Intelligent Component Retrieval via Automated Reasoning

Bernd Fischer,* Michael Lowry™ and John Penix*
NASA Ames Research Center
RIACS*/Code IC*, MS 269-2
_ Moffet Field, CA 94035 USA
{fisch,lowry, jpenix}@ptolemy.arc.nasa.gov

From: AAAI Technical Report WS-99-09. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Abstract

Effective application of Al techniques requires an un-
derstanding of how the representation vs. reasoning
tradeoffs impact the domain of interest. In this paper
we evaluate these tradeoffs for the software engineering
problem of automatically retrieving components from
a library. We generalize our experience in building
several automated component retrieval and automated
program synthesis systems. We then develop a frame-
work in which we can compare the tradeoffs taken in
the various approaches and speculate as to how to ef-
fectively combine aspects of the approaches for future
applications.

Introduction

Software component technologies such as Java Beans,
CORBA and Microsoft COM are quickly becoming in-
dustry standards for developing software that can be
easily integrated, reconfigured and updated (Englander
& Loukides 1997; Krieger & Adler 1998; Meyer 1999;
Seetharaman 1998).

Component-based technologies have a potential im-
pact on all phases of software development and main-
tenance. Component-based development reduces soft-
ware integration costs by allowing component interfaces
to be defined early in the development cycle when it is
less expensive to make software modifications. They
allow well-defined system architectures which localize
the effects of software modifications and reduces quality
degradation during maintenance. Testing and mainte-
nance can be done at the component level, simplifying
and automating the maintenance effort.

Last, but not least, component technologies can in-
crease the potential for reuse within and among appli-
cations due to well-defined component interfaces, ex-
plicit architectures, and dynamic binding. However, it
is well known that language features alone do not lead
to successful software reuse. Software reuse adds dif-
ficult challenges to design that, if not adequately ad-
dressed, can lead to disastrous results such as the Ari-
ane 5 explosion (Jézéquel & Meyer 1997).1

'While the Ariane example has become somewhat cliché,
within NASA it hits too close to home to be forgotten.

21

We believe that the barrier to successful software
reuse is a knowledge problem. Reuse places an em-
phasis on bottom-up design and therefore relies heavily
on analysis capabilities to determine whether compo-
nents are reusable. In supporting this analysis in soft-
ware reuse, the emphasis has been on representing the
knowledge required for analysis without regard for how
it impacts the reasoning process, and hence the qual-
ity of the solution. This has limited the impact that
automation can have on reuse, by limiting the level of
assurance and quality of reuse analysis.

To understand the specific technical difficulty in au-
tomating reuse, it is helpful to decompose reuse into
three activities: retrieval, evaluation and adaptation.
Retrieval involves specifying a query and locating po-
tential reuse candidates. Evaluation is determining the
relationship between a retrieved component and the de-
sired component. Adaptation requires making changes
to a component to meet reuse requirements.

Effective automation of these activities using one rep-
resentation is difficult because each activity requires dif-
ferent knowledge about a component. Retrieval bene-
fits from an abstract classification of component func-
tion that supports efficient comparison. For automated
evaluation to be useful, it must provide a designer with
both a precise relationship and a high level of assurance.
Hence, evaluation depends on a precise and detailed de-
scription of component behavior. Adaptation requires
knowledge about the structure of a component and the
functions of its sub-components. In all, the choice of
a component representation scheme determines what
software reuse activities can be automated effectively.

While source code has been the focus of most software
reuse efforts, automated reuse requires information not
described in source code. Source code provides a de-
scription of how a component performs its function. For
purposes of retrieval, we are interested in precisely what
this function is. This semantic gap makes it difficult to
understand the function of the code and recognize a
potentially reusable component. Formal specification
languages provide the expressiveness and precision nec-
essary to capture what the function of a component
is. Specification matching (Rollins & Wing 1991; Moor-
man Zaremski & Wing 1997) applies theorem proving

to evaluate relationships between specifications. Given
a formal definition of reusability, specification matching
can be used to evaluate the reusability of a component
with respect to a requirements specification. In addi-
tion, automated reasoning can be used to determine
what changes are necessary to reuse a component and
guide component adaptation (Penix & Alexander 1997;
Smith 1982).

Specification-Based Retrieval
Due to the overhead of automated theorem proving,
specification matching is too computationally expen-
sive to test a large number of components in an ac-

ceptable amount of time (Schumann & Fischer 1997;

Mili, Mili, & Mittermeir 1997; Zaremski 1996). To
attain practical response times, specification matching
must be limited to evaluating a small number of com-
ponents retrieved by a separate mechanism. An alter-
native to limiting specification matching is to limit the
expressibility of the specification language, making re-
trieval more efficient (Perry 1987). However, this low-
ers the level of assurance during evaluation because it
takes into account fewer aspects of a component’s be-
havior. Approaches that do not distinguish retrieval
from evaluation will either have inefficient retrieval or
weak evaluation.

Our goal in supporting component retrieval is to iden-
tify a subset of the component library using the seman-
tics of the component and problem specifications. The

- method must preserve (or effectively approximate) the
reusability relationships between components using an
efficient matching algorithm.

Information retrieval methods are evaluated by the
two criteria of precision and recall (Salton & McGill
1983). Both are calculated from the set REL of rele-
vant components which satisfy a given relevance condi-
tion with respect to the query and RET, the set of re-
trieved components which actually pass the filter. The
precision p is defined as the relative number of hits in
the response while the recall » measures the system’s
relative ability to retrieve relevant components:

_|RELNRET| |REL N RET |
~ |RET| ~ |REL]

Ideally, both numbers would be 1 (i.e., the system re-
trieves all and only matching components) but in prac-
tice they are antagonistic: a higher precision is usually
paid for with a lower recall.

A retrieval algorithm can also be considered as a filter
which tries to reject irrelevant components only. We
need some metrics to evaluate this filtering effect more
precisely. We use the precision leverage

[£]
| REL |

op=p-

(where L is the full library) to denote the ratio between
the precisions of the filter’s input and output set, re-
spectively. The factor | £] /| REL | is also called the

22

general retrieval factor; it is the inverse of the library’s
own precision. We also use the fallout

_ | RET\REL |
f= | C\REL |

which is the fraction of non-matching components
which pass the filter as well as the reduction which is
just the number of rejected components relative to the
size of the filter’s input. Finally, we define the relative
defect ratio by

5. — [REL\RET| | L]
®" |L\REL| |REL|

as the relative number of rejected matching components
in relation to the precision of the filter’s input. Thus,
a relative defect ratio greater than 1 indicates that the
filter’s ability to reject only irrelevant components is
even worse than a purely random choice.

Existing Retrieval Techniques -
Retrieval by Successive Filtering

An intuitive idea for limiting the number of components
subject to specification matching without limiting the
expressibility of the specification language is to pipe the
candidate components through a series of filters of in-
creasing complexity and (thus hopefully) strength. Fast
but incomplete (and possibly even unsound) filters are
used to identify non-matches upstream and thus pre-
vent the relatively slow but complete and sound prover-
based filters downstream from drowning in irrelevant
components.

A typical filter inspects components one at a time,
makes a local decision and either rejects the compo-
nent or passes it through to the subsequent filter. In
this setup, the rejection filters should be recall preserv-
ing (i.e., reject only components which are actually not
relevant to the query) because matching components
which are ruled out upstream never arrive at down-
stream filters and, consequently, can never be recovered
again. On the other hand, the precision of the interme-
diate results then increases at each filtering step.

Filters which rely on a sound but incomplete proof
procedure (and in our context all provers can be consid-
ered to be incomplete because they have to operate with
limited resources) are recall preserving if their typical
behavior is inverted, i.e., if the failure to find a proof is
interpreted as “pass through”. For filters which rely on
unsound proof procedures, an engineering problem is to
balance the loss of recall against the achieved reduction
factors.

The NORA/HAMMR-system (Schumann & Fischer
1997; Fischer, Schumann, & Snelting 1998) is based
on such a filter pipeline. It employs different sound
and unsound rejection filters before the actual proof
is attempted. We have experimented with two differ-
ent techniques, rewrite-based simplification and model
checking. Table 1 shows the results for these filters and
their combinations achieved for a test library of ca. 120

list processing components; the numbers are averages
based on ca. 120 queries with a total of 14.000 proof
tasks. (Cf. (Fischer, Schumann, & Snelting 1998) for a
more detailed description of the different filters and the
test library.)

The first filter, Rdomain, i sound; it implements a set
of rewrite-rules including the standard simplifications of
first-order logic with equality and some domain-specific
rules tailored towards the list-domain. Since the rewrite
system is sound, this is a recall-preserving, zero-defect
rejection filter, i.e,, r = 1.00 and 6. = 0.0. Its ac-
tual filtering performance is already quite good. With
a timeout of 0.5 seconds per proof task it filters out al-
most two thirds of the invalid tasks, resulting in a more
than two-fold precision increase; even better results are
achieved with longer timeouts.

The second filter, Ritem, builds on Ryomain; it con-
tains additional rewrite rules to eliminate all quanti-
fiers over the item-type of list. These rules are based
on the generally unsound abstraction that the item-
domain only contains a single element. In the experi-
ments, however, this turned out to be a good engineer-
ing compromise because it finds only spurious “proofs”
but no spurious counterexamples. Hence, its recall for
the test library is still 100%. Moreover, this filter scales
up to larger timeouts better than the sound Rdomain-
filter. With an individual timeout of 5 seconds per task
it still achieves average response times of roughly one
minute per query. Under these time constraints,? the
filter almost triples the precision of the answer set by
filtering out more than 75% of the non-matches.

The final rejection filter used here, Ms;, applies
MACE (McCune 1994), a first-order model checker
based on the Davis-Putnam procedure, over an ab-
stracted structure comprising two list-elements and
again a single item-element. Due to the abstraction,
this filter is also unsound and in contrast to the Ritem-
filter it is not even well engineered. For short timeouts,
both recall and precision are worse than those of the
rewrite-based filters and the filtering effect is low. For
longer timeouts, the filtering effect and the precision
improve dramatically but at the expense of unaccept-
ably low (for a rejective pre-filter) recall values. This is
also reflected in the relatively high defect ratios which
are approximately 0.6, independent of the timeout.

The last two entries of Table 1 contain results for
filter pipelines comprising the combination of the two
rewrite-based and all three filters, respectively. They
reveal the desired “pipelining effect”, i.e., the perfor-

mance of the entire pipeline represents a significant im-

provement over the individual filters, in particular w.r.t.
the fallout which can be reduced to almost 15%. How-
ever, they also reveal that the overall pipeline perfor-
mance is still determined by the weakest filter. The
addition of the unsound model checking filter leads to
a dramatic loss of recall which is only partially offset

>This means (almost) interactive responses with the next
hardware generation

23

by the slight improvement in precision and fallout. But
the model checking filter’s performance clearly benefits
from the pre-selection of the other upstream filters, and
its defect ratio drops significantly.

In NORA/HAMMR, these pre-filters are followed by
a final confirmation filter applying automated theorem
provers in order to increase the precision. Here, the ef-
fect of pre-filtering is even more dramatic: the pipeline
becomes both faster and better. The reduced fallout
allows longer individual timeouts for the prover (20
secs. in the experiments) which directly translates into
a higher recall; at the same time, the sound Rgomain-
filter also increases the recall. These effects add up to
a final recall level of almost 90% with guaranteed pre-
cision (i.e., p = 1.00) and an average response time per
query of approximately 10 minutes.3

Retrieval by Feature-Based Indexing

Another approach to automating specification-based
reuse is to use indexing based retrieval tech-
niques (Penix, Baraona, & Alexander 1995; Penix
1998a; Penix & Alexander 1999). In this approach,
the emphasis is on making retrieval efficient. This is
done by using a feature-based indexing scheme to clas-
sify components. The classification scheme consists of
a set of domain dependent feature descriptors (abstract
predicates) that define when a component should be
assigned a specific feature. If one of these conditions
can be inferred from the component specification then
the component is assigned the appropriate feature. The
formalization of the scheme permits automated classi-
fication of the specifications via theorem proving,.

The output of the classification phase is a set of fea-
tures that are used as a query to the component library.
Retrieval is based on syntactic comparison of feature
sets. The library retrieval mechanism returns compo-
nents that have feature sets similar to the query. The
components returned by the retrieval mechanism are
passed on to a more detailed evaluation that uses spec-
ification matching to determine component reusability.

This semantic classification system was implemented
using the HOL theorem proving system (Gordon 1989).
Several precautions were taken to reduce the overhead
of automated reasoning during classification (Penix
1998a). The feature sets for the library components are
calculated off-line, a special purpose proof tactic was
constructed to solve the classification proofs and induc-
tive proofs were reduced by burying the induction into
domain theory lemmas. These precautions result in an
incomplete proof procedure. In addition, the reason-
ing in terms of the abstract indexes is both incomplete
and unsound. These limitations should not be consid-
ered critical flaws until it is clear of the effects are on
the practical performance of the system (Doyle & Patil
1991). In the context of component retrieval, loss of
both soundness and completeness is not catastrophic,
but effects the precision and recall of the retrieval al-

3Cf. previous footnote.

Rdomain Ritem M2,1 pipeline
Tnax (sec.) 0.5 5.0 05 [50 05 | 50 2%¥05[3%0.5
Tiask (sec.) 0.24 1.48 0.15 0.53 0.21 0.63 0.35 0.43
ar 0.21 2.10 0.16 1.28 0.23 1.00 0.36 0.48
Tauery soc) || 28.63 | 175.50 | 18.01 | 63.62 | 24.41 | 7464 || 4110 | 50.71
r (%) | 100.00 | 100.00 | 100.60 | 100.00 | 66.65 | 45.59 100.00 66.65
P (%) [|” 30.06 35.37 35.43 37.49 | 19.52 | 56.81 38.83 39.71
op 2.32 2.73 2.73 2.89 1.50 4.38 2.99 3.06
f (%) 34.70 27.25 27.15 24.84 | 40.99 5.17 23.47 15.09
de 0.00 0.00 0.00 0.00 0.60 | 0.61 0.00 0.43
red (%) 56.83 63.31 63.41 65.42 | 55.68 | 89.58 66.61 78.21

Table 1: NORA/HAMMR: Rejection Filters and Pipelining

gorithm. The impact of incomplete classification was
evaluated by experimentally measuring its effect on re-
trieval performance (Penix & Alexander 1999).

The retrieval system was evaluated using the same
component library as in NORA/HAMMR. The retrieval
mechanism came very close to implementing the classifi-
cation scheme in most cases: of the 63 components, the
expected feature sets were derived for all but two spec-
ifications. Precision and recall averaged 30% and 70%,
respectively, which is comparable to existing methods.
The response time of the classification system during
the experiments ranged from 0.15 to 0.66 seconds with
an average of 0.35 seconds. This is well within the ac-
ceptable response time for an interactive system and is
an improvement over existing filter-based approaches as
NORA/HAMMR.

What is lacking from the approach is a systematic
method for choosing the features used to classify the
library. Formalizing an abstract concept that is shared
among several components is difficult and picking use-
ful ones is even harder. During several experiments, the
intended intuitive meaning of a feature was shown to be
incorrect by the system. Recognizing the utility of hi-
erarchical and complementary features is a good start
toward building better schemes. However, tool support
would be necessary to scale the method to larger li-
braries and more sophisticated classification schemes.

Retrieval Framework

Traditionally, component retrieval methods are evalu-
ated by distinguishing between relevant and retrieved
components. Qur experience indicates that this distinc-
tion is not adequate in the case of specification-based
retrieval because the retrieval step relies on specifica-
tion matching which is undecidable. To evaluate these
systems it becomes necessary to distinguish between the
‘relationship that should hold between a query and re-
trieved components and the components that are ac-
tually retrieved by a system in practice. Therefore,
we further divide retrieval into two separate concepts,
matching and finding, which correspond to the spec-
ification and implementation of a retrieval algorithm,
respectively.

24

Distinguishing between relevance, matching and find-
ing allows better evaluation of how representation and
reasoning alternatives effect the performance of the re-
trieval system. In particular, it improves our under-
standing of where and why loss of recall and precision
occur. Table 2 shows how our existing approaches are
recasted within this framework.

Making the step from relevance to matching condi-
tion involves casting the relevance condition into the
context of the query language. In the case of the
filter-based method, the query language is first order
logic, so refinement can be fully captured. This in-
dicates that this stage is both sound and complete,
which corresponds to preservation of precision and re-
call, respectively. However, in the index-based method,
the set of possible features (the indexing/classification
scheme) determines the relationship between relevance
and matching. If adequate features do not exist,
then it is possible that the refinement relationship can
not be represented in all cases. In fact, the feature
matching relation is symmetric while refinement is not.
Therefore, in general, it is only possible for feature
matching to approximate refinement. The classifica-
tion scheme defines the nature of the approximation
and how weak/strong the arrows are.

As mentioned above, the relationship between match
condition and find condition is determined by the prac-
tical issues of properly implementing the match condi-
tion. In the filter-based system, an automated theorem
prover is used to attempt to verify that the refinement
relation (or any other match condition) holds between
the query and a candidate component. The proof pro-
cedure is sound but incomplete. Failure to complete
valid proofs corresponds directly to failure to retrieve
a matching component. Therefore, in the filter-based
system the incompleteness leads to a potential loss of
recall. The soundness of the proof procedure ensures
that precision is 1.

In the index-based system, the prover is used to au-
tomatically generate the feature-based representation
of the components and queries. The incompleteness of
the proof procedure can result in features not being as-
signed to components and queries. This can effect both
the soundness and completeness of retrieval, If a com-

Method Relevance Condition Match Condition Find Condition
Filter-based Refinement & Refinement & Prover
=
Index-based Refinement or # Semantic # Prover and
' Approximation 4~ Features 4 Set Comparison

Table 2: Comparison of Retrieval Techniques

ponent or query is missing a feature that they should
both share, then the system may fail to retrieve the
component, affecting recall. If a component or query
is missing a feature that would distinguish them as not
matching, then the component may be retrieved erro-
neously, affecting precision.

Applications
Building Better Indices

Our framework has shown how the quality of index-
based methods critically depends on the quality of the
index itself, particularly on the discriminative power of
the used features. Building better indexes is thus a pre-
requisite for scaling index-based retrieval up to larger
libraries and bigger components but three constraints
complicate this process:

o The quality of the index should be expressed in dif-
ferent terms than recall and precision in order to sep-
arate indexing from retrieval.

e The quality of the index should become visible imme-
diately after the classification phase and before the
proper retrieval phase starts in order to improve poor
indexing immediately.

e The discriminative power of a feature may depend
on the entire classification schema because feature-
based retrieval is defined over feature sets and not
over single features.

The techniques we have developed for specification-
based browsing (Fischer 1998) can also be used to im-
prove the schemas used for index-based retrieval.

Combinations of Indexing and Filtering

Feature-based indexing and successive filtering are two
different techniques to achieve the same goal—a reduc-
tion of the number of candidate components subject
to specification matching—but they can effectively be
combined to improve the quality of specification-based
retrieval even further. Two different combinations are
possible.

First, filtering can be used to support the classifica-
tion phase whose accuracy determines recall and pre-
cision of feature-based indexing. In effect, the entire
classification phase can be considered as a retrieval
task, although with reversed roles: each library com-
ponent is used as a query into a “library” of features,
all retrieved features are assigned to the component.

~ For large, fine-grained classification schemas, this re-

25

versed retrieval task shares many deductive character-
istics with the original retrieval task (e.g., high fraction
of non-theorems, large axiom sets, etc.) and even the
time issues become more important. This combination
is straightforward and requires no change in the setup
of the filtering process.

Second, an index can also be used within an initial
pre-filter to reduce the number of emerging proof tasks
“at the source”. This combination, however, requires
some modifications because the feature-based indexing
method is not recall-preserving. The root cause for this
loss of recall is (again) that the failure to find a proof for
the validity of a feature is identified with its invalidity.
This identification is in practice not correct because the
automated reasoning step is incomplete.

This problem can be avoided if the feature set as-
signed to each component is divided into the positive
features &t which are defined as in (Penix & Alexan-
der 1997; Penix 1998a) and the negative features &~
which can be proven not to hold. Hence, f € ®(c) iff
F pre, A post, = —f. Obviously, the positive and neg-
ative feature sets of a non-trivial and implementable
component ¢ (i.e., 3%, 7 - pre (%) A post,(Z,¥)) are al-
ways disjoint. It is then easy to show that a component
¢ can (for the relevance condition of refinement) not be
relevant if it has complementary feature to the query g,
ie, @ ()N ®(q) # B or D~ (c) N ®*(g) # 0. These
conditions can be used to improve recall as well as pre-
cision.

Scaling Up to Bigger Components

One of the major limitations for applying deductive
component retrieval in practice is the ability to han-
dle “components” more complex than procedures. In
theory, specification matching conditions for procedures
can be directly extended to the class/module level (Jeng
& Cheng 1994; Zaremski 1996). However, there are
many practical problems with this approach. First,
the number of potential procedure matches that must
be carried out increases sharply: for every component
match there may be many potential mappings between
procedures that must all be checked. The pre/post-
specification style does not scale well as a query lan-
guage for large complex classes and the extensions do
not address the case where a group of tightly coupled
classes are required. Finally, the pre-post method of
specification does not work for components that may be
required to operate in a multi-threaded environment, as

is the case for Java.

We believe that our framework can be used to help
address these practical issues of scaling up specification-
based component retrieval. The first thing to notice
is that the relevance conditions for classes and groups
of classes are neither obvious or unique. For example,
consider the Java Beans component model where com-
ponents are described in terms of attributes, generated
events and observed events. Syntactically, the Java type
system will provide a refinement hierarchy based on the
sets of attributes and events in a Bean interface. How-
ever, semantic refinement must be defined in terms of
some notion of simulation of observable behavior. This
definition might differ, for example, in terms of whether
an event observation “must” or “might” cause the gen-
eration of another event in the future. In practice, it
becomes necessary to relax this types of constraint in
the context of multi-threaded execution. Further re-
search is required to identify and formalize definitions
of relevance for more complex components.

A practical definition of relevance should also take
into account the explicit support of customization
that is built into many component models. With re-
spect to knowledge representation, this can be ad-
dressed by modeling components using parameterized
specifications that indicate how specialization of visi-
ble attributes (the parameters) affect the behavior of
the component (Penix, Alexander, & Havelund 1997;
Penix 1998b). Initial studies have shown that de-
ductive synthesis techniques have potential for sup-
porting the reasoning tasks for component adaptation
via parameter specialization (Penix & Alexander 1997;
Penix 1998a)

The same issues affect the specification of matching
conditions and queries as well. Many behavioral proper-
ties that can be informally described in terms of events
are not easily expressed in terms of pre- and postcon-
ditions of their methods. For example, in a query lan-
guage for retrieving Java Beans, properties should be
expressed in terms of attributes and events, despite the
fact that both are realized using Java method calls. The
problems is that many properties of interest can involve
relationships between method calls and attributes that
cannot be expressed succinctly (if at all) in terms of
pre- and postconditions.

Deductive Synthesis

By careful attention to the interaction of representation
and computational complexity, we have been able to de-
velop semantic-based component retrieval tools whose
precision and recall exceed those of traditional retrieval
algorithms. Furthermore, specification-based evalua-
tion (matching) greatly reduces the cognitive load on
the end-user in determining whether a component is
suitable for her needs. This approach can be used not
just in a manually-driven reuse context, but also in the
context of an automated process for system generation
through component composition.

26

A reference point of comparison is with the Am-
phion system (Stickel et al. 1994), which uses resolution
theorem-proving to automatically synthesize a system
by automatically assembling components given specifi-
cations of desired system behavior. In one application
domain, the synthesis of space science observation sys-
tems composed of routines from JPL’s NAIF toolkit,
the number of routines in the library was roughly com-
parable to the list processing domain described earlier.
Amphion follows the classical resolution-based refuta-
tion paradigm of synthesizing a program by generating
"witness terms” for existential variables in the specifica-
tion that would make the specification a theorem with
respect to the background domain theory. In essence,
a program was built up by successively extending the
witness terms while the unresolved portion of the speci-
fication was decreased. The background domain theory
consists of axioms about the application domain and
axioms encompassing pre- and post-conditions of the
components of the domain

The major technical difficulty in developing Amphion
was in tuning the theorem prover strategy to enable rea-
sonably efficient synthesis. Without tuning, Amphion
exhibited time performance that empirically was expo-
nential in the size of system specifications (Lowry et al.
1994). On average, specifications larger than thirty lit-
erals took longer than an hour to synthesize a program
with an un-tuned theorem proving strategy. A rela-
tively straightforward strategy of ordering partial solu-
tions (descendents of the goal, or specification, clause)
roughly by the number of literals that remained at the
level of the abstract specification language achieved
good results (Lowry et al. 1994). Further domain-
specific tuning of the strategy achieved synthesis times
on the order of seconds for programs consisting of ten
to forty components. Empirically, there was still a shal-
low exponential in the required synthesis time with re-
spect to the size of a specification. In practice, the
performance was acceptable, but the strategy required
returning whenever the domain theory was modified or
extended with non-definitional axioms.

In later work, automatically generated decision pro-
cedures (Lowry & Van Baalen 1995) improved upon
the hand-tuned strategy and addressed the problem of
manual re-tuning of the theorem-proving strategy. For
the purpose of this discussion, the decision procedures,
in essence, replaced some of the axioms that caused
exponential growth. Usually, the axioms that were re-
placed described mathematical aspects of the domain.
From a search perspective, one role of the decision pro-
cedures was to replace eager instantiation of existential
variables with lazy evaluation that delayed instantia-
tion until enough constraints had been accumulated to
generate only instantiations that would lead to valid
solutions.

The specification-based retrieval research described
in this paper has the potential to define a new set of
decision procedures for deductive synthesis from com-
ponents. General-purpose theorem proving to reason

about the axioms describing the behavior of compo-
nents in the library could be replaced with specialized
decision procedures based on these retrieval algorithms.
This would eliminate the majority of axioms in the

~domain theory, and lead to substantially less search.
To implement the interface to deductive synthesis, the
match condition would need to be generalized to a par-
tial match condition, since no one component would
match the entire specification. The partial match condi-
tion would define an ordering relation on retrieved com-
ponents, and this ordering relation would be incorpo-
rated into the strategy of the theorem-prover. Perhaps
most important, this provides a means of scaling up
from simple components described through functional
pre- and post-conditions to complex components. It
provides a means of separating the reasoning about the
individual components from the reasoning about the
possible compositions of components.

Comparison

Traditionally, specification-based component retrieval
is discussed in the more general context of information
retrieval. (Mili, Mili, & Mili 1995; Mili, Mili, & Mitter-
meir 1998) develop a coherent terminology which can
be seen as a first formalized approach to understanding
component retrieval. In this approach, specification-
based retrieval is seen as using specifications as the sur-
rogate representatives to be used for retrieval. However,
the effects of this abstraction step on recall and preci-
sion are not discussed in detail.

(Atkinson 1998) also develops an abstract framework
to discuss component retrieval in more general terms.
It uses Object-Z to recast the retrieval process as a
data abstraction and shows how a variety of existing
approaches (including NORA/HAMMR) can be consid-
ered as instances of this datatype. However, the focus
of this work is on modeling structural commonalities of
the retrieval mechanisms and not on the representation
vs. reasoning tradeoffs and their effects on the domain
metrics recall and precision as in our work presented
here.

Conclusions

In this paper, we have presented the two most ad-
vanced specification-based component retrieval sys-
tems, NORA/HAMMR and REBOUND in a unified frame-
work. This framework helps us to understand and eval-
uate how the various representation vs. reasoning trade-
offs involved in the systems’ designs affect the estab-
lished metrics of the general retrieval domain. It also
allows us to identify weak points in the original ap-
proaches:
¢ In filter-based approaches as NORA/HAMMR the rel-
evance and match conditions are (deliberately) iden-

tified but this (inadvertently) also coalesces the com-
ponent retrieval and component evaluation phases.

o In feature-based indexing as in REBOUND incomplete-
ness of the automated reasoning system may lead not

27

only to a loss of recall (as expected) but also to a loss
of precision.

While the inadvertent identification of retrieval and
evaluation seems to be system-immanent and must thus
be kept in mind, our framework shows us how the pre-
cision loss of feature-based indexing can be mitigated
and, moreover, how both approaches can safely be com-
bined.

Our future work will focus on the implementation of
the described framework applications, in particular the
different combinations of indexing and filtering. We will
also continue our investigations on scaling specification-
based retrieval up to bigger components and integration
with deductive synthesis approaches.

- References

Atkinson, S. 1998. Modelling formal integrated com-
ponent retrieval. In Proceedings of the 5th Interna-
tional Conference on Software Reuse, 337-346.

Doyle, J., and Patil, R. S. 1991. Two theses of knowl-
edge representation: languages restrictions, taxonomic
classification, and the utility of representation services.
Artificial Intelligence 48:261-297.

Englander, R., and Loukides, M. 1997. Developing
Java Beans. Java Series. O'Reilly.

Fischer, B.; Schumann, J. M. P.; and Snelting, G.
1998. Deduction-based software component retrieval.
In Bibel, W., and Schmitt, P. H., eds., Automated
Deduction - A Basis for Applications. Dordrecht:
Kluwer. 265-292.

Fischer, B. 1998. Specification-based browsing of soft-
ware component libraries. In Redmiles, D. F., and
Nuseibeh, B., eds., Proc. 13th Intl. Conf. Automated
Software Engineering, 74-83. Honolulu, Hawaii: IEEE
Comp. Soc. Press.

Gordon, M. J. C. 1989. HOL: A proof generating
system for higher-order logic. In Birtwistle, G., and
Subrahmanyam, P. A., eds., Current Trends in Hard-
ware Verification and Automated Theorem Proving.
Springer-Verlag. 73-128.

Jeng, J.-J., and Cheng, B. H. C. 1994. A formal ap-
proach to using more general components. In Proceed-
ings of the 9th Knowledge-Based Software Engineering
Conference, 90-97.

Jézéquel, J.-M., and Meyer, B. 1997. Design by con-
tract: The lessons of ariane. IEEE Computer.

Krieger, D., and Adler, R. M. 1998. The emergence
of distributed component platforms. IEEE Computer
31(3):43-53.

Lowry, M., and Van Baalen, J. 1995. Meta-amphion:
Synthesis of efficient domain-specific program synthe-
sis systems. In Proceedings of the 10th Knowledge-
Based Software Engineering Conference, 2-10. Boston,
MA: IEEE Computer Society Press.

Lowry, M.; Philpot, A.; Pressburger, T.; and Un-
derwood, I. 1994. A Formal Approach to Domain-

Oriented Software Design Environments. In Proceed-
ings of the ¥ Knowledge-Based Software Engineering
Conference, 48-57. Monterey, CA: IEEE Computer
Society Press.

McCune, W. W. 1994. A Davis-Putnam program
and its application to finite first-order model search:
Quasigroup existence problems. Technical report, Ar-
gonne National Laboratory, Argonne, IL, USA.

Meyer, B. 1999. On to components. IEEE Computer.

Mili, H.; Mili, F.; and Mili, A. 1995. Reusing software:
Issues and research directions. IEEE Transactions on
Software Engineering 21(6):528-562.

Mili, A.; Mili, R.; and Mittermeir, R. 1997. Stor-
ing and retrieving software components: A refinement
based system. IEEE Transactions on Software Engi-
neering 23(7):445-460.

Mili, A.; Mili, R.; and Mittermeir, R. 1998. A survey
of software reuse libraries. Annals of Software Engi-
neering 5:349-414.

Moorman Zaremski, A., and Wing, J. M. 1997. Specifi-
cation matching of software components. ACM Trans.
Software Engineering and Methodology 6(4):333-369.

Penix, J., and Alexander, P. 1997. Toward automated
component adaptation. In Proceedings of the Ninth
International Conference on Software Engineering and
Knowledge Engineering, 535-542. Knowledge Systems
Institute.

Penix, J., and Alexander, P. 1999.
specification-based component retrieval.
Software Engineering 139-170.

Penix, J.; Alexander, P.; and Havelund, K. 1997.
Declarative specification of software architectures. In
Proceedings of the 12th International Automated Soft-
ware Engineering Conference, 201-209. IEEE Press.

Penix, J.; Baraona, P.; and Alexander, P. 1995. Classi-
fication and retrieval of reusable components using se-
mantic features. In Proceedings of the 10th Knowledge-
Based Software Engineering Conference, 131-138.

Penix, J. 1998a. Automated Component Retrieval and
Adaptation Using Formal Specifications. Ph.D. Disser-
tation, University of Cincinnati.

Penix, J. 1998b. Compositional specification of soft-
ware achitecture. In Perry, D., and Magee, J., eds.,
Proceedings of the 3rd International Software Archi-
tecture Workshop.

Perry, D. E. 1987. The Inscape environment. In Proc.
11th Intl. Conf. Software Engineering, 2-12. IEEE
Comp. Soc. Press.

Rollins, E. J., and Wing, J. M. 1991. Specifications
as search keys for software libraries. In Furukawa, K.,
ed., Proc. 8th Intl. Conf. Symp. Logic Programming,
173-187. Paris: MIT Press.

Salton, G., and McGill, M.-J. 1983. Introduction to
Modern Information Retrieval. New York: McGraw-
Hill.

Efficient
Automated

28

Schumann, J. M. P., and Fischer, B. 1997.
NORA/HAMMR: Making deduction-based software
component retrieval practical. In Lowry, M., and
Ledru, Y., eds., Proc. 12th Intl. Conf. Automated Soft-
ware Engineering, 246-254. Lake Tahoe: IEEE Comp.
Soc. Press.

Seetharaman, K. 1998. The corba connection. Com-
munications of the ACM 41(10):34-36. (Introduction
to Special Section).

Smith, D. R. 1982. Derived preconditions and their use
in program synthesis. In Proceedings of the Sizth con-
Jerence on Automated Deduction, volume 138 of Lec-
ture Notes in Computer Science, 172-193. Springer-
Verlag.

Stickel, M.; Waldinger, R.; Lowry, M.; Pressburger,
T.; and Underwood, I. 1994. Deductive composition
of astronomical software from subroutine libraries. In
Bundy, A., ed., CADFE 12, 12th International Confer-
ence on Automated Deduction, volume 814 of LNCS,
340-55. Nancy, France: Springer-Verlag.

Zaremski, A. M. 1996. Signature and Specification
Matching. Ph.D. Dissertation, Carnegie Mellon Uni-
versity.

