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Abstract— Automated code generation offers many advantages
over manual software development but treating generators as
trusted black boxes raise problems for certification. Traditional
process-oriented approaches to certification thus require that
the generator be verified to the same level of assurance as the
generated code, but this is infeasible for realistic generators.
However, generators can be extended to support an evidence-
based approach to certification. By careful design of the trusted
kernel, assurance of the generator itself is not required.

In this paper, we describe several related extensions to two
in-house code generators to provide two forms of evidence
along with the code: safety proofs and safety explanations. We
also describe how additionally provided links are used to trace
between the code and the safety artifacts.
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qualification, evidence-based, user interfaces, theorem provers,
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I. INTRODUCTION

Automated code generation is an enabling technology for
model-based software development and has significant poten-
tial to improve the entire software development process. It
promises many benefits, including reduced turn-around times,
increased programmer productivity, and elimination of manual
coding errors. However, the key to realizing these benefits
is of course generator correctness—nothing is gained from
replacing manual coding errors with automatic coding errors.

Consequently, a wide variety of techniques have been inves-
tigated to provide evidence that the generated code is correct.
The existing approaches broadly fall into three different cate-
gories. In certified code generation, the code generator itself is
certified (or qualified), using any technology that is appropriate
or required by a certification authority. This category ranges
from the systematic construction of generator test suites [1]
over the application of compiler verification techniques [2]
to the extraction of the code generator from a correctness
proof in a logical framework like Isabelle [3] or Coq [4]. It
also includes all process-oriented certification approaches, in
particular code generator qualification as mandated by DO-
178B [5]. In certifying code generation, the code generator
simultaneously derives code and certificates. The best example
for this approach is deductive program synthesis based on the
proofs-as-programs principle, using an off-the-shelf theorem
prover [6]. In certifiable code generation, the code generator
is extended by a (separate) certification component that derives
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a certificate for the generated code after the fact, using
hints (e.g., loop invariants) provided by the generator, or by
exploiting the idiomatic structure of the generated code. This
category includes the different approaches to proof-carrying
code (PCC) [7], [8], [9] as well as our own previous work
[10], [11], [12].

In this paper, we present an integrated certifiable code
generation system that combines program verification, proof
checking, tracing, and explanation generation to support the
evidence-based safety certification of automatically generated
code. As in our previous work, we focus on the Hoare-
style certification of specific safety properties (similar to the
different PCC approaches) rather than showing full correctness
of the generated programs. The evidence constructed by our
system thus consists primarily of proofs but since certification
is a social as much as a technical process, proofs in isolation
from the program are not sufficient, and our system also
supports explanations and links as equally important aspects
of the evidence. We can thus consider the combination of
proofs, explanations, and links as explicit certificates, i.e.,
independently checkable evidence of the claimed safety prop-
erties. We have used this approach and the described tools to
certify a variety of safety properties for code generated by the
AUTOBAYES [13] and AUTOFILTER [14] systems. However,
we concentrate on the certification extensions to the generators
here, and omit details of the code synthesis process.

In the next section, we briefly provide the logical back-
ground of our safety certification approach. The following
two sections then describe the use of proofs and explanations
as evidence. Section 5 describes an interactive certification
assistant, and Section 6 concludes.

II. SOURCE-LEVEL SAFETY CERTIFICATION

Safety Certification. Software safety certification demon-
strates that a program does not violate certain conditions dur-
ing its execution. A safety property is an exact characterization
of these conditions based on the operational semantics of the
language. A safety policy is a set of Hoare rules designed
to show that safe programs satisfy the safety property of
interest. We focus on source-level certification because (i)
high-level domain-specific policies such as frame safety [15]
can be formulated only on the source code level, and (ii) we
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are extending a source code generator. However, source-level
certification is complementary to object-level approaches like
PCC. In fact, to ensure that compilation does not compro-
mise the demonstrated safety policy, source-level certification
should be followed by object-level certification.

For each notion of safety the appropriate safety property
and corresponding policy must be formulated. This is usu-
ally straightforward; in particular, a safety policy can be
constructed systematically by instantiating a generic rule set
that is derived from the standard rules of the Hoare calculus
[10]. The basic idea is to extend the standard environment
of program variables with a “shadow” environment of safety
variables which record safety information related to the corre-
sponding program variables. The rules are then responsible for
maintaining this environment and producing the appropriate
safety obligations. This is done using a family of safety
substitutions that are added to the normal substitutions, and
a family of safety predicates that are added to the calculated
weakest preconditions (WPCs). Safety certification then starts
with the postcondition true and computes the weakest safety
precondition (WSPC), i.e., the WPC together with all applied
safety predicates and safety substitutions. If the program is
safe then the WSPC and all intermediate proof (i.e., safety
and verification) obligations will be provable without any
assumptions.

As example, consider initialization safety, which ensures
that each variable or individual array element has been ex-
plicitly assigned a value before it is used. Here, the safety
environment consists of shadow variables x,, that contain the
value INIT after the variable x has been assigned a value.
Arrays are represented by shadow arrays to capture the status
of the individual elements. The rules of the policy can be
formulated in a “backwards” style and then used to compute
the WSPCs. For example, the for-rule shown in Figure 1
says that for an arbitrary postcondition, @, if ¢ has WSPC
P for the postcondition I[i 4 1/i], and if the two intermediate
obligations are true, then the WSPC of the loop is as shown.
Since the for-statement assigns a value to the loop variable,
it also affects the value of the corresponding shadow variable
(cf. the first intermediate obligation). The rule also applies the
safety predicate safe,, to the immediate subexpressions e; and
e of the for-statement. Since the initialization safety property
defines an expression to be safe if all corresponding shadow
variables have the value INIT, safe,, (v []) for example simply
translates to 4, = INIT A x;,; [¢] = INIT.

Logical Annotations. The for-rule highlights the central
role logical annotations (i.e., pre- and postconditions and loop
invariants) play in Hoare-style techniques. Fortunately, even
for fully automated program proofs of the different safety
properties, only relatively simple annotations are required.
This is a consequence of the highly idiomatic structure of the
automatically generated code and the restriction to specific
safety properties. In our certifiable code generation approach
[11], the code generator itself is extended in such a way that
it produces the necessary annotations together with the code.
This is achieved by embedding annotation templates into the
code templates, which are instantiated and refined in parallel
by the generator. The logical annotations are then propagated

throughout the code.

Generating Obligations.

The annotated code is then processed by a verification
condition generator (VCG), which applies the rules of the
safety policy in order to generate the safety obligations. As
usual, the VCG works backwards through the code. At each
statement, the safety predicates are added and the safety
substitutions are applied. The VCG has been designed to
be “correct-by-inspection”, i.e., to be sufficiently simple that
it is straightforward to see that it correctly implements the
rules of the logic. Hence, the VCG does not implement any
optimizations or apply any simplifications; in particular, it
does not actually apply the substitutions but maintains explicit
formal substitution terms.

III. PROOFS AS EVIDENCE
A. Prover Integration

Simplification. Since the VCG does not apply any opti-
mizations and simplifications, the generated obligations tend to
be large and to overwhelm current automated theorem provers
(ATPs) and need to be simplified aggressively before they can
be submitted to an ATP with any hope of success. Our system
thus includes several rewrite-based simplifiers. We focus on
rewrite-based simplifications rather than decision procedures
because rewriting is easier to certify: each individual rewrite
step T' ~» S could be traced and checked independently, e.g.,
by using an ATP to prove that S = T holds. However, this
rewrite checking is not yet implemented.

Processing Obligations. The simplified safety obligations
are exported as a number of individual proof obligations using
TPTP first-order logic syntax [16]. For provers that do not
accept the TPTP syntax, the appropriate (trusted) TPTP2X-
converter is used before invoking the theorem prover. A small
script then adds the axioms of the domain theory, before the
completed proof task is processed by the theorem prover. Parts
of the domain theory are generated dynamically in order to
facilitate reasoning with (small) integers.

Results. We have evaluated several state-of-the-art ATPs
on more than 25,000 proof tasks generated by our system.
As expected, the unsimplified tasks prove to be too difficult
for the provers, and only about two-thirds of the “out-of-the-
box” tasks could be proven. After aggressive simplification,
however, most of the provers could solve almost all emerging
tasks. More details of the evaluation can be found in [17].

B. Proof Checking

Safety certification remains a challenging task for ATPs:
the longest proof found during our previous experiments
involved more than 8000 inference steps. Consequently, simple
“correct-by-inspection” theorem provers like leanTAP [18]
are not powerful enough. Instead, we need to employ high-
performance ATPs, which use complicated calculi, elaborate
data structures, and optimized implementations. This makes
formal verification of their correctness infeasible [19]. More-
over, since most ATPs are under continuous development,
single versions are never subjected to enough validation (e.g.,
the soundness checks applied in the CADE ATP System
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Fig. 1. Hoare rule for for-loops

Competition (CASC), [20]) so that “tool pedigree” arguments
remain weak.! In fact, there have been several (unintentional)
unsoundnesses in ATPs participating in the CASC, which have
been detected only afterwards [22], [23], [24].

If the ATPs generate evidence in the form of sufficiently
detailed proofs, they can be independently verified by a proof
checker. Its function is to ensure that the ATP’s output really
is a proof in the logical system in use. Techniques include the
syntactic validation of Otter proof steps by Ivy [19], higher-
order proof term reconstruction in Isabelle [25], higher-order
proof step checking in HOL [26], reducing proof checking
to type checking as in Coq [4], and semantic derivation
verification [27], which has been used in this work. Here, the
required semantic properties of each proof step are encoded
in one or more proof check obligations, which are then
discharged by trusted ATPs. If all obligations are discharged,
the proof output of the original ATP is verified. This approach
is tractable because the correctness proof for each individual
step in the original proof is substantially easier than the
original proof itself, and thus within reach of the trusted ATP.
For certification purposes, all proofs found by the trusted
ATP constitute evidence, and become part of the certificate
constructed by the certification system.

Semantic Derivation Verification. The proofs produced
by an ATP can be considered abstractly as derivations, i.e.,
directed acyclic graphs (DAG), whose leaf nodes are formulae
(possibly derived) from the input problem, whose interior
nodes are formulae inferred from parent formulae, and whose
unique root nodes are the final derived formulae. Derivation
verification then involves three notionally distinct phases. First,
it is necessary to check the overall structure of the derivation.
This ensures that the ATP output is a well-formed derivation
DAG. Second, it is necessary to check that each leaf node is a
formula that occurs in, or is derived from, the input problem.
This ensures that the ATP solves the original problem. Third,
it is necessary to check that each inferred formula has the
required semantic relationship (typically an implication from
the premises of the applied inference rule to its conclusion) to
its parents. This finally ensures that the proof is correct.

Theorem Obligations. For each application of an in-
ference rule that derives a logical consequence, a theorem
obligation is formed to show that the inferred formula is
indeed a logical consequence of the parent formulae. If the
inference rule implements any theory (e.g., paramodulation
implements most of equality theory), then the corresponding
axioms of the theory are added as axioms of the obligation.
The obligation is then handed to the trusted ATP system. If
the trusted system finds a proof, the inference step is correct.

I'The notable exception is Otter [21], which has been essentially unchanged
since 1996. However, our previous experiments have shown that its perfor-
mance is not sufficient for discharging the safety obligations we generate
[17].
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For inference rules that introduce branches in the search, it
can be necessary to discharge multiple theorem obligations.
For example, explicit splitting as implemented in SPASS [28]
takes a problem S U {L V R} in clausal normal form (CNF),
where L and R do not share any variables, and replaces it by
two subproblems SU{L} and SU{R}. Obviously, the refuta-
tions of both the subproblems must be checked to assure that
the original problem is unsatisfiable. In addition, to verify the
splitting step’s role in establishing the overall unsatisfiability
of the original problem clauses, a theorem obligation to prove
—(L V R) from {—L,—R} must be discharged.

Leaf Theorem Obligations. The leaf formulae of a
derivation must occur in or be derived from the original
problem—otherwise, the ATP solves a different problem.
To verify this, leaf theorem obligations to prove each leaf
formula from the input formulae must be discharged. This
makes the technique robust to some of the preprocessing
inferences that are performed by ATP systems, e.g., factoring
and simplification of input clauses. If the input problem is in
first-order form (including quantifiers), and the derivation is a
CNF refutation, the leaf clauses may have been formed with
the use of Skolemization. Such leaf clauses are not logical
consequences of the original input formulae. Skolemization
steps can be incompletely verified by discharging a theorem
obligation to prove the parent formula from the Skolemized
formula. Although this is an incomplete verification step (i.e.,
unsound Skolemization steps can pass this check), it catches
some simple errors and thus provides additional assurance.

Experimental Evaluation. As a practical test and evalua-
tion of the proof checking approach described here, we scruti-
nized the proofs for 109 safety obligations generated from the
certification of programs generated by the AUTOBAYES and
AUTOFILTER code generators [17]. These obligations are also
included as “difficult” problems in the TPTP problem library
[16], the standard corpus for testing and evaluating ATPs.

The proofs have been found by the resolution provers EP
(Version 0.82) [29]? and by SPASS (Version 2.1). The proofs
output by EP include details of the CNF-conversion, and
the subsequent CNF-refutation while SPASS omits the CNF-
conversion. Both systems are based on the superposition calcu-
lus, but differ in the specific inference rules used. Additionally,
the systems have quite different control heuristics. As a result
the proofs produced by the two systems have quite different
characteristics.

The proof checking was done using the GDV system [27].
For the EP proofs, GDV was configured to check all aspects
of each proof. For the SPASS proofs, GDV was configured to
check only selected aspects of each proof: leaves were not ver-
ified because SPASS does not document the CNF-conversion,
all inferred formulae and splitting steps were semantically
verified, and the derivation was checked structurally, with

2EP is a simple extension of E that produces explicit proofs.
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the exception of structural aspects specific to splitting steps
that were too time-consuming for the full set of proofs. We
used Otter 3.3 [21] as trusted ATP for discharging theorem
obligations. The experiments were run on Linux-based PCs
with 2.8GHz and 1GB RAM, with a 10s CPU time limit for
each discharge.

EP can solve 48 of the 109 problems, with 46 of the proofs
fully verified. Both failure cases were caused by Otter’s in-
ability to discharge obligations arising from steps in the CNF-
conversion. In particular, the obligations to verify the step
that negates the conjecture, which entails proving the negation
of the negation from the original, could not be discharged.
Most of the proofs induce less than 10 theorem obligations
and only one proof induces more than 100 obligations. Most
obligations were discharged quickly, with only three of the
590 obligations requiring more than 0.3s. SPASS can solve
83 of the 109 problems, which includes the 48 problems
solved by EP, but the proofs are obviously different. All 83
of the SPASS proofs passed the verification checks chosen.
Again, most of the proofs require less than 10 obligations to
be discharged, but SPASS produces some very large proofs
that consequently induce a very large number of obligations:
18 proof induces more than 100 theorem obligations and the
largest proof resulted in 3493 obligations. At the same time,
all 19737 SPASS obligations were discharged in less than 0.1s.
More details can be found in [30].

These figures indicate that SPASS proofs contain very many
small, easily verified steps, while EP proofs have slightly
larger steps. However, since the overhead starting Otter for
each theorem obligation dominates the wall clock time taken
(i.e., the time the user has to wait for a proof to be verified),
it is preferable to have fewer but harder theorem obligations
to discharge, as is the case for EP.

IV. EXPLANATIONS AS EVIDENCE

Although formal proofs can be an effective way of demon-
strating correctness, certification traditionally requires docu-
mentary evidence either that the software development com-
plies with some process (e.g., DO-178B [5]), or that the
artifacts are safe.

Treating a prover as a trusted black-box, however, does
not help in understanding why code is safe and is therefore
difficult to reconcile with traditional approaches. Although
proofs generated by an ATP can be verbalized, they are still
difficult to understand and, more significantly, to relate to the
actual program. We claim, however, that it is unnecessary to
render actual proof steps; the verification conditions alone
provide sufficient insight into the safety of a program, can
be related to the corresponding parts of the program, and can
be rendered as comprehensible text. Based on this insight, we
have developed two related techniques based on extensions to
the underlying logic: explanation of the VCs, which is useful
for debugging and tracing; and explanation of program safety.

A. Explaining VCs

In practice, many things can—and typically do—go wrong
with program verification: the program may be incorrect or
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unsafe, the annotations may be incorrect or incomplete, the
simplifier may be too weak or counter-productive, the domain
theory may be incomplete, and the ATP may run out of
resources. In each of these cases, users are confronted only
with failed VCs, but are left without any information about
the causes of the failure. They must thus analyze the VCs by
interpreting their constituent parts, and relating them through
the applied Hoare rules and simplifications to the correspond-
ing source code locations. Unfortunately, VCs are a very
detailed and low-level representation of both the underlying
information and the process used to derive it, so this is often
difficult to achieve.

Here we describe an implemented technique that helps
users to trace, analyze, and understand VCs. The idea is to
systematically extend the Hoare rules by “semantic mark-up”
so that we can use the calculus itself to build up explanations
of the VCs. This mark-up takes the form of semantic labels
that are attached to the meta-variables used in the Hoare rules,
so that the VCG then produces labeled versions of the VCs.
The labels are maintained through the different processing
steps, and are then extracted from the final VCs and rendered
as natural language explanations. The main aspect of VCs that
we consider in this paper is their structure. More domain-
specific mark-up can be used to explain the purpose of VCs.

Figure 2 shows three different versions of a small example
program to illustrate the process. In Figure 2(a) and 2(b), the
actual annotations are abstracted by meta-variables to simplify
the presentation. Figure 2(a) shows the original annotations
while Figure 2(b) shows the result of the propagation phase.
Note that this step already introduces some labels; for example,
in line 7 the sub-formulas P; and P, are labeled with their
original locations (i.e., lines 3 and 5). We use the notation
t12b t5 denote a term ¢ that is labeled with a label lab; the
labels can also have internal structure. Figure 2(c) shows the
actual annotations required (before propagation) to certify the
program as initialization safe.

Although the example is very simple, it illustrates several of
the difficulties that arise in interpreting VCs, in particular the
combination of information from throughout the program into
a single VC and how the simplification of VCs can obscure
their structure.

The version in Figure 2(b) induces simple VCs whose
structure still directly reflects their intended meaning. Each
sub-formula is preserved and can be traced back to its origin,
which allows a human to interpret them in text, e.g., Py A P, A
P;ANI(i) A0 < i < 2 corresponds to “Given the postcondition
P, from line 3, the postcondition P, from line 5, and the
postcondition P5 from line 7, the loop bounds at line 8, and the
loop invariant at line 9, show that the loop invariant at line 9
hold is still true after each loop iteration”. The explanations
become more complicated when the substitutions arising from
the assign- and update-rules are taken into account because the
non-local effects of substitution applications need explaining:
the sub-formulas are no longer preserved intact and need to be
traced to their different origins and for larger programs, the
overall structure quickly becomes complex. Figure 3 shows
the automatically generated structural explanation for the same
VC as above, but now derived using the full annotations in



. vari,x,y,z; .
1 vari,x,y, z; x:os vari,x,y, z;
2 x:=1; post P, x:=1;
3 post Py viz2; post z,;, = INIT
4 y:i=2; post [P,191603) A P, y:=2;
5 post P, 2 x4y post ., = INIT
6 Z:=X+Y; Lt D 10rig(3) A [ 10rig(5) Z:=X+Y;
post [P;101903) A TP,10M80) A Py -
7 post. P3 for i : 20 to 2 post. Zime = INIT
8 fOl'.l : =O' to 2 inv (lerig(S)/\ fPerig(S)/\ (P3]°rig(7) fOl‘.l :=0to2
9 inv I(7) do A I(i) do inv true do
cogkp .
10 z:=2%z; zimziE z:=2%2Z;
(b)
(a) (©)

Fig. 2.

(a) Code with annotation skeletons (b) Code with annotation skeletons after propagation (c) Code with actual annotations

The purpose of this proof obligation is to show that the loop invariant at line 9 under the substitution originating
from line 10 is still true after each loop iteration; it is also used to show the preservation of the loop invariant at

line 9. Hence, given

- the postcondition at line 3 propagated into the invariant at line 9,
- the postcondition at line 5 propagated into the invariant at line 9,
- the postcondition at line 7 propagated into the invariant at line 9,

- the invariant at line 9,
- the loop bounds at line 10,

show that the loop invariant at line 9 under the substitution originating from line 11 is still true after each iteration

to line 11.
Fig. 3.

Figure 2(c).

B. Rules

Modified Hoare rules concisely capture the semantic mark-
up (i.e., label types and positions) required for any given
explanation aspect. Labels can be added in three places: to
the “incoming” postcondition of a recursive VCG call in the
premise of an inference rule, to the WSPC, or to a generated
VC.

We restrict our attention here to the for-rule shown in
Figure 4. The WSPC comprises the safety predicates and the
invariant, which has to be established in the entry form (i.e.,
at the lower bound of the loop) and is thus labeled with
festinv 1 the premise, individual sub-formulas of both the
exit-condition I A —=b = () and the step-condition I A b = P
are labeled appropriately; in addition, the entire step-condition
is labeled with its secondary purpose, namely to contribute to
showing the preservation of the invariant. In the triple P {c} I,
the incoming postcondition / must be labeled with its purpose
for the recursive call; moreover, all emerging VCs must be
marked up with the secondary purpose [PV We indicate
this by labeling the entire triple. Note how the same formula [
is used in four different roles and consequently labeled in four
different ways. This contextual knowledge is only available at
the point of rule application and can not be easily recovered
by a post-hoc analysis of the generated VCs.

The labels are not dependent on the specific safety property
but could contain additional embedded labels for more detailed
or property-specific explanations. The substitutions need mark-

Explanation automatically generated for the VC 0 < ¢ < 2 A &ipig = INIT A Yinit = INIT A Zipiy = INIT = INIT = INIT derived from Figure 2(c)

up to record their type and the origin of the substituted
expressions.

C. Explanation Generation

The generation of the actual textual explanations is inde-
pendent of the particular aspect which is to be explained and
can thus be reused. It proceeds in two phases. First, there is
a rewrite-based normalization of the VCs and corresponding
labels. The unlabeled rewrite rules cannot be reused “as is”
for the labeled case because (z) the labeling changes the term
structure and thus the applicability of the rules and (i7) the
labels need special handling. We have therefore defined a set
of rewrite rules (omitted here) that are used together with
additional unlabeled rules to simplify the labeled VCs.

The normalization is then followed by a rendering phase
that extracts and further normalizes the final label structure
and, using aspect-specific explanation templates, turns it into
natural language text.

D. Explaining Program Safety

In contrast to Section IV-A, where individual VCs are ren-
dered to give a problem-centric explanation of the verification,
we can use the same underlying information (along with some
more information about the program), to give a program-
specific explanation.

Figures 5 and 6 give an example program and the cor-
responding initialization safety explanation provided by the
document generator. The program needs an invariant (not
given here) in order to prove its safety. The explanation is
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P {c} r I[i +1 /ipest_inv_iteﬂpres_inv

W[[FINITWsub_safety/im“Pass_inv ATey

f[[ez + 1/i]1ass_inv_exit = Q

<i< 621ass_bounds — plpresdinv

(I[el/ipest,inv A rel < e2lest,bounds

(

Fig. 4. Hoare rule for for-loops with semantic markup for initialization safety

1 vara[0:9];

2 varb;

3 var c;

4 vard;

5 var x;

6 b:=1;

7 c:=2;

8 d:=b*b+c*c;

9 fori:=0to9

10 if i<5

11 ald+i] :=1;
12 else

13 al2*d-1-1] :=1;
14 x:=alal5]1];

Fig. 5. Example program (annotations omitted)

only generated if the theorem prover successfully proves all the
corresponding verification conditions. Note that we currently
perform no symbolic evaluation during the rendering. The
safety of the final assignment is proven using the invariant
but the explanation simply indicates where this is used. See
[31] for more details.

V. CERTIFICATION ASSISTANT

The previous two sections have discussed two important
forms of evidence. As we have argued above, it is crucial
for certification to relate this evidence to the program under
consideration. We have therefore built a certification assistant
that provides access to the auxiliary artifacts that are produced
during the certification. This includes the intermediate stages
in the processing chain (generated axioms, clausal normal form
etc.), prover log files, and actual proofs, depending on the
required level of evidence. These artifacts can support, or in
the absence of a proof collectively serve as, the certificate, and
can be inspected as raw text files, or using third-party tools,
e.g., the GDV derivation verifier [32] and the proof visualizer
from the TPTP tool suite [16].

The assistant also provides some limited functionality for
creating proofs: it allows a (TPTP-compliant) prover to be
chosen and invoked for selected VCs, and for the resulting
proofs to be checked. We will concentrate here, however, on
the assistant’s use in tracing the VCs.

A. VC Linker and Browser

As discussed above, manually tracing VCs back to their
source is quite difficult as the verification process is inher-
ently complex and a single VC can depend on a variety of
information distributed throughout the program.

Nlsafe, (6059 A Tsafe, (e2) 4

) {fori :=e;toezinvidoc} Q

Section IV-A described the mark-up for explanations. Since
this includes location information it can be used to trace
between the VCs and the source code. The VCG adds the
appropriate information to the formulas it constructs as it
processes a statement at a given source code location. We
currently use simple line numbers as locations rather than
individual subterm positions [33].

Figure 7 shows how the tracing information can be used
to support the certification process. A click on the source
link associated with each verification condition prompts the
certification assistant to highlight in boldface all affected lines
of the code. A further click on the verification condition link
itself displays the formula and explanation, which can then be
interpreted in the context of the relevant program fragments.
This helps domain experts assess whether the safety policy is
actually violated, which parts of the program are affected, and
eventually how the violation can be resolved. This traceability
is also mandated by relevant standards such as DO-178B.

In practice, safety checks are often carried out during code
reviews [34], where reviewers look in detail at each line of the
code and check the individual safety properties statement by
statement. To support this, linking works in both directions:
clicking on a statement or annotation displays all VCs to which
it contributes (i.e., which are labeled with its line number).
Figure 8 shows the result of clicking on the label for line 220;
the unproven verification condition indicates that this line of
code has not been completely cleared yet.

VI. CONCLUSIONS

We believe that there is a natural synergy between code
generation and evidence-based certification. To gain trust in a
black-box generator, it is necessary to have evidence that the
generated code satisfies some desirable criteria. So long as the
evidence is in a form that can be independently scrutinized,
the generator can provide that evidence itself without loss of
assurance. Since certification is ultimately a human process it
is important to support both machine and human checking of
evidence.

We have implemented a safety-proof based extension to two
code generators that integrates the generation of safety proofs,
safety explanations, and a browser-based assistant that allows
tracing between the various generated artifacts.

Our long-term vision is that the system will support the con-
struction of a safety case for the generated code, incorporating
information about the generator itself, the code derivation,
diverse forms of evidence, and customizable documentation.
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Safety Explanation for Initialization of Variables
The assignment b=1 at line 6 is safe.
The assignment c=2 at line 7 is safe.

The assignment d=b*b+c*c at line 8 is safe; the term b is initialized from b=1 at line 6; the term c is initialized from c=2
at line 7.
The loop index i ranges from 0 to 9 and is initialized at line 9.
The conditional expression i<5 appears at line 10; the loop index 1 ranges from 0 to 9 and is initialized at line 9.

The assignment a [d+1]=1 at line 11 is safe (if the condition 1<5 at line 10 is true); the term d is initialized from
d=b*b+c*c at line 8; the term b is initialized from b=1 at line 6; the term c is initialized from c=2 at line 7; the loop
index 1 ranges from 0 to 9 and is initialized at line 9.
The assignment a [2*d-1-1]1=1 at line 13 is safe (if the condition 1<5 at line 10 is false); the term 4 is initialized from
d=b*b+c*c at line 8; the term b is initialized from b=1 at line 6; the term c is initialized from c=2 at line 7; the loop
index i ranges from 0 to 9 and is initialized at line 9.

The assignment x

after the loop.
[Certified by e-setheo on Mon Mar 15 18:02:24 PST 2004 for init policy.]

Fig.
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alal5]] atline 14 is safe; using the invariant for the loop at line 9 and the postcondition 1=9+1

init-certification of quaternion_ds1 (IMU + SRU: nonlinear w/ quaternions)

(forall pve7 : int, pves : int &
(0 <= pv6T and 0 <= pv68 and pvET <= pve3 and
pved <= n_statevars - 1) =>
1d_dsl_filter_init(pvé?, pve@) == init )

zpred_dsl filter(2, 0) := zhatmin dsl filter(2, 0);

/## Update loop dependent quantities
/¢ V€ quaternion_dsl_init_0034

dv_dsl_filter (1, 0}
dv_del Filter (0, 0)

= shatnin dsl Filter(d, 0);
= shatnin dsl Filter (3, 03;

else

4L % E& &4 | Document: Done (1077 secs)

Prover Control

ATP Time Farameters
2l [ 70 =] 1
// VG quaternion_ds]_init_0034 | KBTI | I
205: *{ post Axioms Evidence
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(0 <= 4 and pv64 <= n_statevars - 1) => Send Stop Reset -
id_dsl_filter_mit{pv70, pved} == init ) ¥ =
¥ A . =
Verification Conditions
206 zpred_dsi filter{0, 0) := xhatwin_dsl_filter(0, 0);
207 zpred_dsl Filter{l, 0) := xhatmin dsl filter(l, 0};
Show AllVCs | Selectal | Clear Evidence |

209 zhat dsl filter (U, 0) = z(0, pv5);
210: zhat_dsl filter(l, 0) = z{l, p5); o )
211 zhat_dsi filter(2, 0} := z(2, pwh); % Proof obligation generated by the AutoFilter system

218 SE( pvs > 0 ) input_formula{quaternion_dsl_init 0034, conjecture, (
¢ (leq(D, pvS) & leg(pvS, 998) & gt(pvs, 0) &
213: phi_dsl Filter(2, 1) := t * (shatmin dsl filter(3, 0) - w(0, pv&)}: | (1 (&, B]
214 phi_dsl filteriz, 0) := t * (u(l, pv5) - hatmin dsl filter(d, 0)); =
215: phizdsl filter(l, 2} := & * {u(l, pv5) - zhatmin del filter(3, 033; | '1=9(0, 2) & leq(d, B) & leq(d, 2) & leqg(®, 5)) =2
216: phi_dsl_filter(l, 03 := t * (xhatmin_dsl_filter(S, 0) - w(2, pwS));: equal {a_select3(h_dsl_filter_init, A, B}, init) }) &
217 phizdsiFilter(l, 2) := t * (dhatwin_dsl filter(d, U) - u(l, pw&)); | ¢! [C, D] ;5 {
218: phi“dsi Filter(D, 1) := £ * (u(2 pvB) - xhatmin del filter(S, 0)): | (leq(0, €} & leq(D, D) & leg(C, 5 & leg(D, 5)) =>»
ak equalia_selectdiphi_dsl_filter init, ©, D), init) )}  —
&
/¢ Update 1oop dependent quantities (1 [E, F] : o
// VG quaternion_ds_init_0031 (leq(D, E) & leqiD, F) & leq(E, 5) & leg(F, 0)) =
218: lng"f' >0 equal {a_select3(du_dsl_filter_init, E, F), init) )) &
/¢ V& quaternion_dsl_init_0034 ¢ [e, "H] ¢ {
220: dv_dsl_filter(2, 0) := hatmin_dsl_filter(5, 0); {leq(D, G) & leqiD, #) & leq(S, 5) & leg(H, 5)) =

% quaternion_dsl_init_0024
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init-certification of quaternion_ds1 (IMU + SRU: nonlinear w/ quaternions)

210 zhat dsl filtec(l, ) := z(l, pv5);
211 zhat_dsl_filter(Z, 03 := z(2, pvS);
// Update loop dependent quantities
212 if( pvs > 0)
i
213 phi_dsl filter(2, 1) := t * (chatnin dsl_filter(3, 0) - u(0, pvG));
214 phidsl filter(2, D) := t * (u(l, pv5) - xhatmin dsl filter(4, 0));
215 phidsl filter(l, 2) := t * (u(0, pvs) - xhatmin dsl filter(3, 0));
216 phidsl filker (1, D) = t + (xhatmin dsl filter(S, 0) - u(2, pv5));
217 phi dsifilter (D, 2) := t * (xhatnin_del_filter(d, 0) - ufl, pvE));
218 phi_dsi filter{0, 1) := £ = (u(2, pvG) - xhatmin_dsl filter(S, 0));
else
/¢ Update loop dependent quantities
219 if( pvs > 0)
i
220 dv_dsl filter(2, 0) := xhatmin dsl filter(S, 0);
221 dv dsiTfilter(l, 0) = zhatmin dsi Eilter(d, 0);
222 dv_dsl filter(l, 0) = =hatmin_dsl_filter(3, 0).
else
223 gain dsl_filter := pninus_dsl filter *
(trans(h dsl filter) *
inv(r_dsl_filter +
h_dsI filter *
Tpmirns_dsi_filter + trans(h_dsl filter))));
224 shatl_dsl filter := xhatmin dsl filter +
gain dsl filter *
(zhat_dsl filter - zpred dsl filter);
225 pplus_dsl filter = (id dsl filter - gain dsl Filter * h dsl filter) +
prings_dsl filter;
226 shatmin_dsl_filter := dv_dsI filter +
phi dsl filker + xhatl del filter;
227 pinus_dsl filter := g dsl Filker +
phi_dsl filter +
(pplus_dsl_filter * trans(phi_dsl filter));
// Populate dutput Vector
228 for{ [pv3 .= 0 .. n_statevars - 1] )
220 shat_del_filter(pv39, pv5) := zhatl_del_filter(pv3s, 0);
¥
)
¥
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