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Safety cases provide a mechanism for representing evidence-based arguments that a
system is acceptably safe to operate in its intended context. We show how we can auto-
matically combine diverse types of information from heterogeneous sources into a single
integrated safety case for a system implemented using automatically generated software.
The core argument structure of the safety case is generated from a formal analysis of au-
tomatically generated code, based on automated theorem proving, and driven by a set
of formal requirements and assumptions. This is then extended by separately specified
auxiliary information giving contexts, assumptions, justifications, and constraints, or ad-
ditional forms of evidence derived from other verification activities, such as testing. The
resulting safety case thus combines formal and informal argumentation and makes explicit
assumptions which would otherwise be left implicit.

Keywords: safety cases, model-based software development, automated code generation,
formal proofs, formal analysis, automated theorem proving, V&V.

I. Introduction

Model-based development and automated code generation are increasingly used for actual production
code, in particular in mathematical and engineering domains. For example, NASA’s Project Constellation
uses Real-Time Workshop for its Guidance, Navigation, and Control (GN&C) systems. However, since code
generators are typically not qualified, there is no guarantee that their output is correct or even safe. In
previous work, we have shown how safety and functional requirements can be formally verified for control
software that has been generated automatically from Simulink models,9 and how the results of this formal
verification phase can be communicated in the form of a safety case.4

However, a comprehensive safety case must integrate additional extra-logical information into the core
argument structure representing the purely formal reasoning, e.g., a justification that the formalizations
of the properties that are verified correctly encode the requirements, or links to applicable standards and
project documentation. This additional information can represent background knowledge that cannot be
produced directly by the formal verification phase. It thus needs to be specified in the form of contexts,
assumptions, justifications, and constraints. It can also represent additional forms of evidence derived from
other verification activities, such as testing. In both cases, this information needs to be spliced into the core
argument structure at the appropriate locations. The additional information can also represent knowledge
about the system structure, e.g., its architecture, or tracing information between code and model. This
structural information needs to be passed down to and processed by the formal verification phase, because
it can directly influence the construction of the core argument of the safety case.

In this paper, we show how we can automatically combine these diverse types of information from het-
erogeneous sources into a single integrated safety case. The core argument structure of the safety case is
generated from a formal analysis of the automatically generated code, based on logical annotation inference
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and automated theorem proving. The analysis is driven by a set of formal requirements and assumptions on
the system’s output and input signals, respectively, but otherwise remains independent of the model struc-
ture. In particular, it analyzes the system structure on the code level to identify where the requirements are
ultimately established, and so checks the model, providing independent assurance. The resulting argument
structure is then extended by the auxiliary information, which is separately specified.

We have developed the overall structure of the heterogeneous safety case and instantiated it for the code
generated for a Guidance, Navigation, and Control (GN&C) subsystem. The safety case thus provides a
traceable safety argument that shows in particular where the code, documentation, verification and validation
artifacts and the argument itself depend on any external assumptions. The resulting safety case explicitly
highlights the claims, key safety requirements, and evidence that are required to trust both the software and
its verification.

II. Background

A. Automated Code Assurance

Model-based design and automated code generation (or autocoding) are being used increasingly at NASA.
They promise many benefits, including higher productivity, reduced turn-around times, increased portability,
and elimination of manual coding errors.8,21 There are many successful applications of both in-house custom
generators for specific projects, and generic commercial generators. One of the most popular code generators
within NASA is the MathWorks Real-Time Workshop24 (with the add-on Embedded Coder), an automatic
code generator that translates Simulink/Stateflow models into embeddable (and embedded) C code.

However, there still remain significant obstacles to more widespread adoption of code generators in safety-
critical domains, principally, how the generated code should be assured. Since code generators are typically
not qualified, there is no guarantee that their output is correct, and consequently the generated code still
needs to be fully tested and certified. Ideally, the code generator, itself, should be qualified. However,
this is a non-trivial and expensive process, and is therefore rarely done. Moreover, the qualification is only
specific to the use of the generator within a given project, and needs to be redone for every project and for
every version of the tool. Also, even if a code generator is generally trusted, user-specific modifications and
configurations necessitate that V&V be carried out on the generated code.12

Users also need to be sure that the code implements the model, that the code generator is correctly
used and configured, that the target adaptations are correct, that the generated code meets high-level
safety requirements, that it is integrated with legacy code, etc. There are also often concerns with the
understandability of the generated code. Some understanding of why the code is safe, therefore, helps the
larger certification process. Automated support for V&V that is integrated with the generator can address
some of these complexity concerns. Furthermore, certification requires more than black box verification of
selected properties, otherwise trust in one tool (the generator) is simply replaced with trust in another (the
verifier). Automated code generation, therefore, presents a number of challenges to software processes and,
in particular, to V&V, and this leads to risk. The AutoCert tool we describe here, and its safety case
extension, mitigates some of that risk.

B. AutoCert

AutoCert10 is a generator plug-in to support the subsequent certification of the code created by the
Real-Time Workshop24 code generator. It supports certification by formally verifying that the generated
code complies with a range of mathematically specified requirements and is free of certain safety violations.
AutoCert certifies every generated program individually, rather than the generator itself: given a set of
formal assumptions (e.g., constraints on input signals) and requirements (e.g., constraints on output signals),
it formally verifies that the generated code complies with the specified requirements by constructing an
independently verifiable certificate. This enables high-level assurance about the safety and reliability of the
code without excessive manual verification and validation effort.

AutoCert follows the Hoare logic approach to verification; in particular, it carries out a symbolic
analysis of the generated source code in order to prove properties about the code, rather than the model. It
produces assurance evidence which can be checked either by machines (i.e., proof checking) or by humans
(i.e., code reviews). The key technical idea of AutoCert is to exploit the idiomatic nature of auto-generated
code and to use annotation templates in order to automatically infer logical annotations, i.e., assertions of
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program properties at key locations in the code. Annotations are crucial in order to allow the automatic
formal verification of the safety properties without requiring access to the internals of the code generator,
as well as making a precise analysis possible. The annotations are used to generate verification conditions
(VCs), which are then proved by an automated theorem prover. The annotation templates are used to
produce the annotated program, while the annotation inference is used during the safety case generation
process. Note that only the VCs and proofs are used as evidence in the argument, but not the annotation
templates. Instead, templates can appear as models (in the GSN sense) attached to strategies.

During the course of verification, AutoCert records various facts, such as the locations of variable
definitions and uses, which are later used in the safety case generation process. The AutoCert approach
is independent of the particular generator used, and need only be customized by the appropriate set of
patterns. The approach also shifts the trust burden from the program to the certification system: instead
of having to trust an arbitrary program to be safe, users only have to trust the certifier to be correct.

III. Case Study: Guidance, Navigation and Control (GN&C) Subsystem

We illustrate our work using excerpts that explain the verification of several functional requirements for
an attitude module of a spacecraft GN&C system which has been auto-generated using Real-Time Workshop.
GN&C is a necessary component of every spacecraft. The GN&C domain is challenging from a verification
perspective due to its complex and mathematical nature.11,22,29 We just describe the model at a high
level sufficient to understand typical requirements. The attitude subsystem takes several input signals,
representing various physical quantities, and computes output signals representing other quantities, such
as Mach number, angular velocity, position in the Earth-Centered Inertial frame etc. Signals are generally
represented as floats or quaternions and have an associated physical unit and/or frame of reference. At
the model level, the transformations of coordinate frames are usually done by converting quaternions to
direction cosine matrices (DCMs), applying some matrix algebra, and then converting back to quaternions.
Other computations are defined in terms of the relevant physical equations. Units and frames are usually not
explicit in the model or the code, and instead are expressed informally in comments and identifier names.

The attitude subsystem (ATT) is comprised of three sub-subsystems or components, a decision logic that
computes a status value irrelevant to the the requirements we consider here, a frame conversion (FC), and a
state determination (SD). FC first converts the frames of reference the incoming signals from a vehicle-based
coordinate system to an earth-based coordinate system. The transformations of the coordinate systems are
usually done by converting quaternions to direction cosine matrices (DCMs), applying some matrix algebra,
and then converting them back to quaternions. SD then performs the calculations to determine the vehicle
state (position, attitude, attitude rate, etc.) from these signals. It is defined in terms of the relevant physical
equations. Note that there are no individual blocks within the Navigation subsystem, but only within the
components and thus all computation happens there.

In our work, we combine information provided by AutoCert together with other background information
of the GN&C system (mission documents such as Concepts of Operations (ConOps), scientific glossaries,
the software requirements specification (SRS), environmental constraints and assumptions on the system, as
well as documents that describe the architecture and model of the system) in order to construct the safety
case. This additional background information cannot be produced directly by the formal verification phase.
The combination of the formal verification information and additional background information of the system
is necessary in the construction of the core argument of the safety case.

IV. Generating Safety Cases

A. Safety Case Purposes

In principle, formal methods can offer a strong form of evidence in system safety.25 However, formal evidence
by itself is inadequate to justify why and how the formal analysis achieves the certification objectives.
Therefore, a valid justification is essential to support the assurance claim provided by the formal evidence.
Safety cases are one of the most widely used techniques to communicate the relationship between evidence
and objectives. A safety case is defined in UK Defence Standard 00-5625 as a “structured argument, supported
by a body of evidence that provides a compelling, comprehensible and valid case that a system is safe for a
given application in a given operating environment”.
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In our work, we construct heterogenous safety cases that make explicit the formal and informal reasoning
principles, and reveal the top-level assumptions and external dependencies that must be taken into account
in demonstrating software safety. They also provide information about why the generated code can be
assumed to be sufficiently correct. They can thus be thought of as “structured reading guide” for the
safety proofs and act as a traceable route to the safety requirements, safety claims and evidence that are
required to show correctness of the generated code. Their core argument structure is generated from a formal
analysis of the automatically generated code. Safety cases help in providing information about why the code
can be assumed to be sufficiently safe and correct, by analyzing the system structure on the code level to
identify where the requirements are ultimately established, and so check the model, providing independent
assurance. Additional forms of evidence that derived from other verification activities, such as testing are
also described in the core argument structure at the appropriate locations. We use the Goal Structuring
Notation (GSN)20 as graphical argumentation notation to explicitly represent the logical flow and linkage
between safety argument elements.

B. Heterogenous Safety Case Structure

Demonstrating the correctness of large and complex software-intensive systems in certification requires mar-
shalling large amounts of diverse information, including mission documents that describe summary of NASA’s
program and the overall mission scenario, detail requirements of the system to be developed, system architec-
ture, Matlab models of the system to be developed to address problems associated with designing complex
control systems, source code of the system and formal V&V information such as verification conditions,
proof framework, formal proofs and testing results. An integration of these diverse artifacts is essential to
explicitly represent the rationale underlying the certification process and to establish trust and confidence
on the certification provided. The following subsections describe how we combine these diverse types of
information from heterogenous sources into a single integrated safety case. However, we only provide a
simplified overview of this safety case and concentrate on its generic structure.

1. Certification Files

In order to certify a program, AutoCert reads a certification file (see Figure 1 for the syntax), which
specifies the assumptions and requirements for the code under verification together with the non-formal
information that will be woven into the formally derived core of the safety case. A certification file consists
of a set of assumptions, requirements, and associated evidence.

CertFile ::= Assumption* Requirement* Evidence*

Formula ::= Signal::Type | Signal :: bus(Type*) | Signal1=Signal2 | Formula => Formula

| Formula /\ Formula

Requirement ::= requirement(Formula, Extension*)

Assumption ::= assumption(Formula, Extension*)

Evidence ::= evidence(EntityType, EntityName, Extension*)

Extension ::= text(Text) | context(Text) | justification(Text) | constraint(Text)

| model(Text) | type(VerifType) | id(Id)

EntityType ::= axiom | vc | libfun | testdata | doc | mapping | formalization | ...

VerifType ::= inspection | testing | prover(P) | ...

Mapping ::= mapping(ModelEntityName, CodeEntityName)

Figure 1. Syntax of Certification Files

Assumptions are properties of input variables (corresponding to signals and buses in the model) and
requirements are properties of output variables. For each assumption and requirement, the certification

4 of 13

American Institute of Aeronautics and Astronautics



engineer can specify additional non-formal information. This includes a unique external identifier (e.g.,
id(’4.1.1’)) and a natural language textual representation of the formula, in addition to justification and
context information that will be attached to the corresponding assumption and goal nodes; if none is given,
it constructs a default natural language representation of the underlying formula. For example:

assumption(’ATT_Mode’ > 0, [id(’4.1.1’),

text(’Attitude subsystem is triggered’),

justification(’Only consider the nominal case where the attitude subsystem is active’),

context(’The trigger is computed by Check_ATT_Mode from other inputs’)]).

assumption(7_29212e_minus_05 :: ang_vel(eci), [

justification(’Five decimal places is sufficiently accurate for angular velocity’)]).

requirement(’AttECIToBody’:: quat(eci,body), [id(’SRS Rqmt 3.2’),

text(’The software shall convert the nav message data to an

Earth-Centered Inertial coordinate system’),

context(’Hazard Analysis’), context(’Project documentation on coordinate systems’)]).

Evidence consists of justifying information for the leaf nodes of the safety case, namely axioms, verification
conditions, and library functions. For example:

evidence(formalization, ’SRS Rqmt 3.2’, [id(’http://.../3.2’),

type(doc), text(’Documentation of the domain theory’)]).

evidence(axiom, transpose_matrix, [id(’testdata/axioms/transpose_matrix_testdata’),

text(’Frames for matrix transpose’), type(testing)]).

evidence(libfun, ’compute_dcm_ned_body_func, [id(’testdata/libfuncs/dcm_ned_body_testdata’)

text(’Function spec testing’), type(testing)]).

Note that axioms can be tested with respect to a reference implementation using the techniques of Ahn
and Denney.2 We can also specify “second-order” evidence, which refers to manually inspected supporting
evidence for machine-produced evidence, for example:

evidence(testdata, ’testdata/libfuncs/dcm_ned_body_testdata’, [

type(inspection), text(’Inspection by SME’)]).

evidence(vc, ’vc0013’, [type(inspection), text(’Manually proven by ...’)]).

evidence(doc, srs, [id(’mission/docs/software/srs.doc’)]).

Since we are working with a formal, logic-based analysis framework, we need to formalize the assumptions
and requirements using a domain theory. The expression X :: T denotes that X has the unit or frame T ,
depending on the kind of T . ECI and Body are constants denoting frames, while quat and vel are functions
denoting transformations of or quantities in those frames. An important function of the safety cases is to
demonstrate that this formalization is adequate, which has two aspects. First, we show that the formula
itself is adequate, by giving additional evidence in the certification file that points to the documentation of
the domain theory (see above). Second, we need to explicitly specify the mapping between the signal names
used in the model and the corresponding variable names used in the source code, which cannot be recovered
by our analysis but must be given externally. Here, the certification file contains the mapping information
given, which is used in the analysis, and additional evidence showing that this has also been checked by a
reviewer. For example:

mapping(’AttECIToBody’, ’rtw_ecitobody’).

evidence(mapping, ’AttECIToBody’, [

type(inspection), text(’Name mapping information inspected on ... by ...’)]).

2. Architecture Recovery

In order to certify the requirements on a system, and to build a comprehensible safety case, we need to
know where in the system they are established, and which parts of the system contribute to them. However,
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a purely model-oriented view is too simplistic. First, without looking inside the component models it is
not clear whether a requirement is indeed established within a component, or simply passed through, and
which of the component’s input signals (if any), or more precisely which assumptions on them, are used in
establishing the requirement. Simply expanding the component models destroys the hierarchical structure
of the system. Second, and more importantly, the safety of the system ultimately depends on the safety
of the code rather than the model, but because we cannot trust the code generator to translate the model
correctly we cannot derive any trust from the model.

Instead, we analyze the code and recover the slice of the system architecture that is relevant to a given
safety requirement. The key to obtaining precise architecture slices is to record when the analysis enters
resp. leaves a component, and then to identify situations in which the control flow just passes through a
component, without encountering a definition. In these cases, we can ignore the component altogether. We
then assemble the slices from the signals involved and from the retained component.

For each top-level system requirement specified in the certification file, AutoCert thus identifies which
components contribute to it. For each of these components it identifies not only the guarantees that the
component needs to provide in order to satisfy the given requirement, but also the assumptions that it in turn
makes on the system or other components. These become subordinate requirements to the original safety
requirement, reflecting the hierarchical model structure. By regrouping the analysis results by component
rather than by original safety requirement, we thus obtain full component interfaces. They give a com-
plete functional specification of the components, including all assumptions, as far as required by the given
system-level safety requirements. The interfaces also serve as starting point for verifying the components
independently, hence allowing a compositional (and therefore scalable) verification.

The recovery of the system architecture is completed by identifying the signals that occur in the derived
requirements and through which the components are thus connected. The recovered system architecture and
requirements hierarchy then constitute a core safety argument: the system satisfies the safety requirements if
the components satisfy their respective interfaces, and the requirements for the signals hold. This argument
serves as blueprint for the safety case. In addition, the derived component interfaces serve as starting points
for the construction of independent safety cases for the components, yielding a hierarchy of safety cases that
is aligned with the system’s hierarchy of models.

3. Top-Level Structure of the Safety Case: Tier I

The safety casea (see Figure 2) starts with the top-level safety goal (i.e., to show that the software satisfies all
given requirements) and shows how this is achieved by an explicit argument based on the partial correctness
of the generated software wrt. the requirements given in the certification file. The argument stresses the
meaning of the Hoare-style framework using specific proof rules but its structure remains independent of
the given generator and software. The strategy is predicated on two assumptions, first, that the proof of
correctness ensures that the functional requirements and safety requirements are established and maintained
during execution, and second, that process scheduling and idealized treatment of floating point arithmetic
do not compromise the safety claim. The first subgoal, i.e., a formal proof that the software satisfies all given
requirements, is further elaborated in the lower tiers of the safety case. The second subgoal is to show that
the safety policy adequately represents the safety property. However, this subgoal is not elaborated further
here but leads to a complementary safety case for the safety logic.

Contexts explain additional information for the argument to be understood, e.g., the generator and
model that are used to generate the software, and describe the software safety context i.e., in terms of
functional and safety requirement. Constraints outline limitations of the approach, in particular, the fact that
certification works on an intermediate representation of the source code and only shows partial correctness
proof (i.e., no termination) without any real-time reasoning. Hyperlinks refer to additional evidence in the
form of documents, containing, for example, the model from which the software has been generated and its
configuration set. This information is specific to the given software. It is is either collected during the formal
analysis (e.g., the list of files), or specified as evidence in the certification files. Since the top-level structure
of the safety case is completely generic, the safety case generator can splice in the specific information at the
right locations.

The safety case continues by arguing over the correctness of the software w.r.t. each individual require-
ment. Again, additional information that is required for the strategy to be understood and valid is identified

aWe have edited the generated safety cases for ease of presentation. In particular, we have split the single large case into
separate “tiers”, and made several simplifications.
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Goal: The software satisfies all given 

requirements  

 

Context: The software consists of 

the following modules: ATT.cpp, 

FC.cpp, SD.cpp 

Constraint: Certification works on 

source level representation only 

Context: The software was 

generated by Real-time Workshop 

R2009b from the ATT.mdl using this 

configuration set 

Context: The software continuously 

maintains all given safety 

requirements during execution 

Constraint: Focus on requirements 

given in certification file only  

Goal: Formal proof that the 

software satisfies all given 

requirements 

Goal: Soundness of calculus 

 

Model: Hoare-style program 

verification using specific proof rules 

Assumption: Proof of correctness 

ensures that safety requirements 

are satisfied during execution  Constraint: No real-time reasoning 

Strategy: Argument 

based on proof of 

partial correctness wrt. 

the given requirements 

Context: The software establishes 

all functional requirements  

Constraint: Partial correctness proof 

only (no termination) 

Assumption: Proof of correctness 

ensures that functional requirements 

are established during execution  

 
 Justification 

Assumption: Idealized floating point 

reasoning does not compromise 

safety claim  

Assumption: Process scheduling 

does not comprise safety claim  

Strategy: Argument over 

each requirement individually 

Justification: Checked by theorem prover 

Assumption: Consistency of assumptions 

Justification: Inspection of certification file 

Assumption: No requirement is used as assumption 

Figure 2. Top Level of the Safety Case (Tier I): Arguing over Software Safety

and explained. This concerns the independent validity of the safety requirements and the logical consistency
of the assumptions. We assume that no safety requirement is available for use as a (logical) assumption in the
safety proofs, which prevents vacuous proofs based on mutually recursive dependencies between requirements
and assumptions. We further assume that the given and derived assumptions together are consistent, again
to prevent vacuous proofs. An assumption can be justified by an explicit justification (e.g., the consistency
can be checked by theorem prover), which is specified in the certification file.

4. Architecture-Level Safety Case: Tier II

As a result of the last strategy in the previous tier, we get as many subgoals as there are safety requirements.
Here, we focus on the subgoal corresponding to the requirement given in the certification file, i.e., to show
that the signal AttECIToBody is a quaternion representing the specified frame transformation. Additional
context information also specified in the certification file is attached to the node.

The next step of the argument transitions from the informal level to a formalized safety requirement.
This step helps in showing that the formal verification runs over the correct requirement, based on the right
formula and variable, and thus provides a relevant proof of the program. We use an explicit strategy to
describe this transition, which spawns three subgoals. The first subgoal demonstrates that the formal proof
is based on an appropriate formalization of the requirement, and the safety case points to the documentation
of the logical domain theory as evidence of this; this evidence must be given in the certification file to
complete the argument, and we could even stop the safety case construction with an error if it is missing.

The second subgoal “glues together” model and code levels, which allows us to build a safety case for
the model based on the analysis of the code. We need to show the mapping between the signal names used
in the model and the corresponding variable names, which cannot be recovered by our analysis but must be
given in the certification file. Here, the safety case points to the mapping information, and to the fact that
it has been checked by a reviewer, also given as evidence in the certification file. In addition, at this goal
we also have to show the mapping between the model and code files, and in particular, in which code file

7 of 13

American Institute of Aeronautics and Astronautics



the formalized property has to be shown. In our example, this is straightforward and the information can
be collected by the analysis, but for larger systems this localization might need more evidence that can be
specified in the certification file.

We can then construct the final subgoal of our strategy, which shows that the fully formalized safety
requirement AttECIToBody :: quat(eci, body) holds after execution of the code in ATT.cpp. This is proven
formally by a compositional verification based on the system architecture, or more precisely, on the recovered
system architecture slices. The safety case shows how the system level requirements are broken down into
the component level requirements, i.e., properties of the part of the system that is relevant to satisfy the
requirement. The strategy is based on the assumption that the formal analysis has identified all relevant
components and signals. For each component, we need to show that it satisfies the safety requirements
specified in its interface (subgoal (C1)). This induces a further assumption on the strategy, namely that
the interface is strong enough to show the requirement (FR1). For each variable representing a signal, we
need to show that it satisfies the safety requirements derived by the analysis (i.e., subgoals (S1) and (I1)
to (In)). This guarantees that the components’ assumptions are met. These subgoals are delayed here, to
keep the safety case compact. Here, we do not distinguish (other than in the numbering) between internal
assumptions (e.g., on rtw bodytonav), which have been identified as subgoals in the system-level safety case,
and external assumptions to the entire system. However, not all assumptions are used for all requirements,
so we use an explicit strategy to argue only using the minimal set of external (i.e., on the system’s input
signals) assumptions.

5. Code-Level Safety Case: Tier III

In the next tier, we argue about the safety of the components w.r.t. their identified interfaces. This tier also
argues about a set of requirements, but there are two significant differences to the architectural-level safety
case. First, the component-level requirements are already formalized, due to the use of the formal analysis,
so that we do not need to argue about the safety of the formalization and localization any more. Second, the
argument will generally go down to the level of the generated code, with the proofs of the VCs as evidence;
obviously, however, another layer of hierarchy is introduced if a component contains further components.

This tier (see Figure 3) finally transitions from the safety argument to a program correctness proof,
using a Hoare-style argument over all relevant occurrences of the variable. The structure of this Hoare-style
argument is determined by the structure of the program. In this case, it leads to a single subgoal, proving
that the safety requirement holds at the given source location.

The final elements of the safety case argue that his is the case, using a strategy based on establishing
and maintaining appropriate conditions. This directly reflects the course the annotation inference has taken
through the code. The first subgoal is thus to show that the sufficient conditions are established on all
paths leading to the current location, using an argument over all definition locations. Here, the model
for the subgoal corresponds to the pattern that was applied during annotation inference to identify the
definition. Each definition (e.g., nav dcm 22 is established with frame DCM(ned, body) at line 288) thus
leads to corresponding subgoals i.e., the library function (e.g., compute dcm ned body) is correctly specified
and VCs are proven. The validity of each subgoal should be explicitly justified. Here, the correctness
of library functions are justified by testing results. Any established methods or documents (e.g., reference
implementation document) that can be used to support the testing processes are described as model that link
to the strategy. The validity of the testing results that have been inspected by experts (e.g., by the Subject
Matter Expert (SME)) is specified as direct evidence to the goal. While the validity of the construction of
the VCs depends on the soundness of the rules of the VCG, the simplifier, and the definition of the safety
policy, while the correspondence to program locations is based on tracing information added by the VCG
and retained during the certification process.

The second subgoal of the top-level strategy is to show that the established conditions are maintained
on all paths. This proceeds accordingly and the VCs demonstrate that the conditions are maintained. The
final subgoal is then to show that the conditions from each path imply the required property. This can again
lead to any number of VCs. If (and only if) all VCs can be shown to hold, then the property holds for the
entire program. The evidence on soundness of VCs are shown in Tier IV.
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Azimuth::azimuth 

holds at FC.cpp 

Goal (In): Formal 

proof that 

Long::long holds at 

FC.cpp 

Assumption: Quat2 is a 
quaternion representing a 
transformation from the body 
fixed frame to the wander 
azimuth frame 

Assumption: Azimuth 
represent platform azimuth 

Assumption: Heading 
represents true heading 

Strategy: Argument over each 
safety requirement given in the 
interface individually 

Goal (FC2): Formal proof that 

rtw_ecitobody:: quat(ECI, Body) 

holds for FC.cpp 

Strategy: Hoare style argument 
over all relevant occurrences of 
rtw_ecitobody 

Goal: rtw_ecitobody::quat(NED, 
Body) holds for F.cpp at a single 
location, lines #222-223. 

Figure 3. Architectural Level of the Safety Case (Tier II): Arguing over Requirements and Architecture

6. From Formal Proofs to Safety Arguments: Tier IV

In formal verification, automated theorem provers are typically used to demonstrate the validity of theorems.
The soundness, correct configuration and installation of the prover should also be justified in order to establish
trust on the proofs. Tier IV (see Figure 5) of the safety case presents the underlying argumentation structure
and top-level assumptions of the formal proofs found by the automated theorem provers. We applied our
approach to proofs found by the SPASS theorem prover. We also highlight the use of the external certification
assumptions in order to check the validity of their use in deriving the proofs. The argument starts with the
generated VC to be proven as the top goal and follows the deductive reasoning down into subgoals, using
the applied inference rules as strategies to derive the goals, and has the given axioms or assumptions at the
leaves. The use of external certification hypotheses (e.g., vs lat is a geodetic latitude and hirate signal is
within range) that have been formulated in isolation by the safety engineer are tracked in the safety case. By
revealing all external and internal hypotheses, the validity of their use in deriving the proof can be checked
easily. The soundness of the formal proofs rests on the validity of the axioms which are used. This can be
shown by testing them with respect to a reference implementation.2 The reference implementation that is
used for this is specified in the form of a model and should, itself, be inspected by a SME.
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Goal: nav_vel_50Hz_11 :: vel(eci) holds for VS.cpp at line 

#205 

Assumption: Complete list of paths  
Assumption: Complete list 

of VCs  

Goal: Conditions from each path 

imply required property 

Goal: Sufficient conditions are 

established on all paths to this location 

Goal: Sufficient conditions are 

maintained on all paths to this location 

Strategy: Argument over 

establishment, maintenance and 

sufficiency of conditions 

Strategy: Argument over 

establishment of conditions 

on each path  

Strategy: Argument 

over maintenance of 

conditions on each path   

  

Goal: nav_dcm_22 is 

established with frame 

DCM(ned,body) at line #288 

Strategy: Argument 

over correctness of 

establishment 

Goal: Library function compute_ dcm_ned_body is correctly specified Goal: VC_pre is proven Goal: VC_post is proven 

Evidence: Inspection by SME 

Strategy: Test library function 

compute_ dcm_ned_body 

Model: Annotation schema compute_ dcm_ned_body_func 

Model: Reference 

Implementation 

Goal: nav_dcm_22 is 

established with frame 

DCM(ned,body) at line #320 

Goal: Library function compute_ dcm_ 

ned_body has been tested 

Figure 4. Code Level of Safety Case (Tier III): Arguing over Code Structure

C. Safety Case Construction

The development and acceptance of safety cases is a key element of the safety regulation in many safety-
critical sectors. Apparently, most safety cases are constructed manually as no advance tool is available
to support an automatic safety case construction. Most safety case construction tools only provide basic
drawing support. However, the manual construction of a safety case is impractical especially when we are
dealing with large amounts of artifacts and iterative software development. It is not only a time consuming
and expensive process, but it might also slow down the application of the safety case.

To automatically construct the safety case, we integrate AutoCert with Adelard’s ASCE tool.1 We
convert the information derived by the annotation inference into an XML format, and merge any context,
evidence, justification, and text information explicitly specified in the certification file into this. We use
the identifiers and the entity types to determine where in the safety case this information must be added.
Some information is fixed by our verification technique (e.g., that axioms are tested with respect to reference
implementations), whereas other aspects follow from the specific details of the verification itself (e.g., the
specific inference templates which are used during the verification).

This XML file thus contains all relevant information that is required for the construction of the het-
erogenous safety case. We then use a set of XSLT transformations to construct a second XML file in the
GSN-XML format that logically represents the safety case. The file format was designed so that the derived
safety cases can be easily be adapted to different tools or applications. Finally, to present the resulting safety
case graphically, we use a Java program to layout the logical information which involved some mathematical
calculations in positioning the argument and to convert it into the standard Adelard ASCE file format.

V. Related Work

The development and acceptance of a safety argument or safety case is now a key element of safety
regulation in many safety-critical sectors.25,30 There has been work on demonstrating how software fits into
the safety of an overall system. For example, Weaver31 in his thesis presents arguments that reflect the
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Goal: VC_pre [(hi(attitudeBodyToNav_lv, 0)=A & hi(attitudeBodyToNav_o, 0)=B & 

hi(dcmtoQuat_Single2, 0)=C & ……. => ……& J ::  ang_vel)] is proven 

Strategy: Automated theorem proving 

Context: SPASS theorem prover 

Justification: ConOps 

Assumption: vs_lat is a 

geodetic latitude 

Goal: sub-theorem-1 is proven 

Strategy: Automated 

theorem proving 

Goal: sub-theorem-2 is proven 

Goal: Axiom transpose_matrix is valid 

Strategy: Test axiom 

transpose_matrix 

Evidence: Inspection by SME 

Model: Reference 

Interpretation 

 

 

Assumption: Hirate 

signal within range 

Justification: 

Simulation data 

 

Justification: Correctness of 

theorem prover 
 

Goal: Axiom transpose_matrix has 

been tested 

Justification: Correct 

configuration and installation of 

theorem prover 
 

Figure 5. Derived Safety Case (Tier IV): Arguing over Proofs

contribution of software to a safety-critical system and Reinhardt26 looks at the safe application of the C++
programming language in safety-critical systems. Our approach works in the same context, i.e., presents
arguments over the safety of the generated program with respect to the given requirements for its use in
safety-critical systems. Audsley et al.3 present arguments over the correctness of the specification mapping,
i.e., a translation from the system specifications into a model and subsequently into a code. This is similar
to our approach of showing the correct formalization and localization of the requirement.

With the increasing use of model-based development in safety-critical applications, the integration of
safety cases into such approaches has become an important research topic. For example, Chen et al.7

describe an integration of model-based engineering with safety analysis and safety cases to help in assessing
decisions in the system design of automotive embedded systems. Similarly, Wu32 introduces a framework
to facilitate safe architectural design in safety-critical applications. Hause and Thom18 describe how SysML
and UML can be used to model system requirements and how the safety requirements and other system
elements identified in the system design were used to construct the safety case. The focus in their research,
however, is on extending the modeling framework to represent safety cases using the applied notation. In
contrast, in our work, we construct a safety case that argues along the hierarchical structure of systems
in model-based design and show how the hierarchy of requirements is aligned with the hierarchical model
structure. Rushby27 also uses automated theorem proving technology (based on the Yices SMT solver) to
make a safety argument, but does not construct a detailed safety case. Moreover, his analysis starts with a
manually constructed logic-based model of the system, where the connection to the underlying code remains
unclear while our approach works directly on the code. Takeyama28 uses Agda as an underlying framework
for the construction of well-formed safety cases.

In order to demonstrate a compelling argument on software safety assurance, Hawkins and Kelly19

provide a framework for justifying the arguments and evidence required to demonstrate sufficient assurance
in software. Littlewood and Wright23 state that the probability of a claim, which has been shown by a formal
proof, being false, is very low, when the assumptions and evidence are valid. As pointed out by Littlewood
and Wright,23 we believe substantial confidence can be obtained if the validity of the underlying proof
construction can be shown. Galloway et al.14 present arguments for technology substitution, i.e., argue over
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substitution of testing with a proof-based verification technique in the context of the certification standards
such as DO-178B,13 while Habli and Kelly15–17 carried out research on constructing a safety argument to
facilitate the justification and presentation of formal analysis in supporting testing techniques as presented
in software standards. Similarly, our work justifies the application of a formal program analysis method in
providing assurance for the software safety and the use formal proofs as an evidence.

However, all of these works14–17 remain completely generic and do not take actual code into account. Our
work in contrast focuses on constructing a defensible argument for how specific code complies with specific
requirements (i.e., safety requirements and safety properties) based on the evidence (i.e., formal proofs and
other V&V artifacts) available.

VI. Conclusions

Demonstrating the correctness of large and complex software-intensive systems requires marshalling large
amounts of diverse information, including requirement documents, architecture diagrams, models of the
system, source code, and V&V artifacts such as verification conditions, formal proofs, testing results, and
software inspections. An integration of these diverse artifacts is essential to explicitly represent the rationale
underlying the certification process and, thus, establish trust and confidence on the assurance provided.

In this paper, we have described the overall structure of a specific application of a heterogenous safety
case. We have shown how we can systematically combine diverse types of information from heterogeneous
sources into a single integrated safety case. The core argument structure of the safety case is generated from
a formal analysis of automatically generated code, based on automated theorem proving, and driven by a set
of formal requirements and assumptions. This is then extended by separately specified auxiliary information
giving contexts, assumptions, justifications, and constraints, or additional forms of evidence derived from
other verification activities. In previous work, we have automatically constructed property-oriented safety
cases,4 requirement-oriented and architecture-oriented safety cases,6 and proof-oriented safety cases.5 The
aim of our work is to promote the use of formal mathematical arguments in achieving confidence in software
safety. We also hope it will increase confidence in the use of formal methods as well as in the use of code
generators in safety-critical applications.
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