
Formal Safety Certification of Auto-Generated

Aerospace Software

Ewen Denney and Bernd Fischer

{edenney,fisch}@email.arc.nasa.gov
USRA/RIACS, NASA Ames Research Center, Moffett Field, CA 94035, USA

Code generators can address many of the increasing demands placed on software in the
aerospace industry, yet trust in the code produced by commercial generators is notoriously
difficult to achieve and traditionally relies on qualification of the generator. We describe
an alternative approach that directly ensures trust in each individual generated program,
using a combination of three fully automated formal techniques: i.) the generation of safety
proofs, ii.) the generation of documentation that explains the generated code, and iii.) the
generation of hyperlinks between all the elements of the code generation and certification
process. Our approach is integrated with the AutoFilter generator for state estimation
code, but it could, in principle, also be integrated with commercial code generators such
as RealTime Workshop.

I. Introduction

In principle, formal methods offer many advantages for aerospace software development: they can help
to achieve very high reliability, and they can be used to provide evidence of the reliability claims which can
then be subjected to external scrutiny. However, formal methods are not much used in practice, and despite
many research advances, three major shortcomings remain. First, their application is still expensive because
they are labor- and knowledge-intensive. Second, they are difficult to scale up to complex systems because
they are based on deep mathematical insights about the behavior of the systems. Third, they are based on
proofs that can be difficult to interpret, and typically stand in isolation from the original code.

In this paper, we describe an approach and tool for formally demonstrating safety properties of aerospace
software, which largely circumvents these problems. We focus on safety-relevant aspects because it has been
observed1 that safety violations such as out-of-bounds memory accesses or use of uninitialized variables
constitute the majority of the coding errors found in the aerospace domain. In our approach, safety means
that the program will not violate a set of rules (similar to coding standards) that can range from simple
memory access rules to high-level flight rules. The different safety properties are formalized by different safety
policies in Hoare logic,2 which are then used by a verification condition generator (VCG) along with the
code and logical annotations in order to derive formal safety conditions; these are then sent to an automated
theorem prover (ATP). If all derived safety conditions are proven, the program is guaranteed to satisfy the
safety property. Our certification system is currently integrated into a model-based code generation toolset
for state estimation code that generates the annotations together with the code. However, this automated
formal certification technology is not exclusively constrained to our code generator and could, in principle,
also be integrated with other code generators such as RealTime Workshop or even be applied to legacy code.

Our approach circumvents the historical problems with formal methods by increasing the degree of
automation on all levels. The restriction to safety properties results in simpler proof problems that can
generally be solved by fully automatic theorem provers;3,4 restricted classes of functional behavior could

1 of 8

American Institute of Aeronautics and Astronautics

Infotech@Aerospace
26 - 29 September 2005, Arlington, Virginia

AIAA 2005-6913

Copyright © 2005 by the American Institute of Aeronautics and Astronautics, Inc.
The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes.
All other rights are reserved by the copyright owner.



be handled similarly. An automated explanation mechanism uses semantic markup added by the VCG
to produce natural-language explanations of the safety conditions and thus supports their interpretation
in relation to the code. Currently, the explanations reflect the logical structure of the safety obligation
but the mechanism can in principle be customized using different sets of domain concepts. An automated
linking mechanism between the safety conditions and the code provides some of the traceability mandated
by process standards such as DO-178B.5 An automatically generated certification browser lets users inspect
the generated code along with the safety conditions (including textual explanations), and uses hyperlinks to
automate tracing between the two levels.

Our long-term goal is a seamless integration of code generation with verification, tracing, and documen-
tation that results in a “certification pipeline” in which specifications are automatically transformed into
executable code, together with the supporting artifacts necessary for achieving and demonstrating the high
levels of assurance needed in the aerospace domain.

II. Automatic Generation of State Estimation Code

State estimation is the task of determining with the best possible accuracy the position, attitude, and
speed of a moving vehicle from potentially noisy sensor measurements. Typical sensors are gyros, accelerom-
eters, and star trackers. It is at the core of most guidance, navigation, and control (GN&C) tasks; the state
estimation code is thus one of the most safety-critical, high-assurance components of any GN&C system.
However, as many missions (e.g., Mars Climate Orbiter) have shown, such code is error-prone and difficult
to develop. Automated code generation techniques can help overcoming these problems. AutoFilter6 is
an automated code-generator which takes as input a compact, high-level description of a state estimation
task in the form of differential equations and produces highly documented C or C++ code.

A state estimation problem is defined by (i) the system state, which is given in the form of a vector of
state variables, (ii) the process model, which describes how the system state evolves over time, and (iii)
the measurement model, which relates the sensor readings to the system state. For example, a very simple
planetary rover might be modeled in terms of the speed vL and vR of its left and right wheels, respectively, and
the yaw y of the chassis. The system state is thus described adequately by the state vector x = 〈vL, vR, y〉.
The discrete process model is then given as a linear function xt+1 = Hxt + w where H is a state transition
matrix, and w is Gaussian noise. If the rover has sensors which measure the speed of the wheels directly, and
a gyro to measure the yaw, the measurement model is given in similar terms, i.e., x = z+v for measurements
z and Gaussian noise v.

An AutoFilter specification allows a concise formulation of such models; it also includes details on the
desired software architecture. From such specifications, AutoFilter derives code by repeated application
of schemas. A schema can be seen as a high-level macro or template which can be applied to (sub-) problems
of a certain structure, e.g., linear process models. AutoFilter performs symbolic calculations (e.g., lin-
earization, discretization, Taylor series expansion) to make schemas applicable. When a schema is applied,
code is generated by instantiating an algorithm skeleton which represents, e.g., an appropriate variant of a
Kalman filter algorithm. The code fragments from the individual schema applications are assembled and the
entire code is optimized and then translated into a target platform; depending on the specific platform, the
necessary matrix operations are mapped to library calls or to nested loops. Currently, AutoFilter supports
C/C++ (both stand-alone and with the Matlab and Octave libraries) and the CLARAty7 and MDS archi-
tectures. Typically, the final code is between 300 and 800 lines of C/C++ code, including auto-generated
comments.

III. Formal Safety Certification

Formal software certification is based on the idea that a mathematical proof of some aspect of a software
system can be regarded as a certificate of correctness which can be subjected to external scrutiny. It uses

2 of 8

American Institute of Aeronautics and Astronautics



theory

domain

ATP
checker

proof

trusted

untrusted

safety

policy

spec.

problem

documents

certificates

VCG

axioms / lemmas

proofs

proofs

proofs

rewrite rules

annotated code

code

certifiable code generator

documentation

certification &

generator

code

SCs SCssymbolic

simplifier

renderer

Figure 1. Certifiable code generation: System architecture

the same underlying technology as full program verification but only addresses individual safety properties
and not the complete program behavior, which makes it more tractable. A certifiable code generator derives
and formally certifies code. It consists of the original code generator that is extended for certification and
documentation purposes and further complemented by a number of separate certification components that
generate and process the safety conditions. Its architecture distinguishes between trusted and untrusted
components, shown in Figure 1 in red (dark grey) and blue (light grey), respectively.2–4 Components are
called trusted—and must thus be correct—if any errors in them can compromise the assurance provided by
the overall system. Untrusted components, in contrast, are not crucial to the assurance because their results
are double-checked by at least one trusted component. In particular, the correctness of the entire system
does not depend on the correctness of the two largest components: the code generator and the ATP; instead,
only the safety policy, the VCG, and the proof checker need to be trusted.

Our certification approach works on the source code level but the complete certification chain should
properly go down to the object code level. This can be achieved by coupling our system with a certifying
compiler8,9 to ensure that the compilation step does not compromise the demonstrated safety policy.

A. Safety Policies

The certifiable code generator generator guarantees that each generated program complies with a given
safety policy. This is a formal characterization that the program does not “go wrong” (i.e., does not violate
certain safety conditions) and consists of a set of logical rules and auxiliary definitions.2 A key feature of our
approach is that policies for different safety aspects are kept distinct, which enables a separation of concerns:
different policies can be mixed and matched as appropriate to the certification goal at hand. Since the safety
policies are defined in an explicit and declarative way, the system is also extensible: users can define new
policies, or modify existing ones.

Safety policies exist at two levels of granularity. Language-specific policies are expressed in terms of the
constructs of the underlying programming language itself, e.g., array accesses. They are sensible for any
given program written in the language, regardless of the application domain. Various coding standards (e.g.,
restrictions on the use of loop indices) also fall into this category. Domain-specific properties are, in contrast,
specific to a particular application domain and not applicable to all programs. These typically relate to high-
level concepts outside the language (e.g., matrix multiplication). In principle, they are independent of the
target programming language but in practice they tend to be be expressed in terms of program fragments.

3 of 8

American Institute of Aeronautics and Astronautics



We have integrated four different safety policies with AutoFilter so far. Array-bounds safety requires
each access to an array element to be within the specified upper and lower bounds of the array. Variable
initialization-before-use ensures that each variable or individual array element has been assigned a defined
value before it is used. Both are typical examples of language-specific properties. Matrix symmetry requires
certain two-dimensional arrays to be symmetric. Sensor input usage is a variation of the general initialization-
property which guarantees that each sensor reading passed as an input to the Kalman filter is actually used
during the computation of the output estimate. These two examples are specific to the state estimation
domain.

B. Generating Safety Obligations

For certification purposes, the code generator annotates the code with mark-up information relevant to the
selected safety policy. The annotations contain information in the form of logical pre- and post-conditions and
loop invariants, which are part of the schemas and thus are instantiated in parallel with the code fragments.
The annotated code is then processed by the VCG, which works backwards through the code, applies the
rules of the safety policy and generates safety conditions at each statement. The VCG has been designed
to be “correct-by-inspection”, i.e., to be sufficiently simple that it is straightforward to see that it correctly
implements the rules of the logic. Hence, it does not implement any simplifications and, consequently, the
generated safety conditions tend to be large and must be simplified separately. This is done by a symbolic
simplifier that applies a set of rewrite rules specified in the domain theory. The simplified conditions are
then augmented by the axioms and lemmas of the domain theory and processed by an ATP and the resulting
proofs can be sent to a separate proof checker to ensure their validity.10

C. Summary of Experimental Results

We have tested our certification approach in two different “after-the-fact” case studies, where we generated
and certified Kalman filters from the requirements of existing applications. In the first case study, we
extracted the mathematical model of the state estimator from the requirements of the attitude control
system of NASA’s Deep Space I mission and reformulated it as an AutoFilter specification. It combines
inputs from an inertial measurement unit (IMU) and a star tracker to obtain a more accurate estimate of
the attitude of the spacecraft. The filter has three state variables representing change in spacecraft attitude
since the last measurement, and three state variables representing the IMU gyro drift. For this specification,
AutoFilter generates code based on an extended Kalman filter. The second case study was taken from a
simulation of the Space Shuttle docking procedure at the International Space Station, for which a different
configuration of an extended Kalman filter is generated.

In both cases, the proportion of annotations to code and the number of safety conditions vary widely with
the safety policy. In general, language-specific policies tend to be simpler than domain-specific ones, which
require more detailed annotations and produce more conditions. The simplest policy is array bounds, which
requires no annotations at all and produces only a few, easy conditions that are discharged immediately. The
other policies require annotations that amount to five to ten percent of the overall code size and produce
up to 865 conditions. However, the complexity of these conditions is well within the capabilities of current
ATPs. For two of the policies (i.e., initialization, and symmetry) the ATP was able to discharge all safety
conditions with average proof times of approximately one second. For the input usage policy, the system
produces one unprovable condition for each of the programs; these conditions take much longer to detect and
thus distort the average and total proof times. However, it is important to notice that unprovable conditions
do not necessarily imply that the programs will fail but rather indicate problems that require more detailed
human scrutiny. Here, the unprovable obligations are a consequence of the conservative way the safety policy
is formulated.

4 of 8

American Institute of Aeronautics and Astronautics



...

2. Input Specification

The following sections list and describe the input specification for the modulequaternion_ds1. This input
specification comprises all the information which is provided by the user for the generation of the module
quaternion_ds1. Other options, which can influence the operation of AutoFilter are entered via command-line
options and are listed inSection 3.1below.

...

4. Generated Code

4.1 Interface

4.1.1 Input and Output Parameters for Generated Code

Constants

scalarint M Number of measurements

scalarint N Number of state variables

scalarint Steps Number of iteration steps

scalardoublet Sampling Interval

Input Parameters

vectordoublerho(0:M-1) standard deviation of measurement noise

vectordoublesigma(0:N-1) standard deviation of process noise

matrixdoubleu(0:2, 0:Steps-1) IMU measurements

vectordoublexinit(0:N-1) initial state estimate

vectordoublexinit_noise(0:N-1) initial noise estimate

matrixdoublez(0:2, 0:Steps-1) SRU measurements

Output Parameters

matrixdoublexhat(0:N-1, 0:Steps-1) Output vector

4.1.2 Exceptions

None.
...

Figure 2. Generated software design document (excerpts)

IV. Automatic Documentation Generation

In our formal safety certification approach, all evidence is given as logical proofs. However, these proofs
are unlikely to be recognized as such, even by mathematicians, since they consist primarily of the low-level
steps carried out by the applied ATPs. Moreover, proofs themselves—even if they were on a higher level
of abstraction—are of little interest to engineers if they do not explicitly refer back into the program. We
address these issues by combining formal certification with automatic documentation generation techniques.

A. Design Documentation

In addition to the code, we can also generate a standardized software design document (see Figure 2 for
excerpts) that contains administrative information (names of files, versions, etc.), interface descriptions,

5 of 8

American Institute of Aeronautics and Astronautics



The assignment a[2*d-1-i]=i at line 12 is safe (if the condition i<5 at line 10 is false); the
term d is initialized from d=b*b+c*c at line 8; the term b is initialized from b=1 at line 6; the
term c is initialized from c=2 at line 7; the loop index i ranges from 0 to 9 and is initialized at
line 9.

The access a[a[5]] at line 13 is safe; using the invariant for the loop at line 9 and the postcon-
dition i=9+1 after the loop; a[5] is within 0 and 9; and hence the access is within the bounds of
the array a declared at line 1.

Figure 3. Generated explanations for initialization (top) and array bounds (bottom) safety policies (excerpts)

specific input and output constraints, and synthesis and compiler warnings. The document is hyperlinked
to the input specification, the code, and any other intermediate artifacts generated by the system. Since it
is produced at generation time, it can refer back to the original specification and also include design details
which are difficult to infer from the generated code alone.

B. Safety Documentation

We have also developed a generic framework for generating detailed textual justification of compliance with
the given safety policy.11 We use the information obtained during the logical analysis of the software to
produce explanations for why the different parts of a program are safe. The system is based on customizable
explanation templates which convert logical entities that appear in the safety conditions such as loop invari-
ants into text. It can be instantiated with a range of different safety policies, and new policies can easily
be added to the system. It uses labels which are propagated through the VCG and into the safety condi-
tions so that the explanations can explicitly refer back to program locations. Figure 3 shows excerpts from
an automatically generated safety document for the initialization and array-bounds safety of a synthesized
program.

Since safety documents can potentially contain a huge amount of information, the system allows two ways
of focusing attention. First, users can restrict attention either to specific program variables or to certain
lines of code so that, in effect, the system slices the program. Second, the system has a heuristic ordering of
the importance of various classes of information (e.g., information about loop invariants is more important
than that from assignments) so that users can set the level of importance they care about.

C. Linking Safety Conditions

A safety condition can fail to be proven for a number of different reasons: the (generated) annotations may
be insufficient or wrong, the theorem prover may time-out, either due to the size and complexity of the
condition, or due to an incomplete domain theory, and there may of course be an actual safety violation in
the code. For certification purposes, however, it is important to distinguish between unsafe programs and
any other reasons for failure, and in the case of genuine safety violations, to locate the unsafe parts of the
program.

However, manually tracing the safety conditions back to their source is quite difficult as the certification
process is inherently complex. The conditions can become very large and go through substantial structural
simplifications, and any single condition can depend on a variety of information distributed throughout the
program. In order to support tracing between the conditions and the code, the VCG adds appropriate
location information to the formulas it constructs as it processes a statement at a given source code location.
The locations information is then threaded through all stages of our certification architecture (cf. Figure 1).

Figure 4 shows how the tracing information can be used to support the certification process. A click on
the source link associated with each condition prompts the certification browser to highlight in boldface all

6 of 8

American Institute of Aeronautics and Astronautics



Figure 4. Certification browser

affected lines of the code. A further click on the condition link itself displays the formula, which can then be
interpreted in the context of the relevant program fragments. This helps domain experts assess whether the
safety policy is actually violated, which parts of the program are affected, and eventually how the violation
can be resolved. This traceability is also mandated by relevant standards such as DO-178B.5

In practice, safety checks are often carried out during code reviews,12 where reviewers look in detail at
each line of the code and check the individual safety properties statement by statement. To support this,
linking works in both directions: clicking on a statement or annotation displays all conditions to which it
contributes.

V. Conclusions

Code generators can address many of the increasing demands placed on software in the aerospace industry,
but currently they cannot be used to generate flight-ready code without substantial post-hoc verification and
adaptation. We have described an alternative approach to tool qualification that can be used to gain trust in
automatically generated code. Our approach is based on the application of mathematical logic, and formally
certifies the compliance of the generated code with a given safety policy.

We are currently applying these techniques in several projects, to both our own AutoFilter generator
and to commercial tools. These applications include the automated certification of reconfigured rover soft-
ware, the certification of auto-generated code for the RASCAL rotorcraft testbed, and using code generation
to support the adaptation of legacy Shuttle software.

7 of 8

American Institute of Aeronautics and Astronautics



We anticipate that our framework of safety polices can also be extended to restricted classes of functional
behaviors. For example, proving the optimality of Kalman filters has been automated.13 The key to extending
our current technology to such properties is having explicit domain models which directly represent concepts
such as measurements, controls, integrators, gains, and filters. This knowledge is already implicit in our code
generator, but it remains to integrate it with the certification framework. This will also allow us to provide
more meaningful and domain-specific explanations and to trace fragments of the code to corresponding
elements of the model.

References

1Kandt, R., “Software Defect Avoidance and Detection: Practices and Techniques,” Tech. rep., JPL, 2003, Document
D-24993.

2Denney, E. and Fischer, B., “Correctness of Source-Level Safety Policies,” Proceedings of theFM 2003: Formal Methods,
edited by K. Araki, S. Gnesi, and D. Mandrioli, Vol. 2805 of Lecture Notes in Computer Science, Springer, Pisa, Italy, Sept.
2003, pp. 894–913.

3Denney, E., Fischer, B., and Schumann, J., “Using Automated Theorem Provers to Certify Auto-Generated Aerospace
Software,” Proceedings of the Second International Joint Conference Automated Reasoning, edited by D. Basin and M. Rusi-
nowitch, Vol. 3097 of Lecture Notes in Artificial Intelligence, Springer, Cork, Ireland, 2004, pp. 198–212.

4Denney, E., Fischer, B., and Schumann, J., “An Empirical Evaluation of Automated Theorem Provers in Software
Certification,” International Journal of AI Tools, 2005, To appear.

5RTCA Special Committee 167, “Software Considerations in Airborne Systems and Equipment Certification,” Tech. rep.,
RTCA, Inc., Dec. 1992.

6Whittle, J. and Schumann, J., “Automating the Implementation of Kalman Filter Algorithms,” ACM Transactions on
Mathematical Software, Vol. 30, No. 4, Dec. 2004, pp. 434–453.

7Nesnas, I., Wright, A., Bajracharya, M., Simmons, R., Estlin, T., and Kim, W. S., “CLARAty: An Architecture for
Reusable Robotic Software,” SPIE Aerosense Conference, Orlando, Florida, April 2003.

8Necula, G. C. and Lee, P., “The Design and Implementation of a Certifying Compiler,” Proceedings of the ACM Con-
ference on Programming Language Design and Implementation 1998 , edited by K. D. Cooper, ACM Press, Montreal, Canada,
June 17–19 1998, pp. 333–344, Published as SIGPLAN Notices 33(5).

9Santhanam, V., “The anatomy of an FAA-qualifiable Ada subset compiler,” Proceedings of the 2002 annual ACM SIGAda
international conference on Ada, edited by J. McCormick, ACM Press, Houston, Texas, USA, 2002, pp. 40–43.

10Sutcliffe, G., Denney, E., and Fischer, B., “Practical Proof Checking for Program Certification,” Proceedings of the
CADE-20 Workshop on Empirically Successful Classical Automated Reasoning (ESCAR’05), July 2005.

11Denney, E. and Venkatesan, R. P., “A Generic Software Safety Document Generator,” Proceedings of the 10th Interna-
tional Conference on Algebraic Methodology and Software Technology, edited by C. Rattray, S. Maharaj, and C. Shankland,
Vol. 3097 of Lecture Notes in Computer Science, Springer, 2004, pp. 102–116.

12Nelson, S. and Schumann, J., “What makes a Code Review Trustworthy?” Proceedings of the Thirty-Seventh Annual
Hawaii International Conference on System Sciences (HICSS-37), IEEE, 2004.

13Lowry, M., Pressburger, T., and Rosu, G., “Certifying Domain-Specific Policies,” Proceedings of the 16th International
Conference on Automated Software Engineering, edited by M. S. Feather and M. Goedicke, IEEE Computer Society Press, San
Diego, CA, Nov. 26–29 2001, pp. 118–125.

8 of 8

American Institute of Aeronautics and Astronautics


