (i,v)->w, j->i,

DArr i v g d m) -> DArr j w (g · f−1) d m
eqJoinArr1a :: Π(f,g,_,_) : (i->k, j->k, DArr i v f d m,

DArr j w g d m) -> DArr (i,j) (v,w) (f · fst) d m
eqJoinArr1b :: Π(f,g,_,_) : (i->k, j->k, DArr i v f d m,

DArr j w g d m) -> DArr (i,j) (v,w) (g · snd) d m
eqJoinArr2 :: (i->k, j->k, DArr i v fstFun(f) d m,

DArr j w nullF () (d,m)) -> DArr (i,j) (v,w) f d m
eqJoinArr3 :: (i->k, j->k, DArr i v fstFun(f) d1 (d2, m),

DArr j w sndFun(f) d2 (d1, m)) -> DArr (i,j) (v,w) f (d1 ,d2) m
groupReduceArr1 :: (i->j, (i,v)->w, (w,w)->w,

DArr i v f d1 m1) -> DArr j w id d2 m2
groupReduceArr2 :: Π(pf ,_,_,_) : (i->j), (i,v)->w, (w,w)->w,

DArr i v pf d m) -> DArr j w id d m

map :: Π(f,_) : ((i,v)->(j,w),
DMap i v (g · f) d m) -> DMap j w g d m

eqJoin1a :: Π(f,g,_,_) : ((i,v)->k, (j,w)->k, DMap i v f d m,
DMap j w g d m) -> DMap (i,j) (v,w) (f · lft) d m

eqJoin1b :: Π(f,g,_,_) : ((i,v)->k, (j,w)->k, DMap i v f d m,
DMap j w g d m) -> DMap (i,j) (v,w) (g · rht) d m

eqJoin2 :: ((i,v)->k, (j,w)->k, DMap i v lftFun(f) d m,
DMap j w nullF () (d,m)) -> DMap (i,j) (v,w) f d m

eqJoin3 :: ((i,v)->k, (j,v)->k, DMap i v lftFun(f) d1 (d2, m),
DMap j w rhtFun(f) d2 (d1, m)) -> DMap (i,j) (v,w) f (d1 ,d2) m

allPairsa :: Π(f,_) : ((i,v)->k, DMap i v f d m) ->
DMap (i,i) (v,v) (f · lft) d m

allPairsb :: Π(f,_) : ((i,v)->k, DMap i v f d m) ->
DMap (i,i) (v,v) (f · rht) d m

groupReduce1 :: ((i,v)->j, (i,v)->w, (w,w)->w,
DMap i v f d1 m1) -> DMap j w (hash(d) · fst) d2 m2

groupReduce2 :: Π(f,_,_,_) : ((i,v)->j, (i,v)->w, (w,w)->w,
DMap i v (hash(d) · f) d m) -> DMap j w (hash(d) · fst) d m

reduce :: ((k,v)->s, (s,s)->s, DMap k v f d m) -> s
union :: (DMap k v fst d m, DMap k v fst d m) -> DMap k v fst d m

zip :: (DList v cyc d m, DList w cyc d m) -> DList (v,w) cyc d m
mapList :: (v->w, DList v q d m) -> DList w q v m
reduceList :: ((v,v)->v, v, DList v q d m) -> v

redistArr :: DArr i v f1 d1 m1 -> DArr i v f2 d2 m2
redistMap :: DMap k v f1 d1 m -> DMap k v f2 d2 m
redistList :: DList v q1 d1 m1 -> DList v q2 d2 m2

Fig. 11 DDL types for combinator implementations

at each node, exchanges the results between nodes to co-locate by key, and then
group-reduces again at each node. This implementation works no matter how the
input is partitioned. In the DDL type we therefore use the universally quantified type
variable f to specify that the input can be partitioned by any partition function. The
output is always partitioned by key, which we specify by using fst in the return
type.

123

Int J Parallel Prog

In situations where collections are partitioned by multiple partition functions (e.g.,
the result of two aligned collections can be viewed as partitioned by either/both of the
input’s partition functions), we use multiple types for the same template, differentiated
by alphabetic subscripts (e.g., eqJoin1a/b).

3.4 Dependent Type Schemes

In addition to classic type schemes, we also have a polyadic version of dependent
Π -types dts, similar to those used in dependent ML [44]. These are not full dependent
types, so that we can keep our system decidable. They are similar to type schemes
but the type variables are now rigidly bound to the members of the argument tuples at
function applications. For example, Π(f,_) : (x->y, S f) -> T f is like
a normal function type, except the runtime value of the first parameter, which is
itself a function of type x->y, is bound to the variable f, and then used in the other
parameter’s type S f, and the return type T f. Hence, rather than representing any
value, such type variables are bound to the actual values of parameters at runtime, or
more precisely, the AST terms that represent them. These variables can then be used
in the input and output types. This allows us to place context-dependent constraints
on data distributions, to specify when different combinator implementations can be
used.

Our example mmul implementation uses groupReduceArr2. In contrast to
groupReduceArr1 and groupReduce1, groupReduceArr2 and group-
Reduce2, group-reduce just once, locally at each node. To yield a valid result all the
input values for a given group must be co-located on the same node. We specify this
constraint using a Π -type. groupReduce2’s type

groupReduce2 :: Π(f,_,_,_) :
((k1,v1) -> k2, (k1,v1) -> v2, (v2,v2) -> v2, DMap k1 v1 (hash(d)·f) d m)
-> DMap k2 v2 (hash(d)·fst) d m

thus binds the value of its first parameter, the function that generates the result
keys, to f. This f is then used to define the input map’s partition function.
All values for a given key produce the same hash, and will therefore be stored
on the same node. groupReduceArr2 uses the same technique. Array R2 in
our mmul example implementation is therefore constrained to be partitioned by
\((ai,aj),(bi,bj)) -> (ai,bj).
eqJoin1a/b and eqJoinArr1a/b work in a similar way. Here, if we know

that the values that yield a given key are co-located on the same node then no inter-
node communication is necessary and local joins will suffice. To specify this we
partition both inputs by their respective join-key projection functions f and g. So in
eqJoinArr1, the output will be partitioned by f·fst and g·snd. Therefore either
the type labeled eqJoinArr1a or eqJoinArr1b can be used respectively, since
both are valid.

We also use Π -types to propagate partitioning information between inputs and out-
puts for structure-preserving transformations, like mapArrInv1. Here, to ensure the
output is partitioned by g, the input must be partitioned by g applied after the index
transformer function f. In the other direction, if the inverse transformer function f−1

123

Int J Parallel Prog

is known, and the input is partitioned by g, then the output of mapArrInv2 will be
partitioned by g applied after f−1. This forces the distribution of R1 in our mmul
example to be \((ai,aj),(bi,bj)) -> (ai,bj)·id. Both these implemen-
tations work the same way, but they propagate distribution information in different
directions.

3.5 Function Generators

By expressing output partition functions as compositions of input ones, our type
schemes allow us to carry DDL information forwards (from inputs to outputs) through
the programs. However, the analysis also needs to work backwards, in order to automat-
ically find input partition functions which combine to yield a given output partitioning.
For unary combinators like mapArrInv1 we can use the existing DDL informa-
tion, but for binary combinators like eqJoinArr we need to decompose output
partition functions. For example, our mmul example implementation needs DDLs
for eqJoinArr3’s inputs A and B that will make the output R1 partitioned by
\((ai,aj),(bi,bj)) -> (ai,bj)·id. For this we use function generators
(cf. Fig. 9, fstFun to rhtFun).

Function generators analyze at compile-time the abstract syntax trees (ASTs) of
their arguments (which are partition functions), and derive new partition functions
that depend only on a subset of the inputs. If no such AST terms exist then the
nullF function _->() is generated. For instance, fstFun takes a function with a
domain (x,y), and generates a function with domain x by retaining all the parts of
the AST that depend only on x, and throwing away those terms that also depend
on y; sndFun works accordingly on the y domain. For example, given a parti-
tion function f = \(a,(b,c)) -> (a,c), fstFun(f) equals \a -> a and
sndFun(f) equals \(b,c) -> c. These can be used together to give an out-
put partitioning equivalent to a partition function that subsumes the original. For
example, eqJoinArr3 uses function generators so that it can partition its output by
any f. To ensure that the output is partitioned by f, the inputs must be partitioned
by fstFun(f) and sndFun(f) along dimensions d1 and d2. This gives us the
required DDLs for our mmul implementation.

3.6 Local Data Layouts

In addition to distribution information, we also use DDL types to specify how to store
collections in memory. We have omitted this from the types in Fig. 11 to simplify the
presentation, but briefly sketch the mechanism here.

Multidimensional arrays can be stored different ways in memory, e.g., in row-major
or in column-major order. We specify the layout of an n-dimensional DArr by adding
a layout function to the type. This maps the array’s indices to an n-tuple, whose order
dictates how to order the indices in memory. Hence, \(x,y) -> (x,y) means
row-major order, and \(x,y) -> (y,x) means column-major. This can express
very similar constraints to partition functions. For example, groupReduceArr2
has the full type

123

Int J Parallel Prog

Π(f,_,_,_) :
(i1->i2, (i1,v1)->v2, (v2,v2)->v2, DArr i1 v1 pf (f⊗ rem(f)) · Δ) d m)
-> DArr i2 v2 id id d m

where rem is a function generator that takes a function f and returns another function
that is the complement of f, i.e., projects all the parts of the input tuple that f does not
already project. Here, we force the first indices to be the group’s key indices (projected
by f), followed by the rest rem(f). For our mmul example this means storing matrix
B in transposed form. This improves cache-line usage by ensuring that elements in the
same group are adjacent in memory. We use the same technique to specify the indexing
schemas of DMaps. We also use flags in the types to specify the local storage modes
(e.g. hash table/binary tree/sorted vector/stream of values) for DMap and DList.

3.7 Extensibility

A major strength of our approach is its extensibility. New combinators can be added
simply by declaring their functional types, and the DDL types and back-end tem-
plates of their implementations. Furthermore, the system can be extended with new
types without altering the underlying framework. For example, collections like spa-
tially indexed maps (Spatial), or trees (Tree), and their distributed equivalents
(DSpatial and DTree), can be added by simply adding them to a configuration
file. DArrs can also be extended to support block-cyclic distributions, and ghosting,
by adding more function parameters to specify the offsets and bounds. In fact irregular
(i.e., master/slave) distribution algorithms can also be modeled in a similar way to the
“stream of values” (Stm) local storage modes, where type variables identify irregular
partition mappings, populated at runtime. This extensibility is a clear benefit of this
approach over collection-specific techniques.

4 Automatic DDL Planning and Code Generation

4.1 DDL Type Inference

Now that we have characterized the DDLs of combinator implementations, we can
search for distributed implementations of input programs by exploring different com-
binations of combinator implementations. Here each combinator application in a
program can use a different implementation. We use type inference to find a valid
assignment of data distributions for a given choice of combinator implementations, if
one exists. For a concrete example, see the DDL types inferred for our our running
mmul example in Sect. 5.

Figure 12 shows some of the typing rules for our DDL type system, omitting rules
for literals, and identifier patterns in let- and lambda-expressions for brevity. The rules
derive typing judgments for programs. The judgments also include a set of constraints
(denoted by “↪→ C”) which must be satisfiable for the derived judgment to be valid.
The rules closely mirror the standard polymorphic lambda calculus with conditionals
and tuples [30], apart from DApp which deals with dependent type schemes. DApp

123

Int J Parallel Prog

(DVar)
x : T ∈ Γ T = instScheme(T)

Γ x : T → {}

Γ e1 : T1 → C1
Γ e2 : T2 → C2 Γ e3 : T3 → C3

C = C1,2,3 ∪ {T1 = Bool, T2 = T3}
Γ if e1 then e2 else e3 : T2 → C

(DIf)

(DTup)

Γ e1 : T1 → C1 . . . Γ en : Tn → Cn

C = C1 ∪ . . . ∪ Cn

Γ (e1, . . . , en) : (T1, . . . , Tn) → C

Γ e1 : T1 Γ, x : T1 e2 : T2

Γ let x = e1 in e2 : T2 → {} (DLet)

(DAbs)

X fresh var
Γ, x : X e1 : → C

Γ \x -> e1 : X → → C

X fresh var
Γ e1 : T1 → C1 Γ e2 : T2 → C2

C = C1,2 ∪ {T1 = T2 → X} ∪ gdc(T1, e2)
Γ e1 e2 : X → C

(DApp)

Fig. 12 DDL type rules

applies the gdc (generate dependent constraints) function to return additional con-
straints which marry up any Π -bound type variables (in T1), with their respective
AST terms at function applications (e2), so uses of these variables must match the
AST terms specified.

Our type inference algorithm extends a constraint based version of Damas and
Milner’s Algorithm W [14] in [30]. This version traverses the AST to construct initial
types, and then uses Robinson’s unification algorithm [33] to find substitutions that
unify the constraints. Our version extends the one in [30] to support tuples, deal
with dependent type schemes, and unify functions embedded in the types. To handle
dependent type schemes, we extend the function application case of the initial AST
pass to instantiate any Π -bound variables using gdc. To unify functions in the types,
we need to make two alterations to the unification algorithm, to deal with constraints
involving functions, and to change the order in which it solves constraints.

Testing for function equality is undecidable in the general case. Therefore, in order
to make our type system decidable we adopt a sound but incomplete approximate
solution to unify partition functions. Our current solution tries to unify them syntacti-
cally, and if this fails normalizes them and tests for syntactic equality. Normalization
replaces all functions and function compositions with concrete lambda abstractions,
and then simplifies the resulting lambda abstractions using Flocc’s evaluation rules.
This works in many situations, including the examples in this paper. However, we are
working on a more nuanced approach which relies on the fact that almost all of these
functions are projection functions.

Then, unlike standard syntactic unification, we cannot just stop unifying when a
constraint does not unify immediately. In our system, constraints between partition
functions may fail initially, but could succeed later on, since they might by substitution
become terms which will equate when normalized. Similarly, function generators can
only be applied when their argument functions have become concrete. To address this
problem, we make our unification algorithm iterative. In each iteration we try to unify
as many constraints as possible, and postpone constraints that currently fail until the
next iteration. The algorithm succeeds when all constraints have been solved, and fails
if no more progress is made during an iteration i.e., no more constraints are solved,
and so the unification is stuck. If there exists a sequence of unifications that satisfies

123

Int J Parallel Prog

Fig. 13 Compiler architecture

the constraints this algorithm will find it. These modifications allow us to lift concrete
functions into the types and solve equations involving them via unification.

4.2 Distribution Search

Now that we can synthesize data distributions for programs that use some choice
of combinator implementations for their combinator applications, we can search
through different choices of combinator implementations to explore different data
distribution plans. Each combinator has a list of combinator implementations, with
different communication patterns, and therefore different performance characteris-
tics. The combinator implementations to use for the combinator applications in the
examples in Sect. 5 were chosen manually, but the process can be automated. Our
implementation does this via an exhaustive depth-first search to try different imple-
mentations for each combinator application in a program. This search prioritizes faster
combinator implementations (based on an a priori ordering of implementations by
descending performance) to try and find the optimal solution as soon as possible. This
does not yet consider plans involving redistribution functions, so if the DDL types
for a plan do not type check, the plan is discarded. However, possible redistributions
could also be enumerated exhaustively. This distribution search technique is suffi-
cient for the example programs and corresponding implementations presented in this
paper. However, we are working on a better solution that automatically inserts redis-
tributions at appropriate locations, and uses more sophisticated goal-directed search
heuristics.

4.3 Code Generation

We have implemented a prototype Flocc code generator in Haskell that produces MPI
implementations in C++. The high-level compilation process is illustrated in Fig. 13.
The generator parses the input program, and performs type inference for the functional

123

Int J Parallel Prog

types. It then preprocesses the AST to expand all tuple-typed variables to tuples of
variables, and to replace all function-typed variables with the lambdas they are bound
to. This ensures that all Π -bound lambdas are directly available at function application
expressions. Then it expands lambda term applications, so that different applications
can have different DDLs.

At this point the generator loads the lists of combinator implementations and their
DDL types, and then uses the technique described in Sect. 4.2 to find possible distrib-
uted solutions, with their corresponding DDL types. For a chosen implementation, it
converts the AST into a data flow graph (DFG), replacing all literals, tuple expressions
and function applications etc. with nodes, and let-bindings with edges.

The generator then traverses the DFG, performing dead code elimination and apply-
ing expression templates for each library function/distributed combinator application.
Templates take their function application’s concrete DDL types, and their input and
output nodes. They output blocks of C++ to perform the corresponding operation,
where blocks may be nested in, and consume values from loops, for combinator
implementations that take streams of values. Most lambda-expressions are inlined
by the code generator, apart from those that are passed as custom reduction operators
to MPI::Reduce and alike.

5 Example Derivations

We now discuss some generated DDL plans for the example programs. We list the
distributed implementation used for each combinator application, and the DDL types
that result. We use IP as shorthand for (Int,Int).

5.1 Matrix Multiplication—Partition for groupReduceArr

The first solution is driven by an optimized partition for the group-reduce oper-
ation, which yields the usual implementation of matrix multiplication. It uses
groupReduceArr2 to avoid inter-node communication by requiring R2 to be par-
titioned using its index projection function, which projects A’s row and B’s column
from the array’s indices. R1, mapArrInv2’s input, must thus be partitioned using
this function too. eqJoinArr3 satisfies this constraint, by partitioning A by row
(using fst) along one dimension, and B by column (using snd) along an orthogonal
one, and then mirroring both along their respective orthogonal dimensions. This yields
a 2D grid, enumerating all combinations of partitions, i.e., the Cartesian product.

A :: DArr IP Float fstFun((\((ai,aj),(bi,bj))->(ai,bj))·id) d1 (d2,m)
= DArr IP Float fst d1 (d2,m)

B :: DArr IP Float sndFun((\((ai,aj),(bi,bj))->(ai,bj))·id) d2 (d1,m)
= DArr IP Float snd d2 (d1,m)

R1 :: DArr (IP,IP) (Float,Float) (\((ai,aj),(bi,bj))->(ai,bj))·id (d1,d2) m
R2 :: DArr (IP,IP) Float \((ai,aj),(bi,bj))->(ai,bj) (d1,d2) m
C :: DArr IP Float id (d1,d2) m

123

Int J Parallel Prog

5.2 Matrix Multiplication—Partition for eqJoinArr

The next solution is more unusual. It uses eqJoinArr1a to avoid mirroring A and
B, by aligning them to co-locate partitions with common key values. A and B are
partitioned by column (snd) and row (fst) respectively, and thus the join result R1
is partitioned by both the column of A (snd ·fst) and the row of B (fst ·snd),
although we only infer the former property since we use eqJoinArr1a rather
than b. mapArrInv2 then constrains R2 to have this partitioning as well, and
so groupReduceArr2 cannot be used without inserting a redistribution. Instead
groupReduceArr1 is used, as it accepts any input partitioning, at the expense of
having to exchange intermediates between nodes. With dense matrices R1 will be
much larger than A and B, and so this solution will perform poorly, but if A and
B are large and sufficiently sparse, exchanging the intermediates could outperform
mirroring.

A :: DArr IP Float snd d m
B :: DArr IP Float fst d m
R1 :: DArr (IP,IP) (Float, Float) (snd ·fst) d m
R2 :: DArr (IP,IP) Float (snd ·fst) ·id d m
C :: DArr IP Float id d m

5.3 Matrix Multiplication: Mirror One Matrix

This also uses groupReduceArr2, but unlike the first solution, it uses eqJoin-
Arr2 to give the required data distribution. This partitions A across all the nodes in
d, and mirrors B on all of them. This solution is better than the first solution if B is
much smaller than A so that it is less expensive to replicate all of B than partitions of
A.

A :: DArr IP Float fstFun((\((ai,aj),(bi,bj))->(ai,bj))·id) d m = fst d m
B :: DArr IP Float nullF () (d,m)
R1 :: DArr (IP,IP) (Float, Float) (\((ai,aj),(bi,bj))->(ai,bj))·id d m
R2 :: DArr (IP,IP) Float \((ai,aj),(bi,bj))->(ai,bj) d m
C :: DArr IP Float id d m

5.4 Histogram: Group Locally Before Exchange

The first Histogram solution uses groupReduce1 so that the input D does not have
to be partitioned by its Float value. The output R is partitioned by bucket id (fst),
and a concrete function must still be chosen for f. Since in this example the type k is
still abstract the two possibilities for f are fst and snd. In a concrete program k is a
concrete type and so f could have more possible values. For f=fst, D is partitioned
by hash(d)·fst, which is a valid solution. However, for f=snd, D is partitioned
by hash(d)·\v->toInt(Float.* (v,i)), which is not valid, as it references
i before it has been declared, and so this solution is discarded by the compiler.

D :: Map k Float hash(d)·f·(id · fst⊗ \(_,v)− > toInt(Float. ∗ (v,i))) · Δ d m
D’:: Map k Int hash(d)·f d m
R :: Map Int Int hash(d)·fst d m

123

Int J Parallel Prog

5.5 Histogram: Exchange Before Group

The second plan usesgroupReduce2by repartitioningD’byhash(d)·snd. How-
ever, this plan will be sub-optimal unless the number of buckets is close to the number
of data points, since the partitions of D’ that redistMap communicates will be larger
than the results of the local group-reduces that groupReduce1 communicates.

D :: DMap k Float hash(d)·f·(id · fst⊗ \(_,v)− > toInt(Float. ∗ (v,i))) · Δ d m
D’:: DMap k Int hash(d)·snd d m
R :: DMap Int Int hash(d)·fst d m

5.6 Dot Product: Cyclic Distribution

In this plan A and B are aligned since they both have cyclic distributions over the same
dimension d, so zip can be used without any communication. However, if dotpwas
used in a context where A or B had a different distribution, redistList would be
automatically used to convert it into the required cyclic distribution.

A :: DList Float cyc d (); B :: DList Float cyc d ();
AB :: DList Float cyc d ()

5.7 Performance of Generated Code

We have generated implementations of the running examples using our proto-
type tool and compared them (cf. Fig. 14) to PLINQ [16] (using all cores on a
64-bit/quad-core/2.67 GHz workstation with 12GB memory), and hand-coded MPI
implementations (averaged over 1,2,3,4,8,9,16,32 nodes on a 12k-core/16× 2.67 GHz
core per node cluster, with 4GB memory per node, and InfiniBand interconnect). We
compare with PLINQ, even though it does not support distributed memory, because it
also auto-parallelizes programs written in a functional language inspired by relational
algebra, and so is the most closely related approach. All Flocc programs drastically
outperformed the PLINQ implementations, most likely because PLINQ chose poor
job partitionings, does not inline lambdas, and does not distinguish between, and so
cannot optimize for, arrays, lists, and maps. The generated programs also came within
51 % of the speed of manually implemented textbook-style MPI versions. The dot
product and simple linear regression compiled with ICC, and the standard deviation,
were nearly identical to the hand-coded versions. The linear regression when compiled
with ICC was 39 % slower because it used an array of structs, rather than a struct of
arrays. The histogram was 27 % slower, because it used a hash table, and the compari-
son used an array. The matrix multiply was 6× faster than the hand written code when
compiled with GCC, since our tool optimized the layout of B to be column-major, but
was 51 % slower when compiled with ICC. This is because the manual version iterates
over global arrays, and ICC seems to optimize for this case. An additional Global
array storage mode (see Sect. 3.6) and corresponding templates, would cater for this
situation. The results could be improved further by optimizing the existing and adding
additional back-end templates, but they are sufficient to indicate that the approach is
viable in practice.

123

Int J Parallel Prog

PLINQ Manual MPI
Program Speedup Compiler Data Speedup Compiler Data
Dot product 4.96× gcc -Ofast 2.2GB 0.99× icc -O3 4.5GB
Simple linear regression 137× gcc -Ofast 3GB 0.89× icc -O3 3GB

0.61× gcc -O3 3GB
Standard deviation 98.6× gcc -Ofast 3GB 0.88× icc -O3 3GB

1.00× gcc -O3 3GB
Histogram 31.5× gcc -Ofast 32MB 0.73× icc -O3 8GB
Matrix multiply 342× gcc -Ofast 1.4MB 6.14× gcc -O3 140MB

0.49× icc -O3 140MB

Fig. 14 Performance comparison of Flocc generated code versus others

6 Related Work

Traditionally most high-performance computing (HPC) applications were pro-
grammed with MPI [41] or High Performance Fortran (HPF) [26]. MPI specifies
message passing primitives for programming clusters. It is very versatile, but it has
no automatic data layout, and requires very verbose, hard-to-debug implementations.
We use it as target language in our work. HPF extends Fortran 95 with directives
to specify how to distribute arrays. It supports a limited number of data-parallel
operations for flat multi-dimensional arrays. Distribution directives were originally
specified manually but a tool was developed to optimize them for different programs
[24]. Similar techniques were developed to find data distributions for programs with
array sections [13] and affine loop-nests [1,3,5]. However our approach is more gen-
eral, supporting collections other than arrays, and an extensible set of data-parallel
combinators.

MapReduce [15] and Hadoop [43] are frameworks for performing aggregations on
huge datasets, hosted on large-scale clusters. They primarily rely on a map function
that projects key-value pairs from a dataset, and a reduce function that aggregates
a sorted list of values for each key. They handle all communication, scheduling,
and failure recovery, and so greatly simplify data-parallel programming. However,
they have a single restricted programming model, and a single distributed imple-
mentation which is not suitable for all applications. For example, one investigation
showed a Hadoop K-means clustering program performed 20× slower than an MPI
version [17]. For this reason numerous alternates have been suggested to allow, e.g.,
iteration [6,19], different file types [7,20], accepting multiple inputs [45], removal
of intermediate files [17], and supporting different architectures [11,31]. However,
each of these also has a (different) single programming model, and implemen-
tation, specialized for one particular task, and so can still suffer from the same
inflexibility as the original MapReduce. By contrast, our approach has many input
combinators, with many possible distributed implementations, that can be combined
in numerous ways, to yield implementations optimized for specific applications. In par-
ticular, our technique supports iteration, multiple collection types, and structured data
distributions.

Parallel databases can also be used for some distributed data-parallel tasks. Like
Flocc programs, parallel SQL query plans [9] are synthesized by enumerating differ-

123

Int J Parallel Prog

ent combinations of plan operators to minimize the overall cost [39]. SQL queries are
also based on relational algebra, though they have a weak type system, no support
for array-based computation, and cannot be extended with new operators. Further-
more, parallel databases typically do not generate standalone code, and the distributed
schemas must be designed manually, though a tool to assist with this has been proposed
[28]. DryadLINQ [23] is a framework for cluster computation in .NET languages, that
also takes SQL queries, optimizing them at runtime to query large distributed datasets.
However it suffers from many of the same problems as parallel databases.

Chapel [8] is a Partitioned Global Address Space (PGAS) language for HPC that
evolved from ZPL [25], a language for working with multidimensional arrays, which
featured named index sets called regions, so that arrays that shared a region were
aligned/distributed in the same way. Chapel improves on ZPL and HPF by supporting
data-parallel operations on maps and graphs as well as arrays. It also includes some
built in data distributions for these types, but these must still be chosen by the pro-
grammer. X10 [10] is similar, although it only supports distributed arrays and runs on
the Java VM. Fortress [42] was never fully implemented and is now dormant.

A number of functional data-parallel languages have been developed that target
shared memory parallelism. PLINQ [16] is like DryadLINQ for multicores. NESL [4]
specialized in nested data-parallel vector operations on vector machines. Data Parallel
Haskell [29] is an extension to Haskell based on NESL, but for modern multi-cores.
Single Assignment C (SAC) [22] supports n-dimensional array computations, with
an impressive implementation that has outperformed Fortran in some cases. Some
recent work on SAC has also used a type system to reason about local array layouts,
to detect when they can be transformed to permit vectorization for SIMD instructions
[40]. However none of these currently support distributed memory data parallelism,
or suggest how such support could be implemented.

One functional language that does target distributed memory architectures is Sisal
[21]. Sisal supports data-parallel for-expressions, which range over index spaces
accessing array elements, generating intermediate values, and aggregating them.
Although it only included this one data-parallel construct, it did synthesize distributed
memory implementations and seek to optimize them by collocating tasks that would
perform a lot of intercommunication [36]. However, Sisal did not support structured
data partitionings, alignments, or data replication etc, and so was very limited in its
ability to optimize data layout. Furthermore, it only supported 1D arrays.

Finally, our data-parallel combinator implementations are very similar to algorith-
mic skeletons [12]. Skeletons encode patterns of parallel processing and communica-
tion, which can be composed and parameterized with concrete functions, leading to
networks of processes that perform a parallel task. For example, skeletons have been
implemented as C++ templates to allow users to quickly trial different process net-
works on the CELL processor [34]. They have also been used in a parallelizing SML
compiler to implement list-combinators by synthesizing process networks during an
AST pass [37], and in an image processing DSL which avoids redundant communi-
cation steps using a technique similar to our automatic redistribution insertion [38].
However, none of these approaches support different data partitionings, multiple col-
lection types, or automatically explore different data distributions.

123

Int J Parallel Prog

let triEnum = (\E :: Map (Int ,Int) () ->
-- find degree of all vertices
let D1 = groupReduce (fst.fst , _->1, addi , E) in
let D2 = groupReduce (snd.fst , _->1, addi , E) in
let D = map (\(k,v)->(k,addi v), eqJoin (fst ,fst ,D1,D2)) in
-- identify edges by vertex with lower degree
let E1 = eqJoin (fst , fst , E, D) in
let E2 = eqJoin (snd.fst , fst , E1, D) in
let E3 = map (\(((_,v1),v2),((_,d1),d2)) ->

(if lti (d1,d2) then (v1,v2) else (v2,v1), ()), E2) in
-- for each edge , find all angles
let A = allPairs (fst , E3) in
-- for each angle , see if it is closed
let T1 = eqJoin (\(((a,_),(_,b)),_)->(a,b), fst , A, E3) in
let T2 = eqJoin (\(((a,_),(_,b)),_)->(b,a), fst , A, E3) in
map (\((((v1,_),_),(v2,v3)),_) -> ((v1,v2,v3),()), union (T1,T2)))

Fig. 15 Triangle enumeration (MinBucket algorithm)

7 Conclusions and Future Work

7.1 Conclusions

Existing languages for data-parallel programming rarely target distributed-memory
architectures, and those that do are restricted to a fixed distribution model (MapRe-
duce), and only support a limited set of operators (SQL/LINQ/HPF). In this paper
we have presented a more general approach, where distributed-memory implemen-
tations are automatically synthesized from data-parallel programs written in Flocc, a
high-level functional core language. To our knowledge this is the first approach that
captures data distribution as a typing problem. In particular, we formalized distributed
data layouts by polymorphic dependent type schemes and used a variant of the stan-
dard Damas–Milner type inference algorithm to search for different DDL plans in a
type-directed way.

Unlike similar work, our approach supports multiple collection types (i.e., arrays,
maps, and lists) and thus works for a wide variety of programs (cf. Fig. 7), and can
easily be extended with more data types, data distributions, and data-parallel operators,
without changing the core framework. Our approach can boost programmer produc-
tivity and program reliability through the conciseness of input programs (cf. Fig. 7),
fully automatic generation of distribution plans and code, and the reduced number
of possible bugs compared to low level languages (i.e. no pointers/explicit message
passing). Finally, initial performance results (cf. Fig. 14) are substantially better than
PLINQ, a similar tool for multi-cores, and are close to manual MPI implementations,
indicating that the approach is viable in practice.

7.2 Future Work

We are currently optimizing and implementing more back-end templates for our code
generator. In addition, there are several interesting fundamental research directions.
First, we are developing more efficient goal-directed searches using cost estimates and

123

Int J Parallel Prog

performance feedback for our data distribution planning. Second, we are developing
a refined notion of function comparison so that our distribution search algorithm can
find solutions with non-trivial partition function equalities. For example, Fig. 15 shows
an algorithm for enumerating all triangles in a graph. The constraints caused by the
eqJoins and union at the end of this example preclude the use of local eqJoin1s
under syntactic equality. However, we work towards a more nuanced system that finds
the most general unifier of two partition functions, and so permits this. Third, since
arrays are “just” maps with dense integer domains we plan to detect such maps in
input programs, and to infer their bounds and strides. This can then, for example, be
used to derive dense and sparse matrix algorithms from the same high-level programs
using maps.

Additional Information. Additional information, including code for the examples in
Figs. 7 and 14 are available at http://www.flocc.net/hlpp14/, and in the first author’s
PhD thesis [2].

References

1. Anderson, J.M., Lam, M. S.: Global optimizations for parallelism and locality on scalable parallel
machines. In: PLDI ’93, pp. 112–125 (1993)

2. Aubrey-Jones, T.: Synthesizing imperative distributed-memory implementations from functional data-
parallel programs. PhD thesis, submitted at University of Southampton, UK (2015)

3. Bixby, R.E., Kennedy, K., Kremer, U.: Automatic data layout using 0–1 integer programming. In: IFIP
Trans ’94, pp. 111–122 (1994)

4. Blelloch, G., Hardwick, J., Chatterjee, S., Sipelstein, J., Zagha, M.: Implementation of a portable nested
data-parallel language. In: PPOPP ’93, pp. 102–111 (1993)

5. Bondhugula, U.: Compiling affine loop nests for distributed-memory parallel architectures. In: SC ’13,
pp. 1–12 (2013)

6. Bu, Y., Howe, B., Balazinska, M., Ernst, M. D.: Haloop: efficient iterative data processing on large
clusters. In: PVLDB ’10, pp. 285–296 (2010)

7. Buck, J.B., Watkins, N., LeFevre, J., Ioannidou, K., Maltzahn, C., Polyzotis, N., Brandt, S.: SciHadoop:
array-based query processing in Hadoop. In: SC ’11, pp. 1–11 (2011)

8. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel language. In: IJH-
PCA ’07, pp. 291–312 (2007)

9. Chamberlin, D., Boyce, R.: Sequel: A structured english query language. In: SIGFIDET ’74, pp.
249–264 (1974)

10. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C., Sarkar,
V.: X10: an object-oriented approach to non-uniform cluster computing. In: OOPSLA ’05, pp. 519–538
(2005)

11. Chen, R., Chen, H., Zang, B.: Tiled-mapreduce: optimizing resource usages of data-parallel applica-
tions on multicore with tiling. In: PACT ’10, pp. 523–534 (2010)

12. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press, Cam-
bridge (1991)

13. Chatterjee, S., Gilbert, J.R., Schreiber, R., Teng, S.-H.: Automatic array alignment in data-parallel
programs. In: POPL ’93, pp. 16–28 (1993)

14. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL ’82, pp. 207–212
(1982)

15. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: OSDI ’04 ,
USENIX (2004)

16. Duffy, J., Essey, E.: Parallel LINQ: running queries on multi-core processors. In: MSDN Magazine
’07, pp. 70–78 (2007)

123

http://www.flocc.net/hlpp14/

Int J Parallel Prog

17. Ekanayake, J., Pallickara, S., Fox, G.: Mapreduce for data intensive scientific analyses. In: eScience
’08, pp. 277–284 (2008)

18. Ekanayake, J., Gunarathne, T., Fox, G., Balkir, A., Poulain, C., Araujo, N., Barga, R.: DryadLINQ for
scientific analyses. In: e-Science ’09, pp. 329–336 (2009)

19. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J., Fox, G.: Twister: a runtime for
iterative mapreduce. In: HPDC ’10, pp. 810–818 (2010)

20. Fadika, Z., Dede, E., Govindaraju, M., Ramakrishnan, L.: Mariane: Mapreduce implementation adapted
for hpc environments. In: GRID ’11, pp. 82–89 (2011)

21. Feo, J., Cann, D., Oldehoeft, R.: A report on the Sisal language project. JPDC 10(4), 349–366 (1990)
22. Grelck, C.: Shared memory multiprocessor support for functional array processing in SAC. JFP 15(03),

353–401 (2005)
23. Isard, M., Yu, Y.: Distributed data-parallel computing using a high-level programming language. In:

SIGMOD ’09, pp. 987–994 (2009)
24. Kennedy, K., Kremer, U.: Automatic data layout for high performance fortran. In: Supercomputing

’95 (1995)
25. Lin, C., Snyder, L.: Zpl: an array sublanguage. In: LCPC ’94, LNCS 768, pp. 96–114 (1994)
26. Loveman, D.: High performance fortran. PDS 1(1), 25–42 (1993)
27. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for

data processing. In: SIGMOD ’08, pp. 1099–1110 (2008)
28. Papadomanolakis, S., Ailamaki, A.: Autopart: automating schema design for large scientific databases

using data partitioning. In: SSDBM ’04, pp. 383–392 (2004)
29. Peyton Jones, S.: Harnessing the multicores: nested data parallelism in haskell. In: APLAS ’08, LNCS

5356, pp. 138–138 (2008)
30. Pierce, B.: Types and Programming Languages. MIT Press, Cambridge (2002)
31. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating mapreduce for

multi-core and multiprocessor systems. In: HPCA ’07, pp. 13–24 (2007)
32. Reichenbach, C., Smaragdakis, Y., Immerman, N.: PQL: a purely-declarative java extension for parallel

programming. In: ECOOP ’12, LNCS 7313, pp. 53–78 (2012)
33. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41

(1965)
34. Saidani, T., Falcou, J., Tadonki, C., Lacassagne, L., Etiemble, D.: Algorithmic skeletons within an

embedded domain specific language for the cell processor. In: PACT ’09, pp. 67–76 (2009)
35. Sarkar, V., Cann, D.: Posc - a partitioning and optimizing sisal compiler. In: ICS ’90, pp. 148–164

(1990)
36. Sarkar, V., Hennessy, J.: Compile-time partitioning and scheduling of parallel programs. In: CC ’86,

pp. 17–26 (1986)
37. Scaife, N., Horiguchi, S., Michaelson, G., Bristow, P.: A parallel sml compiler based on algorithmic

skeletons. JFP 15, 615–650 (2005)
38. Seinstra, F., Koelma, D., Bagdanov, A.: Finite state machine-based optimization of data parallel regular

domain problems applied in low-level image processing. TPDS 15(10), 865–877 (2004)
39. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path selection in

a relational database management system. In: SIGMOD ’79, pp. 23–34 (1979)
40. Sinkarovs, A., Scholz, S.-B.: Semantics-preserving data layout transformations for improved vectori-

sation. In: FHPC ’13, pp. 59–70 (2013)
41. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI—The Complete Reference. The

MIT Press, Cambridge (1996)
42. Weiland, M.: Chapel, Fortress and X10: novel languages for hpc. In: Technical report, HPCx Consor-

tium, University of Edinburgh, Oct 2007
43. White, T.: Hadoop: The Definitive Guide (2010)
44. Xi, H.: Dependent ML: an approach to practical programming with dependent types. JFP 17, 215–286

(2007)
45. Yang, H.-C., Dasdan, A., Hsiao, R.-L., Parker, D.S.: Map-reduce-merge: simplified relational data

processing on large clusters. In: SIGMOD ’07, pp. 1029–1040 (2007)

123

	Synthesizing MPI Implementations from Functional Data-Parallel Programs
	Abstract
	1 Introduction
	1.1 Contributions

	2 Data-Parallel Programming in Flocc
	2.1 Matrix Multiplication
	2.2 Histograms
	2.3 Dot Product
	2.4 Comparison of Code Sizes

	3 Distributed Data Layouts as Types
	3.1 Distributing Collections on Clusters
	3.2 Distributed Data Layout Types
	3.3 Distributed Function Types
	3.4 Dependent Type Schemes
	3.5 Function Generators
	3.6 Local Data Layouts
	3.7 Extensibility

	4 Automatic DDL Planning and Code Generation
	4.1 DDL Type Inference
	4.2 Distribution Search
	4.3 Code Generation

	5 Example Derivations
	5.1 Matrix Multiplication---Partition for groupReduceArr
	5.2 Matrix Multiplication---Partition for eqJoinArr
	5.3 Matrix Multiplication: Mirror One Matrix
	5.4 Histogram: Group Locally Before Exchange
	5.5 Histogram: Exchange Before Group
	5.6 Dot Product: Cyclic Distribution
	5.7 Performance of Generated Code

	6 Related Work
	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References

