
ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

Information and Software Technology 0 0 0 (2016) 1–19

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Visualizing and exploring software version control repositories using

interactive tag clouds over formal concept lattices

Gillian J. Greene

∗, Marvin Esterhuizen, Bernd Fischer

CAIR, CSIR Meraka, Computer Science Division, Stellenbosch University, Stellenbosch, South Africa

a r t i c l e i n f o

Article history:

Received 29 January 2016

Revised 2 December 2016

Accepted 5 December 2016

Available online xxx

Keywords:

Formal concept analysis

Tag clouds

Browsing software repositories

Interactive tag cloud visualization

a b s t r a c t

Context: version control repositories contain a wealth of implicit information that can be used to answer

many questions about a project’s development process. However, this information is not directly accessi-

ble in the repositories and must be extracted and visualized.

Objective: the main objective of this work is to develop a flexible and generic interactive visualization

engine called ConceptCloud that supports exploratory search in version control repositories.

Method: ConceptCloud is a flexible, interactive browser for SVN and Git repositories. Its main novelty is

the combination of an intuitive tag cloud visualization with an underlying concept lattice that provides

a formal structure for navigation. ConceptCloud supports concurrent navigation in multiple linked but

individually customizable tag clouds, which allows for multi-faceted repository browsing, and scriptable

construction of unique visualizations.

Results: we describe the mathematical foundations and implementation of our approach and use Con-

ceptCloud to quickly gain insight into the team structure and development process of three projects. We

perform a user study to determine the usability of ConceptCloud. We show that untrained participants

are able to answer historical questions about a software project better using ConceptCloud than using a

linear list of commits.

Conclusion: ConceptCloud can be used to answer many difficult questions such as “What has happened

in this project while I was away?” and “Which developers collaborate?”. Tag clouds generated from our

approach provide a visualization in which version control data can be aggregated and explored interac-

tively.

© 2016 Elsevier B.V. All rights reserved.

1

f

p

fi

m

a

v

s

c

m

s

(

i

w

v

p

b

a

c

w

H

t

b

t

h

0

. Introduction

Version control repositories contain a wealth of implicit in-

ormation that can be used to answer many questions about a

roject’s development process, such as “Who worked on these

les?”, “Which developers collaborate?”, “What are the co-changed

ethods?”, or “What has happened in this project while I was

way?”. Answering such questions is a daily task for software de-

elopers [1] . Developers also rely on examining the history of a

oftware project to keep up with changes, understand coding de-

isions and debug [2] . In co-located teams new developers rely on

embers of the team to help them ramp-up [3] but in large open-

ource projects, where this is no longer possible, the repository
∗ Corresponding author.

E-mail addresses: ggreene@cs.sun.ac.za (G.J. Greene), mhesterhuizen@cs.sun.ac.za

M. Esterhuizen), bfischer@cs.sun.ac.za (B. Fischer).

g

i

e

l

ttp://dx.doi.org/10.1016/j.infsof.2016.12.001

950-5849/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
nformation becomes a valuable resource for new developers as

ell [4] .

While it is well-known that version control repositories are a

aluable source of information, repository tools are not set up to

rovide insights into the history of a project directly and can only

e used to see information about individual commits. Manually ex-

mining the last few commits to a software project in the version

ontrol repository is feasible for regular contributors of the project

ho are only seeking information about the most recent changes.

owever, manually examining the entire commit log of a reposi-

ory in order to answer more complex questions becomes infeasi-

le. Individual commits provide information about a single change

o the project but only when a large number of commits is aggre-

ated does the information become accessible to developers seek-

ng answers to complex questions.

We develop ConceptCloud, an interactive tag cloud visualization

ngine for software repositories that aggregates commit data and

ets users easily construct uniform visualizations of many different
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.1016/j.infsof.2016.12.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:ggreene@cs.sun.ac.za
mailto:mhesterhuizen@cs.sun.ac.za
mailto:bfischer@cs.sun.ac.za
http://dx.doi.org/10.1016/j.infsof.2016.12.001
http://dx.doi.org/10.1016/j.infsof.2016.12.001

2 G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

a

b

r

i

t

w

t

i

l

t

s

u

S

t

s

d

e

b

v

S

r

a

t

d

o

b

c

t

2

m

u

s

f

f

r

b

t

c

l

c

v

a

D

a

s

r

(

g

t

v

s

D

T

a

aspects of the project history. ConceptCloud makes use of a novel

combination of tag clouds and an underlying concept lattice [5] to

support exploratory search [6,7] tasks on software repositories.

When users have no previous knowledge of a project or have

not yet formulated a direct query their task becomes one of ex-

ploratory search instead of direct search or retrieval [7] . While there

are already approaches supporting specific retrieval tasks and visu-

alizing aspects of software repositories [8] , support for exploratory

search in software repository data remains unavailable. The goal of

our work is to build a flexible and interactive visualization engine

that allows users to visualize different aspects of a project interac-

tively and therefore supports exploratory search tasks, instead of

presenting the user with one static, pre-configured view.

An exploratory search approach can provide an overview of the

repository data and allow the user to further investigate any as-

pects of the project which they might find interesting. Therefore,

exploratory search approaches can support new developers on a

project in understanding the project history and team structure.

An exploratory approach can also be used to answer more general

questions (e.g., “Which developers collaborate?”) which cannot be

formulated as a single search query which would be possible if the

question was more focused (e.g., “Who collaborates with Alice?”).

Tag clouds (or word clouds) are a simple visualization method

for textual data where the frequency of each tag is reflected in

its size. We use a tag cloud visualization to present aggregated

software repository data, as tag clouds support exploratory search

tasks and have been found to be effective when the informa-

tion discovery task is wide [9] . While our tag cloud visualization

may not be the optimal visualization for all aspects of the data,

it is flexible enough to visualize many aspects of the software

project such as developer expertise (e.g., which developers have

worked on particular files or directories and would be good candi-

dates to ask questions about this functionality), co-changed meth-

ods in a software project, project activity (e.g., in which years and

months has there been a lot of development, and on which parts

of the system), or developer collaboration (e.g., which developers

are working together on which parts of the project) in a uniform

way. Our interactive tag clouds allow developers to aggregate com-

mits into groups and filter commits that apply to a certain topic,

which has been noted by developers to be useful [2] .

We generate tags directly from the data that we extract from

software repositories, instead of relying on user-generated labels as

tags for particular content, as often done in Web 2.0 applications

(such as Flickr’s early tag cloud view). The data available in a ver-

sion control archive is often large (for example, more than 50 0,0 0 0

revisions for the Linux [10] repository) and so we allow the user

to make incremental refinements (i.e., navigate) in the tag cloud in

order to generate smaller, more detailed visualizations. The naviga-

tion in our tag clouds is crucial for facilitating exploratory search

tasks. Navigation using tag clouds has previously been explored us-

ing a Bayesian approach [11] ; however, navigation in our browser

is supported by a novel combination of tag clouds and concept lat-

tices [5,12,13] .

We conjecture that a concept lattice [5] provides a high level

of internal structure for the repository data and therefore allows

users to explore the data through multiple navigation paths. Con-

cept lattices have been shown to be useful for browsing data

[14–16] but large lattices do not provide a suitable data visualiza-

tion because the relationships between the concepts are difficult

to identify in a large Hasse diagram. Therefore, we make use of

a concept lattice to facilitate navigation in the more intuitive and

scalable tag cloud visualization.

Fig. 1 shows an overview of our approach. We construct a for-

mal context from data in a version control archive (see Section 4.1)

and generate a concept lattice directly from the context. Note that

we have used a small illustrative example as larger context tables
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
nd lattices (for example, one derived from the Linux repository)

ecome incomprehensible. Our refinement-based navigation algo-

ithm (see Section 3.4) then enables interactive repository brows-

ng through our tag cloud interface (see Section 4.1). Our naviga-

ion algorithm maintains a focus concept in the underlying lattice

hich represents the user’s current tag selection. We derive the

ag cloud visualization from the current focus concept and update

t after each navigation step. Navigation is driven by the user’s se-

ection (or de-selection) of tags in the tag cloud. Fig. 1 (i) shows

he initial focus concept generating the first tag cloud, after the

election of tag “Alice” the focus moves to (ii) and the tag cloud is

pdated.

By using different objects in the formal contexts (see

ection 3.2) that are used to construct concept lattices, we are able

o generate tag clouds that provide different perspectives on the

ame underlying data in the same familiar visualization. Our foun-

ation in formal concept analysis allows us to change the objects

asily to get different insights on the same repository.

We have implemented our approach in the ConceptCloud

rowser (available at www.conceptcloud.org) which includes ad-

anced visualizations, such as multiple interlinked tag clouds.

ection 5 shows the application of ConceptCloud to three different

epositories.

In this paper, we extend our previous work [17] by providing

 formalization for our formal context construction from reposi-

ories (see Section 2), combining multiple archives (such as issue

atabases and version control repositories) in the same context in

rder to support data fusion (see Section 3.2.5) and developing a

rowser scripting language for ConceptCloud to support advanced

ustomizations (see Section 4.2.4). We have also conducted addi-

ional evaluation in the form of a user study (see Section 7).

. Modeling software repositories

We use a simple repository model derived from Hindle and Ger-

án’s SCQL [18] to formalize how we construct the contexts that

nderpin our browser: a repository is simply a collection of ver-

ions of a set of files that are grouped into revisions . Note that we

ollow the SVN terminology [19] here. Hindle and Germán [18] re-

er to versions as revisions, while revisions are called modification

equests; elsewhere revisions are called transactions.

A version v ∈ V denotes the abstract state of a file f ∈ F created

y an author a ∈ A at a time t ∈ T . We ignore the actual file con-

ents and only use meta-data and abstract modifications. Versions

onstitute a version history if they are ordered by a precedence re-

ation ≺ that holds only between versions of the same file and is

ompatible with the file creation times. We say that vevolves into

′ if v ≺v ′ holds; two versions v 1 and v 2 are merged into v if v 1 ≺v

nd v 2 ≺v .

efinition 1. Let V ⊆ F × T × A be a set of versions over files F
nd ≺ ⊆ V × V be an irreflexive partial order. (V, ≺) is called a ver-

ion history iff v = (f, t, a) ∈ V, v ′ = (f ′ , t ′ , a ′) ∈ V, and v ≺v ′ imply

f = f ′ and t < t ′ .

A revision r is a set V of file versions that are committed to the

epository R at time t by an author a ; on commit, some meta-data

i.e., author, time, and an additional log message l ∈ L) is stored to-

ether with the versions. We assume that each revision r ∈ R con-

ains only one version of a file (which need not be the most recent

ersion), and that each revision is uniquely determined by an ab-

tract identifier id (r).

efinition 2. Let (V, ≺) be a version history and R ⊆ P (V) ×
 × A × L be a set of revisions . R is called a repository iff r =

(V, t r , a r , l) ∈ R and v = (f, t v , a v) ∈ V imply t v ≤ t r and v �≺ v ′ for

ll v ′ ∈ V .
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://www.conceptcloud.org
http://dx.doi.org/10.1016/j.infsof.2016.12.001

G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19 3

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

Fig. 1. Navigating concept lattices with tag clouds: tag clouds correspond to the matching colored concepts in the lattice (tag clouds from left to right correspond to concepts

i, ii and iii respectively). Context table (top left) used to generate concept lattice (top right). Tag clouds are refined on each tag selection (selected tags shown in red). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

s

s

a

n

p

t

t

H

v

t

t

a

r

a

t

t

t

c

f

d

3

f

g

t

a

m

t

3

m

a

r

D

a

a

D

c

r

a

m

a

r

c

w

D

C

c

d

a

i

D

c

O

t

c
We can easily extend this basic model towards common revi-

ion control systems. For example, in CVS [20] , the notions of ver-

ions and revisions are conflated; in our model we thus have for

ll revisions r = (V, t, a, l) ∈ R that V = (f, t, a) . Note that we do

ot model revision tagging explicitly, but assume that the tags are

art of the log messages. In SVN, each revision can only contain

he most recent version of a file, and only the commit author and

ime are recorded but not the file author or modification time.

ence, in our model we thus have for all r = (V, t r , a r , l) ∈ R and

 = (f, t f , a f) ∈ V that v ∈ V implies that t f = t r and a f = a r . Note

hat we are only interested in the linear sequence of revisions and

herefore do not model explicit branching and merging, but again

ssume that this information is encoded into the log messages, if

equested. For distributed revision control systems such as Git we

nalyze a clone of the repository. Note that clones of the reposi-

ory in different states will generate different contexts, as the con-

exts are generated using the commit information extracted from

he repository. Therefore, if a repository is not up-to-date (i.e., has

hanges available to be pulled) then the generated context will dif-

er from that of the up-to-date repository, as the list of commits

iffers.

. Navigation framework

In our model, we have a set of revisions and a set of attributes

or each revision; the attributes are divided into separate cate-

ories such as author, date, or file name. Our goal in browsing is

o retrieve a set of revisions which share a common attribute such

s the same author, and then to refine this set gradually by adding

ore attributes. We use formal concept analysis (FCA) as framework

o achieve this goal.

.1. Formal concept analysis

Formal concept analysis (FCA) [5,12,13] uses lattice-theoretic

ethods to investigate abstract relations between objects and their
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
ttributes. Such contexts can be imagined as cross tables where the

ows are objects and the columns are attributes (cf. Fig. 1).

efinition 3. A formal context is a triple (O, A , I) where O and A
re sets of objects and attributes, respectively, and I ⊆ O × A is an

rbitrary incidence relation.

efinition 4. Let (O, A , I) be a context, O ⊆ O, and A ⊆ A . The

ommon attributes of O are defined by α(O) = { a ∈ A | ∀ o ∈ O :

(o, a) ∈ I} , the common objects of A by ω(A) = { o ∈ O | ∀ a ∈ A :

(o, a) ∈ I} .
For example, the common attributes of the objects

evision-1 and revision-2 in Fig. 1 are Alice , 10/14
nd build.xml .

Concepts are pairs of objects and attributes which are synony-

ous. They are maximal rectangles (modulo permutation of rows

nd columns) in the context table. For example, ({ revision1 ,
evision2 }, { Alice , 10/14 , build.xml }) in Fig. 1 is a con-

ept, since adding another revision object loses common attributes,

hile adding another attribute loses common objects.

efinition 5. Let C be a context. c = (O, A) is called a concept of

iff α(O) = A and ω(A) = O . πO (c) = O and πA (c) = A are called

 ’s extent and intent , respectively. The set of all concepts of C is

enoted by B (C) .

Concepts are partially ordered by inclusion of extents such that

 concept’s extent includes the extent of all of its subconcepts; the

ntent-part follows by duality.

efinition 6. Let C be a context, c 1 = (O 1 , A 1) , c 2 = (O 2 , A 2) ∈ B (C) .

 1 and c 2 are ordered by the subconcept relation, c 1 ≤ c 2 , iff O 1 ⊆
 2 . The structure of B (C) and ≤ is denoted by B(C) .

The basic theorem of FCA states that the structure induced by

he concepts of a formal context and their ordering is always a

omplete lattice. Such concept lattices have strong mathematical
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.1016/j.infsof.2016.12.001

4 G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

i

c

u

t

a

s

[

s

3

s

d

e

T

c

r

h

m

w

o

D

3

r

m

t

w

o

a

a

t

D

C

t

a

o

t

t

t

p

a

o

t

T

r

o

properties and reveal hidden structural and hierarchical proper-

ties of the original relation. They can be computed automatically

from any given relation between objects and attributes. The great-

est lower bound or meet and least upper bound or join can also be

expressed by the common attributes and objects.

Theorem 7 (Wille [5]) . Let C be a context. Then B(C) is a complete

lattice, the concept lattice of C. Its meet and join operation for any

set I ⊂ B (C) of concepts are given by

∧

i ∈ I
(O i , A i) =

(⋂

i ∈ I
O i , α(ω(

⋃

i ∈ I
A i))

)

∨

i ∈ I
(O i , A i) =

(

ω(α(
⋃

i ∈ I
O i)) ,

⋂

i ∈ I
A i

)

Each attribute and object has a uniquely determined defining

concept in the lattice. For example, the defining concept for Alice
is indicated in blue in the concept lattice in Fig. 1 (ii). The defining

concepts can be calculated directly from the attribute or object,

respectively, and need not be searched in the lattice.

Definition 8. Let B (O, A , I) be a concept lattice. The defining con-

cept of an attribute a ∈ A (object o ∈ O) is the greatest (smallest)

concept c such that a ∈ πA (c) (o ∈ πO (c)) holds. It is denoted by

μ(a) (σ (o)). We use the δ(x) to denote μ(x) if x is an attribute and

σ (x) otherwise.

Efficient algorithms exist for the computation of the concept

lattices and the meet and join of concepts in the lattice, such as

Lindig’s algorithm [21] .

3.2. Contexts from repositories

In order to construct a concept lattice from repository data we

need a context table. The first step in the construction of such a

context table is to determine which field in the data will be taken

as the object and which fields are suitable as attributes for that

object. We use three different object types, namely revisions, files,

and revision-file pairs (i.e, changes) in order to construct different

types of contexts, which enables us to create different tag cloud

visualizations for the same repository, providing new insights into

the data. We are able to combine multiple data sources in the

same context to support data fusion as object types in the context

table need not be homogeneous. We use a combination of issue

and version control data, in the same context, to provide a more

complete overview of a project.

3.2.1. Basic preprocessing

When we construct context tables we pre-process the meta-

data that we extract from the revision control system, in partic-

ular the log messages, file names, and commit times from each

revision in the repository. We use a function W : L → P (W) that

segments each log message into individual words w ∈ W, removes

words on a default stop list, and reduces each word to its stem, us-

ing the Apache Lucene implementation of Porter’s [22] stemming

algorithm. Since the stem is not necessarily a proper word we take

the most frequently used word that evaluates to a given stem as

representative in the cloud.

We group both file names and commit times into increasingly

coarser bins. For file names, we use a function D : F → P (F) that

decomposes each file name into a set of all path prefixes, similar

to recursively applying the Unix dirname command. For commit

times, we use a function T : T → P (T) that truncates the times at

different precision levels (days, months, and years).

In addition, we also use aggregators (such as aggregating files

with the same names, even across directories) to capture regular-
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
ties that appear across the bins, e.g., similarities between identi-

ally named files such as README.txt in different directories. We

se d, n , and t , respectively, to denote mappings from each time

o the corresponding weekday, and from each file to its base name

nd type, respectively.

Note that we do not perform more complicated pre-processing

teps such as word sense disambiguation [23] or identity merging

24] . We instead prefer to leave the user in control of such deci-

ions.

.2.2. Revision-based contexts

In a revision-based context we interpret the revisions , repre-

ented by their revision number , as objects and the commit meta-

ata (e.g., author or words from the log message) as attributes;

ach revision is associated with its own meta-data as attribute.

his context type represents the canonical view of repositories. Its

oncepts are sets of revisions and their common attributes (e.g., all

evisions that include a common set of files). It is useful to get a

istorical overview of a project, for example to identify when the

ost changes have been made to a project, which developers have

orked on particular files and which directories have been devel-

pment hotspots.

efinition 9. Let R be a repository, and A R = W ∪ A ∪ T ∪ F . C R =
(id (R) , A R , I R) is called the revision-based context of R if for all r =
(V, t, a, l) ∈ R , v = (f, t ′ , a ′) ∈ V, and x ∈ A R , we have (r, x) ∈ I R iff

(i) x ∈ W (l) , or

(ii) x = a, or

(iii) x = d(t) or x ∈ T (t) , or

(iv) x = n (f) or x ∈ D (f) , or

(v) x = t(f) .

.2.3. File-based contexts

In a file-based context we interpret the files as objects but de-

ive the attributes from the revisions’ pre-processed meta-data;

ore precisely, each file receives all attributes from all revisions

hat involve the file. Concepts from such contexts are sets of files

ith common attributes (e.g., the set of all files on which a group

f developers have all worked); in particular, each commit induces

 concept: since a developer can only commit one set of files at

ny given time, the set of committed files is maximal with respect

o the set of all attributes derived from the commit meta-data.

efinition 10. Let R be a repository, and A F = W ∪ A ∪ T ∪ id (R) .

 F = (F , A F , I F) is called the file-based context of R if for all r =
(V, t, a, l) ∈ R , v = (f, t ′ , a ′) ∈ V, and x ∈ A F , we have (f, x) ∈ I F iff

(i) x ∈ W (l) , or

(ii) x = a, or

(iii) x = d(t) or x ∈ T (t) , or

(iv) x = n (f) or x ∈ D (f) \{ f } , or

(v) x = t(f) , or

(vi) x = id(r) .

Note that revision- and file-based contexts give complemen-

ary views on the repository. For example, the author tags from

 revision-based context will be scaled according to the number

f revisions that the author has committed over the project life-

ime; during browsing only one author tag can be selected at a

ime since each revision has only one author. In a file-based con-

ext, the author tags will be scaled according to how many files a

articular author has changed. Selecting an author tag will reveal

ll collaborators , i.e., all other authors who have also changed any

f the same files. Selecting two author tags will then reveal the ex-

ent of their collaboration, i.e., all files they have both worked on.

herefore file-based contexts can be used to visualize the collabo-

ation in the project, showing which developers work together and

n which files.
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.1016/j.infsof.2016.12.001

G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19 5

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

Fig. 2. Multiple linked tag clouds of the JUnit Repository in ConceptCloud, showing changed files (top), authors (bottom) and years (left). The tag cloud is constructed from

a revision-based context.

3

a

a

c

t

c

t

[

W

e

c

s

e

c

w

g

c

p

p

p

(

�

t

D

i

t

v

3

t

s

t

b

s

t

i

s

d

t

I

i

v

c

f

f

s

s

r

o

v

c

fi

n

k

g

t

f

t

“

m

a

p

s

a

a

o

i

d

c

a
.2.4. Change-based contexts

In a change-based context we use pairs of files and revisions

s objects, so that for example (hello.java , revision-1)
nd (hello.java , revision-3) become separate objects in the

ontext. This allows us to use the content of the files as addi-

ional attributes, which we cannot do with revision- or file-based

ontexts. In our implementation we focus on the changes (rather

han the entire contents), and use a lightweight fact extractor

25] to get the signatures of the changed methods from each file.

e could therefore have, for example the attributes public int
quals() , public static void main() , and Alice asso-

iated with the object (hello.java , revision-1) to repre-

ent the fact that revision-1 by Alice changes the methods

quals and main . Selecting a method tag m then produces a tag

loud which contains all other methods that have been co-changed

ith m , scaled according to how often they have been changed to-

ether (cf. Fig. 3). Therefore change-based contexts can be used to

onstruct visualizations that depict the co-changed methods in the

roject as well as showing other method information, for exam-

le, which methods are development hotspots and in which time

eriods.

In our model, we assume a set M of abstract modifications

in the spirit of the atomic changes of Ren et. al [26]), and use

(v ′ , v) ⊆ M to denote the (non-symmetric) difference between

wo versions v ′ ≺v of a file.

efinition 11. Let R be a repository, and A C = W ∪ A ∪ T ∪ F ∪
d (R) ∪ M . C C = (F × id (R) , A C , I C) is called the change-based con-

ext of R if for all r = (V, t, a, l) ∈ R , v = (f, t ′ , a ′) ∈ V, v ′ ∈ V with

′ ≺v , and x ∈ A C , we have ((f, r) , x) ∈ I C iff

(i) x ∈ W (l) , or

(ii) x = a, or

(iii) x = d(t) or x ∈ T (t) , or

(iv) x = n (f) or x ∈ D (f) , or

(v) x = id(r) , or

(vi) x ∈ �(v ′ , v).

.2.5. Combined contexts: bug reports and revision control data

Software development projects often make use of dedicated

ools for different tasks, such as issue databases, task trackers, and

ource code repositories, or use a tool that provides a combina-
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
ion of these such as GitHub [27] . Moreover, archive entries can

e linked across the different tools, by, for example, adding an is-

ue identifier to the log message of a revision which references

hat issue. Ideally, visualization tools should be able to “fuse” the

nformation from different archives for the same project into a

ingle combined data structure, such as Hipikat’s uniform artifact

atabase [4] or Codebook’s central graph [28] .

Here, we combine data from multiple archives (or different fea-

ures of GitHub) into a single context using multiple object types.

n particular, we combine repository data and GitHub issue data

nto the same context. In the combined contexts we use the re-

isions and bug reports as objects (since the object types in the

ontext table need not be homogeneous) and derive the attributes

rom both the revisions’ pre-processed meta-data and the text

rom the bug reports. Therefore, where bug reports and revisions

hare a common attribute they will be grouped together in the

ame concepts, indicating the relation of the bug reports to the

evisions. The combined context gives a more complete overview

f the project activities.

Note that the objects in a combined context are a union of re-

isions and issue IDs; this is different to the construction of the

hange-based contexts where the objects are pairs of revisions and

les. The combined context’s attributes are the union of the origi-

al attributes for both the revisions and the issues, and each object

eeps its own attributes. We merge corresponding attribute cate-

ories from the data sources, e.g., log messages and issue descrip-

ions. This assumes that words have the same meaning in the dif-

erent archives, but in return it provides us with implicit links be-

ween bugs and revisions that both talk about a specific topic (e.g.,

Linux”), because their log messages and descriptions share a com-

on attribute. The issues and revisions are therefore connected

utomatically, without the need to create any links, as for exam-

le described by Silwerski et al. [29] . However, for a data source

uch as GitHub, which stores explicit references between commits

nd issues, we are able to link these in the context table by using

 “surrogate key” attribute which we assign to both the revision

bject and the issue object in the context table. A surrogate key

s therefore, an additional attribute which serves exclusively to in-

icate an explicit link between the revision and the issue in the

oncept lattice. Section 5.2 provides examples of tag clouds gener-

ted from Git repositories and issues in the GitHub issue-tracking
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.1016/j.infsof.2016.12.001

6 G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

Fig. 3. JUnit: vacation cloud for David Saff constructed from a change-based context. Main tag cloud view (top). Changes by Alex Yursha (bottom left) and Kevin Cooney

(bottom right). Alex Yursha and Kevin Cooney are selected with sticky tags. Only tags with occurrence greater than two are shown.

t

t

s

p

w

t

s

e

a

c

m

w

3

f

B

l

c

o

t

e

f

B

s

c

t

i

u

t

t

I

t
system. Combined contexts can be used to visualize which files

have been changed when a bug has been fixed as well as showing

the project activity both in terms of commits and issue reports.

3.3. Tag clouds from concepts

We visualize repository data with a tag cloud that we construct

from the focus concept in the lattice. Since a concept comprises a

set of objects and a set of attributes, it is tempting to use the at-

tributes (i.e., the intent) as the tag cloud. However, this produces

degraded clouds because (i) the intent only contains the attributes

common to all objects, and (ii) each attribute only occurs once so

that all tags would have the same size. Instead, we use the intents

of the extents; more precisely, we collect all attributes of the defin-

ing concept of each object in the extent of the focus concept; we

also add the objects themselves, to allow their direct selection in

the tag cloud.

Definition 12. The tag cloud from a concept c = (O, A) ∈ B (C) is de-

fined as τ (c) = O

⊎

o∈ O πA σ (o) .

Here denotes multiset union. By construction, the objects in

the tag cloud induce subconcepts of the concept from which the

tag cloud was derived; moreover, all tags have a non-bottom meet

with that concept.

3.4. Navigating concept lattices with tag clouds

The browser maintains a focus concept , from which it renders

the tag cloud as described above; when the user selects (or dese-

lects) a tag, the browser updates the focus and re-renders the tag

cloud. The focus, or more precisely, its extent contains the sub-

set of objects in the repository that share all currently selected

tags. The initial focus (corresponding to an empty selection set) is

therefore the lattice’s top element, whose extent contains the en-

tire repository (see Fig. 1 (i)).
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
Navigation is refinement-based: when the user selects another

ag, the browser updates the focus by computing the meet of that

ag’s defining concept and the old focus.

Intuitively, deselection should be the inverse of selection: de-

electing the last selected tag should move the focus back to its

revious position. Because of the duality in the concept lattice,

e would expect the de-selection operation to be implemented by

he join in the lattice. However, using the join operation to de-

elect an attribute a would move the focus up in the lattice and

ffectively de-select all other currently selected attributes except

 , which leads to counterintuitive results. We must therefore re-

ompute the focus as the meet of the defining concepts of the re-

aining selected tags, in order to provide a de-selection operation

hich is the inverse of the selection operation.

.5. Relation to information retrieval

Our lattice-based browsing approach is related to classical in-

ormation retrieval (IR) [30,31] . The context table can be seen as a

oolean version of the document-term matrix, while the concept

attice can be seen as representation of the usual indexes. A con-

ept in the lattice contains for each document in its extent, the set

f terms that occur in the document in its intent. For each term

he set of objects in its introducing concept is its inverted index

ntry. If we see the selected tags as a conjunctive query, then the

ocus’ extent is the query’s result.

The tag cloud can also be seen as the aggregation of the

oolean term frequencies for each document in the query result,

caled according to the size of the document collection. The con-

ept lattice provides us with an efficient way to compute this

ag cloud; a computation from only the inverted index would be

mpractically inefficient: we would first need to retrieve all doc-

ments indexed by the selected tags, then iterate over the en-

ire vocabulary and compute the size of the intersection of each

erm’s inverted index with the query’s result. Hence, any efficient

R-based implementation must use the same information in essen-

ially the same way as our lattice-based implementation. However,
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.1016/j.infsof.2016.12.001

G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19 7

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

w

m

o

4

b

v

p

a

v

p

m

b

l

v

s

a

p

t

t

[

c

r

c

p

S

i

r

c

s

t

i

n

i

4

t

f

u

c

t

a

w

d

p

t

a

m

s

f

s

t

t

p

w

a

t

r

a

c

t

t

c

s

t

t

o

t

P

A

i

c

T

t

t

i

w

c

i

fi

n

i

fi

t

F

t

a

t

m

m

c

w

e

t

s

r

r

a

4

f

c

fi

p

t

l

4

i

c
e can exploit the lattice structure, e.g., to update the focus incre-

entally, or to show which other tags are implied by (i.e. always

ccur along with) the current selection set.

. ConceptCloud browser

We have implemented our approach in the ConceptCloud

rowser. The VISSOFT 2015 evaluated artifact [17] is available at

issoft15.conceptcloud.org/ and the continuously updated web ap-

lication is available at www.conceptcloud.org . Our browser can

utomatically index Git and SVN repositories and create tag cloud

isualizations from them. It also supports more advanced pre-

rocessing and interface customizations.

ConceptCloud comprises three main components that extract

eta-data from the revision control system, construct a context ta-

le in the desired format, and display the tag cloud of the resulting

attice. ConceptCloud automates the process of creating a tag cloud

isualization from a version control archive and its user interface

upports customization of the tag clouds. The browser is generic

nd can show tag clouds of different context types. It is also com-

letely automatic: there are no manual pre-processing steps, and

he user only needs to enter the URL of the repository. A more de-

ailed description of the tool architecture and usage is available in

32] .

ConceptCloud currently supports extraction of meta-data and

onstruction of context tables from SVN [19] and Git [33] reposito-

ies, both locally and remotely. For Git repositories, the hashes are

onverted into sequential revision numbers. Both extractors sup-

ort the revision-, file-, and change-based contexts, as described in

ection 3.2 . The construction of change-based contexts requires the

dentification of methods changed in consecutive versions, which

equires the extraction to be language-aware. Such contexts are

urrently limited to Java files. The generated context tables can be

aved in XML format so that they can be loaded again without ex-

raction.

For the lattice construction, we use a method based on the Col-

bri/Java library [34] which constructs concepts on the fly. We thus

ever need to compute the full lattice and are able to render an

nitial tag cloud relatively quickly.

.1. Tag cloud interface

We make use of a tag cloud visualization that can be cus-

omized to show different views on the repository. Multiple dif-

erent visualizations for different metrics were found to confuse

sers [35] . We therefore propose one uniform visualization that

an be used to explore various different aspects of a version con-

rol archive.

The simplest and most popular tag cloud layout [36] is as an

lphabetically sorted list of tags in a roughly rectangular shape

hich was found by Schrammel et al. to perform better than ran-

om or semantic layouts [37] ; we use this layout because it sim-

lifies textual search within the tag cloud. We scale each tag i be-

ween the given minimum and maximum font sizes f min and f max ,

ccording to its weight t i in relation to the minimum and maxi-

um weights in the context table, t min and t max ; hence,

ize (i) =

⌈
(f max − f min) · (t i − t min)

t max − t min

⌉
+ f min − 1

or t i > t min and size (i) = f min otherwise.

A variety of alternative tag layout methods have been proposed,

uch as tag flakes by Caro et al. [38] . Tag flakes are used in order

o provide context for tags as basic tag clouds fail to show how

he tags are related [38] . However, instead of using a more com-

lex visualization that depicts the relationships between the tags,

e use incremental refinement in the tag cloud to provide context
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
nd structure to the tag clouds. By selecting a tag in the tag cloud

he resulting cloud will provide contextual information for the cur-

ently selected tag.

The initial tag cloud shown in ConceptCloud includes tags from

ll attributes and objects in the context table (using the top con-

ept in the lattice as the focus). This allows the user to select any

ag from the extracted repository information. Tags in the initial

ag cloud will be at their largest size because we scale all tags ac-

ording the maximum and minimum tags in this cloud. Making

elections in the initial tag cloud will result in clouds with smaller

ags (cf. Fig. 1), indicating that the cloud is only showing attribute

ags from a subset of the total objects in the context table.

By construction, the objects in the tag cloud induce subconcepts

f the concept from which the tag cloud was derived; moreover, all

ags have a non-bottom meet with that concept.

roposition 13. Let c ∈ B (O, A , I) be a concept, o ∈ O, and t ∈ O ∪
 . Then (i) o ∈ τ (c) ⇒ σ (o) ≤ c, and (ii) t ∈ τ (c) ⇒ δ(t) ∧ c � = ⊥ .

Since the tag clouds can be very large we provide functional-

ty in the interface to limit clouds to one particular category (e.g.,

ommit authors), or to remove unwanted categories from them.

he cloud can also be adjusted to show only a certain number of

ags or to show only tags that occur more than a given number of

imes. Since all the tags are textual, users are also able to search

n the tag cloud to find a tag if they already know which tag they

ant to select (such as their commit name).

Customized visualizations can be created from the initial tag

loud by selecting relevant tags and by moving categories of tags

nto separate viewers. For example, Fig. 2 shows a view of the year,

lename and author clouds for the JUnit repository where the file-

ame tag AllTests.java has been selected. The visualization shows

n which years this file has been changed, who has changed this

le and what other files are often changed in the same commit as

his one, scaled according to how often they are changed together.

ig. 2 allows us to answer questions such as “Who has changed

his file?” (i.e., expertise) , “Is this file still under development?”

nd “What other files should I be looking at if I want to change

his file?” (i.e., co-changed files).

Viewers can also be opened with a “sticky” tag that always re-

ains selected and cannot be deselected. This enables us to open

ultiple parallel viewers with different tag selections in the same

ategory (such as months, cf. Fig. 4) which update simultaneously

hen another tag is selected in any viewer. Sticky tags therefore

nable us to show mutually exclusive views in two tag clouds next

o each other.

A tag is implied if it has not been selected explicitly, but corre-

ponds to an attribute in the focus’ intent. Implied tags reveal the

epository’s internal structure, similar to the way association rules

eveal the implicit structure of shopping baskets [39] but without

ny additional cost.

.2. Advanced visualization in ConceptCloud

In addition to the interface customizations that can be per-

ormed on the tag cloud there are also two customizations that

an be performed during construction, namely personalization and

ltering . A combination of these two customizations allows us to

roduce a “vacation cloud” as described in Section 4.2.3 below.

ConceptCloud also supports a number of advanced visualiza-

ions such as customizing a specific tag cloud or using a scripting

anguage to automatically layout the ConceptCloud interface.

.2.1. Personalization in tag clouds

We can personalize a tag cloud for a particular developer by

dentifying all tags that apply to that developer (e.g., files they have

hanged) in our pre-processing step. We then assign these tags
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://vissoft15.conceptcloud.org/
http://www.conceptcloud.org
http://dx.doi.org/10.1016/j.infsof.2016.12.001

8 G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

Fig. 4. JUnit: author clouds (top); changes to TestRunner.java (bottom). Tag Clouds constructed from a file-based context and months/files are selected as sticky tags.

Listing 1. Example of a script written in ConSL. The author view shows only author

tags and the for-loop opens an author view for each year tag selection. Views are

sized at 50% of the full screen width and viewer menus are hidden.

o

c

u

c

W

i

(

t

n

o

t

e

c

e

t

t

C

c

fi

V

g

p

l

t

v

a

a

i

t

w

e

i

a

C

C

t

to different categories than the tags from the remaining commits

(such as “file of interest”), and render them in a different color.

In the personalized tag cloud, the files that have been changed by

that particular developer will thus be easily identifiable in views

even when the tag for that developer has not been selected.

4.2.2. Filtering tag clouds

If we want to analyze only a particular section of a repository

(e.g., only the portion since we started working on the project)

we can restrict the revision range from which the context table is

constructed. Our pre-processing offers different ways of specifying

the ranges of interest, such as processing only a certain number

of commits or processing only commits falling between a specified

start and end date.

4.2.3. Customized visualizations

The combination of personalization and filtering steps allows

ConceptCloud to highlight answers to the question “What hap-

pened in my project while I was away?” with a vacation cloud as

for example shown in Fig. 3 . This is constructed from a change-

based context where file and method tags have been personalized

to the developer (here David Saff) and revisions have been filtered

by the date of his last commit.

The initial tag cloud shows in which revision most files were

changed (1856), when most changes happened (2014/06/18), or

which developers have made most changes (Alex Yursha and

Kevin Cooney , cf. Fig. 3). Tag colors indicate the corresponding

categories and selected tags are shown in red. The words from the

commit messages indicate that most changes were either pull re-

quests or stylistic in nature, as indicated by prominent tags such

as Change , Codingstyle , Legacycodingstyle , or Remove . How-

ever, the overall view of the changes in Fig. 3 does not provide

us with many detailed insights into the data and we refine the

view by selecting tags in order to discover more insights. Select-

ing a developer gives a more detailed view of their changes and

selecting one of the most active developers, Yursha , reveals that

he has only committed one revision that contains stylistic changes

to many files. Alternatively, selecting Cooney reveals that he has

merged in several pull requests (cf. Fig. 3) which contain changes

to files that Saff has previously worked on (such as AllTests.java).

Selecting further tags (e.g., From and Rowanhill) brings out fur-

ther details (e.g., about the pull requests from Hill). The cloud also

shows how often files and methods have been changed; it uses dif-

ferent colors to distinguish changes in files previously changed by

Saff from those in other files. We can therefore see that different

variants the method skipped was a development hotspot during

Saff’s absence; we can further see that variants with different sig-

natures were added (shown in light grey), on top of the changes to

the variants that Saff has also worked on (shown in dark grey).

4.2.4. Scripting tag cloud viewers

We have developed a scripting language, ConSL, in order to con-

struct and lay out multiple viewers in ConceptCloud simultane-
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
usly. Scripts can be written in order to open viewers for specific

ategories, open viewers with sticky tags (i.e., selections that are

nique to the view and cannot be modified in the view) and to

ustomize the layout of the viewers in ConceptCloud’s interface.

hile manually opening viewers from the ConceptCloud interface

s useful for exploration of a repository, opening multiple viewers

such as all tags from a particular category) and manually laying

hem out can be time consuming. ConSL scripts provide a mecha-

ism to easily recreate a particular viewer layout and can be used

n multiple datasets so that the datasets can be compared using

he same custom layout. The same script can also be loaded ev-

ry time a dataset is loaded so that there is no need to manually

onfigure the tag cloud layout on opening ConceptCloud. After ex-

cuting a ConSL script the user can still perform all available cus-

omizations through the interface.

ConSL scripts are compiled and used to generate JavaScript code

hat is executed in the browser where ConceptCloud is loaded.

onSL provides four main operations: defining a view, for-loop

onstructs, opening a view and setting layout. A view can be de-

ned with one, multiple or all categories of tags in the tag cloud.

iews can then be opened with optional sticky tag selection ar-

uments. For example, a view showing only the authors in the

roject can be defined and then this view can be opened with se-

ection of year tag 2015 , to open a view showing all project au-

hors in 2015. A for-loop construct is provided to open multiple

iewers with sticky tags from all tags in a certain category, such as

 sticky tag for each year (see Listing 1), which can be tedious to

chieve manually through the interface. ConSL’s layout functional-

ty allows the user to specify a precise layout and ordering for all

he viewers. For example, Listing 1 shows a layout where each row

ill contain two viewers of equal width. The internal menus of

ach of these viewers will be also be collapsed. Alternatively, us-

ng the interface’s drag and drop functionality to manually resize

nd layout multiple viewers can often lead to imprecise layouts.

onSL scripts can be loaded at the same time as a saved Concept-

loud context table, or from the tag cloud view. This enables users

o load scripts after initial exploration of the dataset.
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.1016/j.infsof.2016.12.001

G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19 9

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

Listing 2. ConSL script for generating author by month view of the JUnit repository

(Fig. 4).

5

i

t

a

l

c

d

W

i

p

5

h

g

2

e

o

t

t

t

a

r

a

a

2

t

s

fi

a

m

fi

t

2

o

fi

c

2

t

k

m

t

t

W

e

i

d

c

n

o

r

t

t

c

t

a

o

I

p

a

a

o

a

e

c

e

[

w

i

i

i

d

a

s

t

s

H

l

t

5

f

c

G

c

l

a

t

l

F

b

p

i

e

s

s

l

a

a

j
. Illustrative application examples

We apply our ConceptCloud browser to two open source repos-

tories and one industrial application to demonstrate the insights

hat can be obtained using the browser. We repeat and expand on

 previous case study on the JUnit repository in Section 5.1 to high-

ight the flexibility of our browser. We also show how the browser

an be used to explore both combined version control and issue

ata simultaneously using the RubyGems repository in Section 5.2 .

e have also applied our browser to generate insights from a small

ndustrial project (see Section 5.3) in order to evaluate the appro-

riateness of the insights that can be gathered with ConceptCloud.

.1. JUnit repository

JUnit is a popular open-source testing framework for Java which

as been used in previous studies [40,41] . Here we repeat Weiss-

erber’s study [40] , which investigates developer roles up until

006, and extend it to a more current date. We show that we can

asily extend the previous observations on the repository through

ur interface even though our interface was not specialized only

o identify collaboration patterns. We also show that we can make

he same observations using our ConceptCloud browser as the cus-

omized visualizations for each aspect presented in [40] . We cre-

ted the revision-based context for the JUnit project from its first

evision in 03/12/20 0 0 up until 26/02/2014 (1772 revisions).

Overview: in order to get an initial view of the project we open

 commit time view and restrict it to years. This shows that project

ctivity increases dramatically from the first full year in 2001 until

007 and remains relatively steady thereafter. Selecting the year

ag 20 0 0 in the full cloud shows us that developer egamma

tarted the project in December 20 0 0. In an author cloud for the

rst full year of development (2001) we see that developers kbeck

nd emeade join the project in 2001 but egamma remains the

ost prolific author in that year (cf. [40]).

Authors by month: Weissgerber et al. [40] look specifically at the

le changes made in the months March to June 2002. To repeat

his we open viewers with “sticky tags” for March, April, and June

002 (there was no commit in May 2002) and limit these to show

nly author (cf. Fig. 4 , top). Selecting an author tag shows us which

les the author has worked on in each month. Fig. 4 shows kbeck ’s

ontributes less and less in the given period. The cloud for June

002 shows the addition of developers vbossica and clarkware

o the project.

Selecting the file TestRunner.java , shows that egamma and

beck have changed this file in April 2002 and only egamma has
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
ade changes in June 2002 (cf. bottom of Fig. 4). We also see that

here is a group of files which have been changed at the same

ime.

Differences in visualizations: while the visualization presented by

eissgerber et al. [40] is an author file graph which shows for

ach author lines connecting the author to a specific file (which

s represented as a dot in the graph) our visualization shows the

ifferent tag sizes for the developers according to their amount of

ontribution. In the author file graph visualization the amount of

odes connected to a developer can be used to assess the amount

f their activity, whereas in the tag cloud their tag size directly cor-

esponds to the amount of activity. Additionally, by selecting au-

hor names in the tag cloud the names of the corresponding files

hat these authors have been changing will be shown in the tag

loud. It is unclear how the author file graph presents the names of

he files which have been changed. The author file graph [40] also

llows the identification of developer collaboration: if two devel-

pers are linked to the same node they have collaborated on a file.

n our tag cloud view from a file-based context the selection of a

articular author would update all other author tags to show only

uthors that have been collaborating with the selected author in

 size that represents the amount of collaboration. Therefore, in

ur tag cloud view the identification of collaboration is interactive

nd it is also scalable, since the tags for all collaborating develop-

rs can be shown at the same time. Using the sticky tag function,

omparisons between different groups of collaborators can also be

asily drawn, by comparing the tag clouds. The file author matrix

40] shows a grid-like summary of which developers have been

orking on which files across the project, where each pixel color

ndicates the amount of activity on a file. In our tag cloud visual-

zation files can be selected to see which authors have been work-

ng most actively on a file and authors can also be selected to in-

icate on which files they have been working. A summary view

cross a group of developers (or files) can be created by making

ticky tag viewers for the group of developers and comparing the

ag clouds created.

Conclusions: ConceptCloud allowed us to gather the same in-

ights as the dedicated tool presented by Weissgerber et al. [40] .

owever, ConceptCloud does not produce a static picture but al-

ows the user to refine the analysis, and access the other informa-

ion (e.g., log messages) that remains available.

.2. Rubygems repository

We constructed the combined context for commits and issues

rom the RubyGems GitHub repository [42] to show how we can

ombine issue and repository data in the same tag cloud. The

itHub issue tracking system provides links between issues and

ommits that either close an issue or reference it. We extract these

inks, using the GitHub API, to create explicit links between issues

nd commits in our tag cloud, but we also extract keywords from

he issues and commit messages and use these to create implicit

inks between issues and commits that discuss the same topics.

or other issue tracking systems that do not include explicit links

etween issues and commits we would still be able to extract im-

licit links from the commit messages.

Linked issues and commits appear in the same tag cloud, show-

ng which files have been changed in order to close an issue. For

xample, Fig. 5 shows the tag cloud containing information for is-

ue 227 which was closed by commit 3642. We can immediately

ee that files rubygems.rb and specification.rb were fixed in re-

ation to the bug reported about inactive gems. We see here tags

227 as well as tag 227 , where #227 represents the issue object

nd 227 is part of the commit message for commit 3642. We see

lso tags r3642 and 3642 , where 3642 represents the revision ob-

ect and r3643 is used as a link between both the revision and
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.1016/j.infsof.2016.12.001

10 G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

Fig. 5. RubyGems: tag cloud for commit 3642 which closes issue 227 in RubyGems.

Listing 3. ConSL script for the view in Fig. 6 .

u

s

5

l

s

i

s

b

c

b

a

s

(

c

f

t

t

s

(

g

p

o

a

t

I

p

w

T

b

o

b

t

r

u

t

d

p

l

w

o

H

I

o

c

m

d

s

a

o

H

o

s

T

d

t

v

o

t
the issue objects. Therefore, while 3642 and #227 occur only once,

r3642 occurs twice (and appears bigger) in the tag cloud as it is an

attribute which applies to both the issue and the revision objects

in the tag cloud.

Additionally, we can explore all commits and issues that discuss

a particular topic such as gem install . Fig. 6 shows the main files

(orange tags), committers (green tags) and GitHub issue reporters

(maroon tags) that are associated with the keywords “gem” and

”install”. We can see the main files changed that fix issues men-

tioning gem install and also files changed in commits where the

commit message mentions gem and install . We can further re-

strict the cloud to showing only commits that have closed a bug

report (by selecting the bug report status closed tag) mentioning

words gem and install (Fig. 7). We see that Eric Hodel is the only

author that makes commits closing issues that mention gem and

install and these commits only occur in 2013 and 2014. This indi-

cates that while other authors have also made commits mention-

ing gem and install , Eric Hodel is responsible for this area as he

has either fixed issues referring to gem install or has been respon-

sible for closing these issues when merging a pull request from

another developer.

Conclusions: ConceptCloud can be used successfully to combine

multiple data sources to get more detailed information on a spe-

cific project. We can fuse issue and repository data into the same
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
nderlying context table and explore commits that are related to

pecific issues in the tag cloud interface.

.3. Industrial application

We used ConceptCloud to analyze the Git repository of a small,

ocal non-profit organization. This project develops an educational

ervice comprising of a mobile app, backend, and data analyt-

cs. The goal of this application was determine whether the in-

ights that we gather using ConceptCloud are appropriate and can

e confirmed by the project manager. Since this is a small lo-

alized development team the insights that we gather might not

e surprising to the project manager, but we aim to validate the

ccuracy of our observations. We analyzed the project from its

tart (08/2015) up until the app’s release to the Google Play Store

01/2016). Note that we use only abbreviations of the developers’

ommit names here to preserve their anonymity.

Project contributors: by creating author viewers for each month

rom the revision-based context of the project (Fig. 8) we saw

hat the project started towards the end of August 2015 with only

hree developers. In September all three developers contributed in

imilar amounts to the project. In October two more developers

 CM and P9) joined and overall commit activity of the developers

reatly increases. Additional contributors RS and S also joined the

roject in November, and this team remained relatively stable with

nly the addition of PW in December. The team structure changed

gain in January with SM , PW and RS leaving but two new (and

herefore less-active) contributors, HW and F joining the project.

n each month the developers (excluding the new additions) ap-

eared to be sharing the workload uniformly. We see that project

as expanding but also that there was a high developer churn.

he project manager confirmed that contractor SM was replaced

y two new full time developers in January.

We can also observe other apparent small contributors (with

ne to three commits) which on further investigation appear to

e alternative aliases (particularly GitHub usernames) for some of

he contributors (such as a developer editing the ReadMe file di-

ectly on GitHub and the commit being recorded with their GitHub

sername). These alias characteristics could also be incorporated

o identity merging techniques as identity merging in projects is a

ifficult problem [43] .

Developer collaboration: by creating the file-based context of the

roject we can observe collaborations between the developers. Se-

ecting developer LS (Fig. 9) showed that he often collaborated

ith developers SM and P9 , however there are a small amount

f files common to other team members as well. Developers F and

W have also collaborated with LS since they joined the project.

f we select an additional tag for developer AV (who showed up

nly as a small tag) and show which files both AV and LS have

hanged, we saw that the gitignore was the only file common to

ost of the development team, which indicates that they also have

ifferent project focuses.

If we select the tags for LS ’s collaborators SM and P9 and

how the tag cloud for the changed directories (Fig. 10 (a)), we see

 directory structure that indicates that these developers worked

n the Android client. This cloud confirms that developers F and

W had also begun working on the Android client.

The directory cloud of developer AV (Fig. 10 (b)), who collab-

rated mostly with S and CM shows a very different directory

tructure (appearing to be concerned with backend development).

herefore, we see a clear separation of responsibilities among the

evelopment team. However, when we investigate the collabora-

ion clouds of S and CM individually we see that these three de-

elopers each worked on a number of files that are not touched by

ther team members. If one of these developers were to leave the

eam there would be a large number of files that no other team
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.1016/j.infsof.2016.12.001

G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19 11

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

Fig. 6. RubyGems: main changed files, committers and bug reporters from commits and issues mentioning Gem Install. Tag clouds constructed from a combined context of

GitHub issues and commits.

Fig. 7. RubyGems: changed files, committers from commits closing issues mention-

ing Gem Install.

Fig. 8. Industrial application study: developer contributors over project from

project start to first release. Tag clouds generated from a revision-based context.

Months are selected as sticky tags.

m

e

o

c

s

Fig. 9. Industrial application study: collaboration with developer LS. Tag cloud build

from a file-based context.

v

i

b

a

c

v

(

t

w

f

b

e

c

a

w

b

(

fi

d

5

t

n
ember would be familiar with. Therefore, we see that the back-

nd team has a very low “bus factor” [44] .

Contributer RS did not appear as one of the main collaborators

f AV ’s team (backend development) or LS ’s team (android appli-

ation) and on further investigation of RS ’s changed directories we

ee that he contributed mostly images to the project.
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
Commit activity: comparing the revision-based and file-based

iews on the weekdays on which the developers have been mak-

ng commits (Fig. 11) we see that the most commit activity occurs

etween Tuesdays and Thursdays, with less activity on Mondays

nd Fridays and very little over the weekends (Fig. 11 , left). This is

onsistent with what we expect from a full-time commercial de-

elopment team.

Observing the number of files changed on each weekday

 Fig. 11 , right) shows that while less commits are made on Fridays

hese commits generally touch more files. This would be consistent

ith developers committing their changes before the weekend in

ewer but larger commits. The project manager also indicated that

i-weekly sprint planning takes place on a Friday, which could also

xplain the fewer but larger commits observed on Fridays.

Commit messages: examining the most frequent words used in

ommit messages in the first full month of the project (09/2015)

nd comparing those to the commit messages in 01/2016 (Fig. 12)

e see that the initial activity was largely concerned with Face-

ook and Database integration. In the last month examined

 01/2016) we see that the activity is more centered around bug

xes and the user interface changes (Images , Styling), which in-

icates that the project was about to be released.

.3.1. Threats to validity

The study on the industrial application has been performed by

he first author. However, to mitigate risks the first author had

o previous knowledge of the project or development team. We
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.1016/j.infsof.2016.12.001

12 G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

Fig. 10. Industrial application study: directories and collaboration of developers (a) LS, SM and P9 and (b) AV. Tag cloud build from a file-based context.

Fig. 11. Industrial application study: weekdays of developer commits. (left) tags

sized according to number of commits (right) tags sized according to number of

files changed.

Fig. 12. Industrial application study: popular keywords from commit messages in

the first and last month analyzed .

p

a

a

c

v

i

t

v

fi

m

d

m

5

l

p

v

t

b

m

m

t

t

d

s

p

m

d

a

6

e

t

C
subsequently verified all observations with the project manager in

order to establish their correctness.

5.3.2. Discussion

We have applied ConceptCloud to an industrial project to deter-

mine whether the insights that we can gather are appropriate and

can be confirmed by the project manager. For this application, the

team was small and co-located so the insights might not be sur-
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
rising to them. However, we have seen that there are many valu-

ble insights, such as team collaboration, areas of expertise and

ctivities, contained in the version control repository. Using Con-

eptCloud we were able to gather these insights which would be

ery valuable for new developers starting on the team and teams

n which the collaboration patterns or activities are not obvious to

he project manager. We could identify the different roles of de-

elopers in the team by examining the directory structure of the

les they committed, which indicated what parts of the system

embers were working on. We were also able to identify when

evelopers joined and left the team and how the different team

embers collaborate.

.4. Conclusions

Using ConceptCloud we are able to get an overview of the col-

aboration and work patterns in both open source and industrial

rojects. We see that the different context types give us different

iews on the project (e.g., collaboration vs. commit activity) and

hat additional project information such as the issue-reports can

e merged into the same context to provide more detailed infor-

ation on a project.

Comparing our observations from an industrial project to those

ade from open-source projects we observe that the commit ac-

ivity in the industrial project is much more regular and the con-

ributions are shared relatively evenly among the contributors. The

evelopment team of the commercial project is also separated into

maller groups (+ / − 3) that work consistently on one aspect of the

roject. In contrast, in the open-source projects we observe one

ain contributor who has a much higher activity than the others

uring their involvement; when this contributor leaves the project

nother developer takes over this role.

. Performance evaluation

FCA is commonly associated with high run-times and so we

valuate ConceptCloud’s performance on a variety of repositories

o illustrate the feasibility of our approach. In particular, we used

onceptCloud on a medium-sized server with 64GB RAM and two
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.1016/j.infsof.2016.12.001

G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19 13

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

Table 1

Metrics for revision-based contexts.

Project Type | O | | A | | I | Indexing

time (s)

Initial cloud

creation

time (s)

Subversive a SVN 1511 8222 88,090 55 .5 1 .8

JUnit b Git 1905 5959 66,242 8 .0 1 .9

AngularJS c Git 5547 9055 133,436 116 .2 2 .8

Spring d Git 9017 40,332 540,813 43 .4 14 .8

Valgrind e SVN 10,989 29,009 348,136 176 .6 40 .0

Django f Git 18,471 38,821 583,701 58 .4 11 .0

Moodle g Git 69,550 154,834 2,222,486 333 .2 45 .7

DPorts h Git 155,627 196,850 2,917,269 2,049.9 892 .8

a https://dev.eclipse.org/svnroot/technology/org.eclipse.subversive/ . Analyzed December 2006 to September

2014.
b https://github.com/junit-team/junit . Analyzed December 20 0 0 to September 2014.
c https://github.com/angular/angular.js . Analyzed December 2013 to September 2014.
d https://github.com/spring- projects/spring- framework . Analyzed July 2008 to September 2014.
e svn://svn.valgrind.org/valgrind/trunk Analyzed March 2002 to September 2014.
f https://github.com/django/django . Analyzed July 2005 to September 2014.
g https://github.com/moodle/moodle . Analyzed November 2001 to September 2014.
h https://github.com/DragonFlyBSD/DPorts . Analyzed October 2012 to September 2014.

X

r

r

s

i

t

b

c

c

o

f

e

3

s

e

f

g

p

i

b

t

a

i

d

d

m

t

a

t

t

t

r

e

t

p

f

7

t

s

w

c

G

a

t

p

m

t

p

b

t

v

s

u

c

s

S

C

b

t

1 https://www.sourcetreeapp.com/ .
2
eon 8-core 2.0Ghz CPUs to analyze several Git and SVN reposito-

ies in order to evaluate its performance.

We created revision-based contexts (using local clones of Git

epositories and remotely accessing the SVN repositories). Table 1

ummarizes the characteristics of and runtimes for these repos-

tories, showing the number of revisions | O |, the number of at-

ributes | A |, and the size of the incidence relation (i.e., the num-

er of object/attribute pairs) | I |, as well as the time to create the

ontext table (i.e., indexing) and to draw the repository’s full tag

loud.

We see that the indexing times (including the extraction of all

f the log information for the repositories) are only a few seconds

or smaller repositories, and a few minutes for medium-sized ones;

ven the largest repository with 155,627 revisions requires only

4 min. Note that these times are not directly related to either the

ize or the density (i.e., | I |) of the context tables but are to a large

xtent determined by the (lexical) pre-processing.

The initial cloud creation times are given for the full tag cloud

or the repository, which contains | O | + | A | tags. The table thus

ives an indication of the cloud computation in the worst case; in

ractice, we can limit the number of tags shown to substantially

mprove this. However, the initial tag cloud is cached and so can

e generated off-line in a pre-processing step. Subsequent loads of

he initial tag cloud from cache are instantaneous.

Tag clouds become smaller with subsequent navigation steps

nd are therefore created substantially faster. Overall, navigation

s instantaneous for small and medium repositories, with some

egradation on the initial clouds for very large repositories.

Note that drawing the initial cloud requires us to compute the

efining concepts of all objects; however, since we use an incre-

ental lattice construction approach and therefore never compute

he full lattice, we do not experience the high runtimes commonly

ssociated with FCA.

To reduce drawing time for larger repositories we could limit

he number of tags shown in the initial tag cloud to only those

hat apply to a larger portion of the revisions in the repository and

hen show the full tag set when the user has made selections to

efine the tag cloud. For large repositories that are indexed repeat-

dly, our approach allows us to incrementally update the context

able (and therefore the concept lattice) so that updates can be

erformed quickly and the initial indexing needs to only be per-
ormed once.

Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
. User study

We performed a user study in order to evaluate whether un-

rained users are able to answer questions about the history of a

oftware project using ConceptCloud more or less effectively than

ith current widely-used interfaces. In particular we compare Con-

eptCloud to the default list-view of commits as implemented in

itK and the GitHub interface, which is graph-based. Both GitHub

nd linear list commit views, such as GitK, are widely used in prac-

ice and we therefore use these interfaces as the controls for com-

arison against ConceptCloud. Linear list commit views are imple-

ented in many popular Git GUIs (such as SourceTree 1 and Tor-

oiseGit 2), but we use GitK as it is packaged standard with Git. GitK

rovides a searchable linear list of commits and shows the diffs

etween two revisions. GitHub’s interface is widely used in order

o visualize the history of a software project and provides graph

iews of user’s activity in repositories. GitHub also provides a code

earch interface. GitK, GitHub and ConceptCloud present the same

nderlying information through different interfaces. We therefore

ompare the effectiveness of our tag cloud interface to that of a

earchable list interface and an interactive graph-based interface.

ince the participants in our study had never used our Concept-

loud browser before, we also investigate whether the browser can

e used successfully by untrained users.

In this study, we aim to answer the following research ques-

ions:

RQ1: is a rich exploratory interface, such as our interactive tag

cloud interface, accessible to untrained users?

RQ2: does our interactive tag cloud interface allow users to

achieve higher correctness than the familiar linear list view

of commits when answering questions about the history of

a software project in a set time period?

RQ3: does our interactive tag cloud interface allow users to

achieve higher correctness than a graph-based interface,

such as the one provided by GitHub, when answering ques-

tions about the history of a software project in a set time

period?
https://tortoisegit.org/ .

software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

https://dev.eclipse.org/svnroot/technology/org.eclipse.subversive/
https://github.com/junit-team/junit
https://github.com/angular/angular.js
https://github.com/spring-projects/spring-framework
http://svn://svn.valgrind.org/valgrind/trunk
https://github.com/django/django
https://github.com/moodle/moodle
https://github.com/DragonFlyBSD/DPorts
https://www.sourcetreeapp.com/
https://tortoisegit.org/
http://dx.doi.org/10.1016/j.infsof.2016.12.001

14 G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

Table 2

Question set for user study, (a) Ruby Gems (b) Backbone (c) Retrofit.

(a) RubyGems:

1 Who is the contributor with the most commits on the Ruby Gems

project?

2 In which year were the most commits made to the project?

3 Which file types has Charlie Somerville changed in his commits?

4 Which contributors have worked on the file lib/rubygems/psych

additions.rb?

5 Who has been making the most changes on the project since

Samuel E. Giddins last worked on it?

6 When was this repository created?

b) Backbone:

1 In which month was the most activity on the project?

2 Who was the most active developer in this month?

3 Who is the most prolific author of the backbone/test directory?

4 Who was the last person to change the file backbone.js?

5 Which file has been changed the most in this project?

6 Who has made the most changes to the images in the project (jpg,

png)?

7 Who has changed the most files that Brad Dunbar has also

changed?

c) Retrofit:

1 Where are the tests for the main project located?

2 Who has edited the .yml files?

3 Who contributed the most to this project in its first year?

4 Who has worked on JacksonConverter.java?

5 Who merged pull request #1017?

Table 3

Descriptive statistics for average percentages

obtained with each of the three tools across all

questions.

GitK ConceptCloud GitHub

Mean 0 .52 0 .71 0 .67

Sd 0 .21 0 .10 0 .10

Min. 0 .27 0 .55 0 .53

Max. 0 .84 0 .90 0 .85

Range 0 .57 0 .36 0 .32

t

s

f

t

e

s

u

p

t

w

q

a

q

c

7

n

m

a

a

v

a

7

s

w

d

a

j

t

7

a

q

I

f

f

e

t

u

G

w

i

C

c

t

c

h

t

w

q

7.1. Experimental setup

We used a between-subjects design to conduct the experiment,

where each participant uses only one of the three tools to an-

swer questions about the software development process in spec-

ified projects. We constructed three questions sets, based on three

different software repositories that were also available on GitHub.

All participants were asked to answer three question sets using

a tool (GitK, GitHub or ConceptCloud) which was randomly as-

signed to them. We then evaluated the correctness of the an-

swers supplied by the participants. Each participant was supplied

with a user manual, detailing how their tool showed the history

of software projects. We marked all of the question answers that

were submitted by the participants and calculated their results.

We investigate the hypothesis that there is no difference between

the correctness results obtained by the participants over all three

tools.

Our user study took place in a computer lab at Stellenbosch

University. All participants took part at the same time to avoid

communication about the tasks. Participants were not permitted

to communicate during the study.

Resources for the user study, including question sets, sample so-

lutions and the versions of the repositories used, are available at

www.conceptcloud.org/userstudy15 .

7.2. Population

We performed our user study with students in our third year

Software Engineering class of 2015. Previous courses required the

students to submit assignments using Git repositories, so all were

all familiar with Git. The participating group consisted of 47 stu-

dents in total. Participation was voluntary for all students.

7.3. Tasks

We developed three question sets using three different repos-

itories available on GitHub, namely RubyGems [42] , Backbone

[45] and Retrofit [46] (see Table 2). We selected these repositories

as they are popular projects available on GitHub, and they differ in

size. At the time of the user study the RubyGems repository was
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
he largest with 6388 revisions, Backbone consisted of 3130 revi-

ions and Retrofit had 998 revisions. We used repositories of dif-

erent sizes so that the results of our study would not be biased

owards one repository size.

The question sets were developed by exploring the repositories

qually using GitK [47] , GitHub [27] and ConceptCloud. Question

ets included questions about the location of files, collaboration of

sers, expertise of the contributors as well as the history of the

rojects. The question answers were then verified using all three

ools to make sure that the results were consistent. All questions

ere weighted equally. We used all three tools to generate the

uestion sets because the different tools have different strengths

nd weaknesses and using only one tool would have made the

uestions easier to answer for the participants assigned to a spe-

ific tool.

Participants were given 15 min to answer each question set, (6,

 and 5 questions respectively) after which they were given the

ext question set and corresponding repository. Participants were

ade aware of this time limit at the beginning of the user study

nd before each new question set was started. Participants were

sked to answer as many questions as they could in the time pro-

ided and to move on from a question when they were unable to

nswer it.

.4. Analysis and results

We used the R package for analysis of the experimental re-

ults. We performed the Shapiro and Wilk [48] test to determine

hether participants’ scores were normally distributed, in order to

etermine what further analysis could be performed. We obtained

 p -value of 0.06, and at a confidence level of 0.05 we cannot re-

ect the null hypothesis and conclude that the data is normally dis-

ributed.

.4.1. Summary statistics

Fig. 13 shows a summary of average correctness percentages

chieved by participants for each question set, in the order that the

uestion sets were answered (Ruby Gems, Backbone and Retrofit).

n the first question set users of GitHub performed the best, and

or the second and third question sets users of ConceptCloud per-

ormed the best. Fig. 14 shows a box-and-whisker plot for the av-

rage scores obtained across all questions for each tool. We see

hat the median as well as the minimum value for participants

sing ConceptCloud is the highest, followed by GitHub and then

itK. The range of results of participants using GitK is the highest,

ith some participants achieving high averages and others achiev-

ng much lower results than those using either GitHub or Concept-

loud. Fig. 15 shows the box-and-whisker diagrams for the per-

entages obtained across each of the question sets for each of the

ools. Participants using ConceptCloud achieved higher median per-

entages for each new question set, which indicates there might

ave been some learning effect observed over the different ques-

ion sets. However, participants using GitK or GitHub performed

orse in the second question set and then again better in the third

uestion set.
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://www.conceptcloud.org/userstudy15
http://dx.doi.org/10.1016/j.infsof.2016.12.001

G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19 15

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

Fig. 13. Average percentage obtained by participants, across all three tasks, using

ConceptCloud, GitK or GitHub. (a) Bars from left to right indicate: ConceptCloud,

GitHub and GitK (b) Bars from left to right indicate: Ruby Gems, Backbone and

Retrofit Questions.

7

t

m

r

h

o

w

p

o

t

Fig. 14. Box and whisker plots for average percentages obtained using Concept-

Cloud, GitK or GitHub.

Table 4

P -values for Tukey test.

Tool comparison P -value

GitHub–ConceptCloud 0 .6343916

GitK–ConceptCloud 0 .0 0 06546

GitK–GitHub 0 .0059474

t

t

t

s

t

o

f

s

t

t

h

m

t

p

s

p

a

s

G

i

p

a

u

.4.2. Statistical significance

We performed a two-way ANOVA test on the correctness ob-

ained by each participant across all three question sets to deter-

ine if there was any statistically significant difference in the cor-

ectness obtained by users of the different tools. We tested our null

ypothesis that the results of the participants would be the same

ver all three tools. We formulated this null hypothesis so that we

ould be able to conclude whether there was any difference in the

erformance of the tools, rather than only investigating whether

ne tool was better than another. Since we have more than two

ools to compare we perform a two-way ANOVA test as opposed
Fig. 15. Average percentage obtained by participants using (a) GitK

Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
o a t -test because the t -test only accounts for the comparison of

wo tools. We first checked for interaction effects of the tools and

he question sets. We found that the interaction effects were not

tatistically significant (p = 0.11). Therefore there is no evidence

hat the variation of correctness between the three tools depends

n the question set. This therefore allows us to compare the per-

ormance of participants using each tool across all three question

ets to draw conclusions on the accuracy obtained with each of

he tools. We obtained a p -value of 0.0 0 0548 from the ANOVA

est for the comparison of the tools. We therefore rejected the null

ypothesis at a significance level of 0.05 and concluded that the

ean values of percentages obtained by participants differed sta-

istically significantly over the three tools. We further performed a

ost-hoc Tukey test [49] to determine in which tool comparisons

tatistically significant differences exist (GitHub vs. GitK etc.). The

-values obtained for all comparisons are listed in Table 4 . Using

 significance level of 0.05 we find that the difference between re-

ults obtained using GitK and ConceptCloud as well as GitK and

itHub are statistically significant. A graph plot of the confidence

ntervals is given in Fig. 16 . Therefore we can conclude that partici-

ants using ConceptCloud or GitHub were able to answer questions

bout software projects statistically significantly better than those

sing GitK.
, (b) ConceptCloud, (c) GitHub across all Three Question Sets.

software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.1016/j.infsof.2016.12.001

16 G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

Fig. 16. Confidence Intervals obtained from Tukey test. The GitHub–ConceptCloud

interval includes 0, indicating no difference between the means for those two

groups.

t

o

u

s

s

t

s

m

c

c

t

(

q

t

7

a

l

t

s

i

o

t

t

a

w

w

q

u

t

w

e

r

s

c

w

s

i

m

n

a

i

s

s

s

t

8

i

w

c

c

p

S
7.4.3. Question types

We further investigated which user group had the highest re-

sult on each question to understand what types of questions were

better answered through each interface.

We found that participants using GitHub were best able to an-

swer questions about the activity on the project (“Who is the con-

tributor with the most commits?”) as well as which users were

the last to change a specific file or who has worked on a particular

file. These results are to be expected as the GitHub activity charts

prominently show the years and months in which the most com-

mits have been made as well as including an activity chart for each

developer. On the GitHub code search interface, specific files can

be searched for and these include a list of contributors, so GitHub

also makes this information prominent.

Participants using GitK were best able to answer questions

about changes occurring after a developer has made their last com-

mit as well as when a project originated. Since the linear list view

provides an chronologically ordered list of commits this type of in-

formation is easy to obtain from scrolling through the commit list.

Participants using ConceptCloud were best able to answer ques-

tions about a user’s activity in a specific time period, as well as

which files have been changed the most and which developers are

changing certain types of files (“Who has made the most changes

to the images in the project (jpg, png)?”). ConceptCloud allows

users to select a specific time period (month, year etc.) and ob-

serve the size of the developers’ tags (commits) in this time period.

ConceptCloud includes the changed file types as tags, so informa-

tion about what type of work a developer is doing on a project

(front-end etc.) is simple to obtain.

7.5. Discussion

With respect to our research questions we find for RQ1 that un-

trained users were able to make use of the ConceptCloud tool to

answer questions about the history of a software project. On av-

erage, participants using ConceptCloud received a correctness per-

centage of 71% which indicated that they were able to use the tool
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
o answer questions about the project history with a fair amount

f accuracy.

In response to RQ2 and RQ3 we observe that while participants

sing ConceptCloud achieved the highest average over all question

ets, these were only statistically significantly better than the re-

ults obtained using the linear list view provided by GitK. We can

herefore conclude the ConceptCloud interface allows users to an-

wer questions better than a linear list view which is common in

any repository GUI tools (RQ2). However, no statistical signifi-

ance was observed in comparison with GitHub, so we cannot con-

lude that the ConceptCloud interface allows users to answer ques-

ions about a software project better than a graph-based interface

RQ3).

While all participants were able to answer various types of

uestions through the different interfaces we also see evidence

hat each interface makes specific activities more prominent.

.6. Threats to validity

Our user study was conducted using a centralized lab server

nd so it is possible that some participants experienced slower

oading times than others. However, since all of the participants

ook part in the user study at the same time the load on the

ervers would have been largely consistent for all the participants

n the lab at the time.

The repositories used were of varying sizes and so the results

f a specific tool might be influenced by the size of the reposi-

ory. However, the average correctness percentages were actually

he worst for the middle-sized repository (Backbone) for all tools

nd so we do not see a direct trend showing higher correctness

ith either smaller or larger repositories for any of the tools. There

ere also no statistically significant interaction effects between the

uestion set (i.e., repository used) and the tool used which allowed

s to compare the performance of each tool over all question sets.

The questions sets that we constructed could have been biased

owards one type of visualization. However, to mitigate this risk

e constructed questions using observations from all three tools

qually and also verified that all questions could be answered cor-

ectly using all tools.

Questions were marked by the first author, however the sample

olutions were verified using all tools prior to the marking pro-

ess and so the questions have all been marked using answers that

ere consistent across all the tools.

The participants might not be representative of a real-world

ample of software developers. However, all participants were also

nvolved in their own software development projects and were fa-

iliar with Git.

Our sample size is limited, due to the size of our Software Engi-

eering class, however we have made conclusions from our study

s much as our sample size has allowed.

The participants might have shown a bias towards our tool as

t was developed at their university. However, we have never mea-

ured the participants tool preferences, only their performance and

ince each participant has used only one tool (due to a between-

ubjects design) their performance should not be affected by any

ool preferences.

. Related work

Our work is related to topics of visualization, navigation us-

ng tag clouds and applications of formal concept analysis to soft-

are. We discuss a subset of techniques used to visualize version

ontrol repositories and bug repositories that can be most closely

ompared to our approach (see Section 8.1). We also discuss ap-

lications of tag clouds directly to software visualization (see

ection 8.2) and other navigation techniques used with tag clouds
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.1016/j.infsof.2016.12.001

G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19 17

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

f

S

a

r

c

8

8

i

C

p

a

s

o

o

p

v

t

v

u

u

w

i

t

i

U

c

t

o

t

t

s

p

i

c

i

c

t

t

8

g

t

o

p

t

t

8

s

l

c

a

r

c

r

D

a

w

o

i

e

m

W

u

b

W

fl

q

a

c

t

(

t

s

a

a

H

m

n

t

a

r

v

s

a

t

a

a

c

d

p

a

o

p

s

t

t

g

i

q

I

s

t

E

o

n

c

o

o

a

d

a

i

s

w

i

i

w

o

r

m

o
or wider applications (e.g., clinical trial data, see Section 8.3). In

ection 8.4 , we discuss previous applications of formal concept

nalysis to tasks in software engineering that are most closely

elated to the goals our approach, for example, detection of co-

hanged methods and methods related to a particular bug report.

.1. Visualizing software and bug repositories

.1.1. Team structure and developer expertise visualizations

Girba et al. use an “ownership map” visualization [50] in order

dentify developer interaction and development patterns using the

VS log of a project. Girba et al. also identify several behavioral

atterns of developers, such as teamwork, takeover, and cleaning,

nd show how these can be identified in their ownership map vi-

ualization. These collaboration patterns could also be observed in

ur tag clouds constructed from a file-based context. While the

wnership map visualization serves to provide an overview of the

roject developer patterns in a single visualization, our tag cloud

iews are aimed at allowing users to interactively explore the con-

ributions. Therefore, while the collaboration patterns might not be

isible in a single tag cloud view, our approach aims to support

sers in exploring the information at varied levels of detail. The

ser can then also continue exploring other aspects of the project

hen they have identified interesting collaboration patterns.

Alonso et al. [51] also use a tag cloud visualization to display

nformation from CVS version control repositories. Their “exper-

ise cloud visualization” creates a tag cloud of committers that are

dentified using a rule-based classification of CVS log information.

sers are then able to select the names in this cloud to display a

loud of the developers’ expertise. The expertise cloud visualiza-

ion [51] differs from that of ConceptCloud as the different types

f information can only be displayed in separate clouds, meaning

hat the combinations of tags a user can select are limited. In con-

rast our underlying concept lattice only limits the available tag

elections to tags that will not cause an empty tag cloud to be dis-

layed.

Weissgerber et al. [40] develop a transaction overview visual-

zation, file-author matrix, and author-file graph to allow identifi-

ation of team structure, developer collaboration, and project activ-

ty over a certain time period from data contained in the version

ontrol system. Section 5.1 compares these visualization techniques

o the tag cloud view provided by ConceptCloud in the context of

he JUnit case study.

.1.2. Co-evolution of production and test code

Zaidman et al. [52] develop a change-history view and a

rowth-history view to study the co-evolution of production and

est code. The change history view is a plot of the changed files

ver the revisions of a project’s repository distinguishing between

roduction and test code. In our tag clouds we can distinguish be-

ween production and test code by observing the project’s direc-

ory structure.

.1.3. Centralized data structures and visualizations for multiple

oftware development artifacts

Codebook [28] is a social network inspired toolset to ana-

yze information implicitly contained in software repositories. Its

entral data structure is a graph, where the nodes represent the

rtifacts and actors (e.g., change set, developer), and the edges

epresent the different relations between these (e.g., contains,

ommitter). This graph is built from different sources including

evision archives, bulletin boards, mails, and directory information.

irect queries in a specific format can be given to Codebook to

nswer different types of questions. Results are displayed in a

eb interface that provides a ranked result list including images

f people associated with artifacts. Results from our user study
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
ndicate that list-based interfaces do not support exploration tasks

ffectively. Codebook has been built with the aim of supporting

ultiple information needs from software development archives.

hile the Codebook data storage is flexible enough to support

sers in answering different types of questions, the applications

uilt on top Codebook are aimed at answering specific questions.

ith ConceptCloud we aim to have a single application that is

exible enough to support users in answering different types of

uestions, rather a centralized data-structure which can be used

s the base for different applications. However, our context tables

an also be seen as a central data structure for storing multiple

ypes of project information.

Hipikat [4] also monitors multiple information sources

Bugzilla, CVS, email, newsgroups) and builds a uniform ar-

ifact database. It has a number of heuristics (based on text

imilarity and activity times) to create links between the artifacts,

nd provides lists of related artifacts on request. Hipikat queries

re made using the Eclipse IDE and results are displayed in a

ipikat list view Eclipse plugin. However, the goal of Hipikat is

ore to recommend relevant items to project newcomers and

ot to provide them with an interface through which to explore

he artifacts. Cubranic et al. [4] also note that project artifacts

re not easily accessible to developers as searching the archives

equires them to know the correct search terms for finding rele-

ant information. In our work we also argue that searching the

oftware development archives does not support all use cases,

s to be able to conduct a search the developer already needs

o have some information about the archive. In our approach we

im to make the information contained in software development

rchives accessible to users for interactive exploration so that they

an access the information even before they have formulated a

irect query. This is a different approach to the recommendations

rovided in [4] and supports users in exploring the full archives in

n unbiased way.

Cubranic et al. [4] also note that while a list-based presentation

f results (as used by Hipikat) is very common “when the user’s

urpose is exploratory browsing of a collection, such a flat-list pre-

entation does not indicate relationships within the results, only to

he query itself.”. We propose interactive tag clouds as an alterna-

ive view, as they allow users to explore query results in an aggre-

ated form and support users in further filtering the results and

dentifying relationships between them.

Information fragments [53] provide answers to developer’s

uestions by combining subsets of relevant project information.

nformation fragments are comprised of nodes of different types,

uch as a team member or work item. Node types are similar to

ag categories in ConceptCloud. The presentation of results uses an

clipse plugin and supports a counting feature to get an overview

f the number of occurrences of nodes, to get for example, the

umber of items a developer has been working on. Our tag

loud automatically gives the user an overview of the number

f occurrences of each item as the tags are sized according to

ccurrence frequency. The information fragments prototype is

imed at answering specific questions that developers ask on a

ay-to-day basis and not on allowing exploration of the underlying

rchives. While our approach can be used to answer the questions

dentified by Fritz and Murphy [53] it is specifically aimed at

upporting exploration of the underlying archives even for users

ho have not yet formulated a direct query. While the list-based

nterface presented in the information fragments prototype groups

tems together, to show for example which developers have been

orking on a section of the code, our tag clouds present this type

f information through navigation, where the user can select the

elevant file or directory and observe the developers that have

ade changes to it. The “queries” that can be composed through

ur tag cloud interface are also more flexible in that different
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.1016/j.infsof.2016.12.001

18 G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

t

d

a

A

s

t

t

d

i

w

d

s

c

t

f

a

t

t

t

a

c

r

m

f

W

o

v

d

m

e

A

N

S

f

R

kinds of information (e.g., years, files and developers) can be

selected at the same time.

8.2. Tag cloud visualizations of software

There have been applications of tag cloud visualizations directly

to software for different purposes.

Guido [54] includes a tag cloud to visualize names of types,

variables, parameters and methods in source code. Selecting nodes

in the graph visualization that Guido also provides will highlight

the corresponding tags in the tag cloud and selecting a name in

the tag cloud will highlight corresponding source code elements

in the graph view. The visualizations are linked in Guido similarly

to the multiple tag clouds that update simultaneously in Concept-

Cloud. Anslow et al. [55] use a tag cloud to visualize the structure

of Java class names. Emerson et al. use tag clouds to visualize Java

methods and explore several different tag cloud layouts using the

TAGGLE tool [56] . TAGGLE extends basic tag cloud views and al-

lows highlighters to be associated with tags so that if a tag is se-

lected, related tags in the cloud will be highlighted. Tag clouds in

TAGGLE are customizable, as they are in ConceptCloud, with TAG-

GLE additionally allowing tag layouts to be changed.

8.3. Tag clouds and navigation

Mesnage and Carmen [11] use a Bayesian approach for navi-

gation in tag clouds that allows tags related to one or more se-

lected tags to be shown in the cloud, where previously clouds

could only be created for one selected tag. Gwizdka and Bake-

laar [57] look at displaying a tag cloud history, which allows users

to keep track of their previous navigation steps, when clouds are

used for pivot navigation. This approach is not directly applicable

to our tag clouds since we use refinement navigation where multi-

ple tags can be selected. Hernandez et al. [58] use multiple linked

tag clouds to browse semi-structured clinical trial data. These tag

clouds are generated from the results of an initial search query and

each represent one facet (e.g., medical condition) of the data. A

multi-faceted view can also be created in ConceptCloud by moving

tag categories into separate tag clouds.

8.4. Software and formal concept analysis

Poshyvanyk and Marcus [59] use a combination of latent se-

mantic indexing and concept lattices to find methods that are rel-

evant to a bug report. Girba et al. [60] use concept analysis to

detect co-change patterns in revision control systems. Objects are

packages, classes, or methods, while properties are the validity of

expressions over certain metrics of the objects (e.g., number of

classes, methods, or statements); the specific expression is deter-

mined by which co-change pattern is to be detected. Similar ideas

could be integrated into our approach.

There have also been direct applications of formal concept anal-

ysis to source code analysis and re-engineering [61,62] but these

only consider an individual program, not a repository.

9. Conclusions and future work

In this paper, we have developed an interactive browser for re-

vision control archives. We use a novel combination of concept lat-

tices and tag clouds, to make the information implicitly contained

in repositories accessible to users. Our browser can thus be used

to answer many difficult questions such as “What has happened in

this project while I was away?”, “Which developers collaborate?”,

or “What are the co-changed methods?”.

By changing the type of objects in the context table (e.g., re-

visions, files etc.) we are able to provide complementary views on
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
he same underlying data and observe collaboration patterns of the

evelopers. By using changes (i.e., revision-file pairs) as objects we

re able to easily identify the co-changed methods in a project.

dditionally, our context tables can be used as a centralized data

tructure for multiple sources of information, such as version con-

rol data and bug reports.

Our tag clouds provide a visualization in which version con-

rol data can be aggregated and explored interactively to support

evelopers in tasks such as keeping up with project changes. Our

nterface is customizable through the use of a scripting language,

hich can be used to repeatedly access a constructed view on the

ataset. Our interactive visualization supports users in exploratory

earch tasks when they have no previous knowledge of a project.

We have used the ConceptCloud browser to repeat a previous

ase study [40] and to make observations about the internal struc-

ure of a small commercial development project. We have also per-

ormed a user study to determine the usability of ConceptCloud

nd to compare its effectiveness in allowing users to answer his-

orical questions about a project to that of other existing informa-

ion representations. Through our user study we conclude that un-

rained users are able to make use of our ConceptCloud browser to

nswer questions about the history of a software project.

In future, we plan to conduct an additional user study which

ompares our ConceptCloud browser to other tools mentioned in

elated work (which index repositories as well as additional infor-

ation sources such as email archives) to determine how the dif-

erent tools perform in both search and exploratory search tasks.

e are currently working on building a generic framework from

ur ConceptCloud browser so that this can be used to visualize a

ariety of semi-structured data archives (such as academic paper

ata) [63] . We are also applying ConceptCloud in a different do-

ain and conducting another user study in which we specifically

valuate the learning effects present when using the tool.

cknowledgments

This research is funded in part by a STIAS Doctoral Scholarship,

RF Grant 93582 , CAIR, and the MIH Media Lab.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.infsof.2016.12.001.

eferences

[1] J. Sillito , G.C. Murphy , K. De Volder , Questions programmers ask during soft-

ware evolution tasks, in: Proceedings of the SIGSOFT ’06/FSE-14 International
Symposium on Foundations of Software Engineering, 2006, pp. 23–34 .

[2] M. Codoban , S. Srinivasa Ragavan , D. Dig , B. Bailey , Software history under
the lens: a study on why and how developers examine it, in: Proceedings of

the International Conference on Software Maintainance and Evolution (ICSME),

2015 .
[3] S.E. Sim , R.C. Holt , The ramp-up problem in software projects: a case study

of how software immigrants naturalize, in: Proceedings of the International
Conference on Software Engineering (ICSE), IEEE, 1998, pp. 361–370 .

[4] D. Cubranic , G.C. Murphy , J. Singer , K.S. Booth , Hipikat: a project memory for
software development, IEEE Trans. Softw. Eng. 31 (6) (2005) 446–465 .

[5] R. Wille , Restructuring lattice theory: an approach based on hierarchies of con-

cepts, in: Ordered Sets, Reidel, 1982, pp. 445–470 .
[6] R.W. White , R.A. Roth , Exploratory search: beyond the query-response

paradigm, Synth. Lect. Inf. Concept. Retr. Serv. 1 (1) (2009) 1–98 .
[7] G. Marchionini , Exploratory search: from finding to understanding, Commun.

ACM 49 (4) (2006) 41–46 .
[8] H. Kagdi , M.L. Collard , J.I. Maletic , A survey and taxonomy of approaches for

mining software repositories in the context of software evolution, J. Softw.
Maint. Evol. Res. Pract. 19 (2) (2007) 77–131 .

[9] J. Sinclair , M. Cardew-Hall , The folksonomy tag cloud: when is it useful? J. Inf.

Sci. 34 (1) (2008) 15–29 .
[10] Linux github repository, (https://github.com/torvalds/linux).

[11] C.S. Mesnage , M.J. Carman , Tag navigation, in: Proceedings of the SoSEA 2nd
International Workshop on Social Software Engineering and Applications, ACM,

2009, pp. 29–32 .
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://dx.doi.org/10.13039/501100001321
http://creativecommons.org/licenses/by/4.0/
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0009
https://github.com/torvalds/linux
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0010
http://dx.doi.org/10.1016/j.infsof.2016.12.001

G.J. Greene et al. / Information and Software Technology 0 0 0 (2016) 1–19 19

ARTICLE IN PRESS

JID: INFSOF [m5G; December 12, 2016;20:48]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[12] B. Ganter , R. Wille , Formal Concept Analysis - Mathematical Foundations,
Springer, Berlin, 1999 .

[13] B.A . Davey , H.A . Priestley , Introduction to Lattices and Order, 2nd. ed., Cam-
bridge University Press, Cambridge, 2002 .

[14] B. Fischer , Specification-based browsing of software component libraries, Au-
tom. Softw. Eng. (ASE) 7 (2) (20 0 0) 179–20 0 .

[15] C. Lindig , Concept-based component retrieval, in: Proceedings of IJCAI, 1995,
pp. 21–25 .

[16] C. Carpineto , G. Romano , A lattice conceptual clustering system and its appli-

cation to browsing retrieval, Mach. Learn. 24 (2) (1996) 95–122 .
[17] G.J. Greene , B. Fischer , Interactive tag cloud visualization of software version

control repositories, in: Proceedings of the IEEE 3rd Working Conference on
Software Visualization (VISSOFT), IEEE, 2015, pp. 56–65 .

[18] A. Hindle , D.M. Germán , SCQL: a formal model and a query language for source
control repositories, ACM SIGSOFT Softw. Eng. Notes 30 (4) (2005) 1–5 .

[19] C.M. Pilato , B. Collins-Sussman , B.W. Fitzpatrick , Version Control with Subver-

sion - the Standard in Open Source Version Control, O’Reilly Media, Inc, Se-
bastopol, California, 2008 .

20] J. Vesperman , Essential CVS, O’Reilly Media, Inc., Sebastopol, California, 2006 .
[21] C. Lindig , Fast concept analysis, Work. Concept. Struct.Contrib. ICCS 20 0 0

(20 0 0) 152–161 .
22] M.F. Porter , An algorithm for suffix stripping, Prog. Electron. Lib. Inf. Syst. 14

(3) (1980) 130–137 .

23] R. Navigli , Word sensedisambiguation: a survey, ACM Comput. Surv. 41 (2)
(2009) 10:1–10:69 .

[24] G. Robles , J.M. Gonzalez-Barahona , Developer identification methods for inte-
grated data from various sources, SIGSOFT Softw. Eng. Notes 30 (4) (2005) 1–5 .

25] G.C. Murphy , D. Notkin , Lightweight lexical source model extraction, ACM
Trans. Softw. Eng. Methodolol. 5 (3) (1996) 262–292 .

26] X. Ren , F. Shah , F. Tip , B.G. Ryder , O. Chesley , Chianti: a tool for change im-

pact analysis of java programs, in: Proceedings of the Object-Oriented Pro-
gramming, Systems, Languages and Applications, OOPSLA, 2004, pp. 432–448 .

[27] Github, (http://github.com).
28] A. Begel , Y.P. Khoo , T. Zimmermann , Codebook: discovering and exploiting re-

lationships in software repositories, in: Proceedings of the International Con-
ference on Software Engineering (ICSE), 2010, pp. 125–134 .

29] J. Śliwerski , T. Zimmermann , A. Zeller , When do changes induce fixes? in:

Proceedings of the International Workshop on Mining Software Repositories
(MSR), ACM, 2005, pp. 1–5 .

30] C. Van Rijsbergen, Information Retrieval.
[31] C. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval

32] G.J. Greene , B. Fischer , Conceptcloud: a tagcloud browser for software archives,
in: Proceedings of the ACM SIGSOFT International Symposium on Foundations

of Software Engineering (FSE), 2014, pp. 759–762 .

[33] J. Loeliger , M. McCullough , Version Control with Git: Powerful Tools and
Techniques for Collaborative Software Development, O’Reilly Media, Inc., Se-

bastopol, California, 2012 .
34] D.N. Götzmann, Colibri/java, 2007, (http://code.google.com/p/colibri-java/).

[35] C. Anslow , S. Marshall , J. Noble , R. Biddle , Sourcevis: collaborative software vi-
sualization for co-located environments, in: Proceedings of the IEEE Working

Conference on Software Visualization (VISSOFT), 2013, pp. 1–10 .
36] S. Lohmann , J. Ziegler , L. Tetzlaff, Comparison of tag cloud layouts: task-re-

lated performance and visual exploration, in: Proceedings of the Interna-

tional Conference on Human-Computer Interaction (INTERACT), 2009, pp. 392–
404 .

[37] J. Schrammel , M. Leitner , M. Tscheligi , Semantically structured tag clouds:
an empirical evaluation of clustered presentation approaches, in: Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, 2009,
pp. 2037–2040 .

38] L.D. Caro , K.S. Candan , M.L. Sapino , Navigating within news collections using

tag-flakes, J. Vis. Lang. Comput. 22 (2) (2011) 120–139 .
39] M.J. Zaki , M. Ogihara , Theoretical foundations of association rules, in: Proceed-

ings of the 3rd ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, 1998 .
Please cite this article as: G.J. Greene et al., Visualizing and exploring

over formal concept lattices, Information and Software Technology (201
40] P. Weissgerber , M. Pohl , M. Burch , Visual data mining in software archives to
detect how developers work together, in: Proceedings of the Fourth Interna-

tional Workshop on Mining Software Repositories (MSR), 2007, pp. 9–17 .
[41] S. Thummalapenta , T. Xie , Spotweb: detecting framework hotspots and

coldspots via mining open source code on the web, in: Proceedings of the
International Conference on Automated Software Engineering (ASE), 2008,

pp. 327–336 .
42] Rubygems, (https://github.com/rubygems/rubygems).

43] M. Goeminne , T. Mens , A comparison of identity merge algorithms for software

repositories, Sci. Comput. Program. 78 (8) (2013) 971–986 .
44] Bus factor, (http://deviq.com/bus-factor/).

45] Backbone, (https://github.com/jashkenas/backbone).
46] Retrofit, (https://github.com/square/retrofit).

[47] Gitk, (https://git-scm.com/docs/gitk).
48] S.S. Shapiro , M.B. Wilk , An analysis of variance test for normality (complete

samples), Biometrika 52 (3/4) (1965) 591–611 .

49] J.W. Tukey , Comparingindividual means in the analysis of variance, Biometrics
5 (2) (1949) 99–114 .

50] T. Girba , A. Kuhn , M. Seeberger , S. Ducasse , How developers drive software
evolution, in: Proceedings of the International Workshop on Principles of Soft-

ware Evolution, 2005, pp. 113–122 .
[51] O. Alonso , P.T. Devanbu , M. Gertz , Expertise identification and visualization

from cvs, in: Proceedings of the International Working Conference on Mining

Software Repositories (MSR), 2008, pp. 125–128 .
52] A. Zaidman , B. Van Rompaey , S. Demeyer , A. Van Deursen , Mining software

repositories to study co-evolution of production and test code, in: Proceedings
of the International Conference on Software Testing, Verification, and Valida-

tion, IEEE, 2008, pp. 220–229 .
53] T. Fritz , G.C. Murphy , Using information fragments to answer the questions

developers ask, in: Proceedings of the International Conference on Software

Engineering (ICSE), ACM, 2010, pp. 175–184 .
54] R. Cottrell , B. Goyette , R. Holmes , R. Walker , J. Denzinger , Compare and con-

trast: visual exploration of source code examples, in: Proceedings of the In-
ternational Workshop on Visualizing Software for Understanding and Analysis

(VISSOFT), 2009, pp. 29–32 .
55] C. Anslow , J. Noble , S. Marshall , E. Tempero , Visualizing the word structure of

java class names, in: Proceedings of the Object-Oriented Programming Systems

Languages and Applications (OOPSLA), 2008, pp. 777–778 .
56] J. Emerson , N. Churcher , C. Deaker , From toy to tool: extending tag clouds for

software and information visualisation, in: Proceedings of the Australian Soft-
ware Engineering Conference, 2013, pp. 155–164 .

[57] J. Gwizdka , P. Bakelaar , Tag trails: navigation with context and history, in: Pro-
ceedings of the CHI’09 Extended Abstracts on Human Factors in Computing

Systems, ACM, 2009, pp. 4579–4584 .

58] M.-E. Hernandez , S.M. Falconer , M.-A. Storey , S. Carini , I. Sim , Synchronized
tag clouds for exploring semi-structured clinical trial data, in: Proceedings of

the Conference of the Center for Advanced Studies on Collaborative Research:
Meeting of Minds (CASCON), ACM, 2008, pp. 4:42–4:56 .

59] D. Poshyvanyk , A. Marcus , Combining formal concept analysis with informa-
tion retrieval for concept location in source code, in: Proceedings of the Inter-

national Conference on Program Comprehension (ICPC), 2007, pp. 37–48 .
60] T. Gîrba , S. Ducasse , A. Kuhn , R. Marinescu , R. Daniel , Using concept analysis

to detect co-change patterns, in: Proceedings of the IWPSE Ninth International

Workshop on Principles of Software Evolution: In Conjunction with the 6th
ESEC/FSE Joint Meeting, 2007, pp. 83–89 .

[61] G. Snelting , Reengineering of configurations based on mathematical concept
analysis, ACM Trans. Softw. Eng. Methodol. 5 (2) (1996) 146–189 .

62] G. Snelting , F. Tip , Reengineering class hierarchies using concept analysis, SIG-
SOFT Softw. Eng. Notes 23 (6) (1998) 99–110 .

63] G.J. Greene , A generic framework for concept-based exploration of semi-struc-

tured software engineering data, in: Proceedings of the Automated Software
Engineering (ASE), IEEE, 2015, pp. 894–897 .
software version control repositories using interactive tag clouds

6), http://dx.doi.org/10.1016/j.infsof.2016.12.001

http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0025
http://github.com
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0029
http://code.google.com/p/colibri-java/
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0036
https://github.com/rubygems/rubygems
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0037
http://deviq.com/bus-factor/
https://github.com/jashkenas/backbone
https://github.com/square/retrofit
https://git-scm.com/docs/gitk
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30405-0/sbref0053
http://dx.doi.org/10.1016/j.infsof.2016.12.001

	Visualizing and exploring software version control repositories using interactive tag clouds over formal concept lattices
	1 Introduction
	2 Modeling software repositories
	3 Navigation framework
	3.1 Formal concept analysis
	3.2 Contexts from repositories
	3.2.1 Basic preprocessing
	3.2.2 Revision-based contexts
	3.2.3 File-based contexts
	3.2.4 Change-based contexts
	3.2.5 Combined contexts: bug reports and revision control data

	3.3 Tag clouds from concepts
	3.4 Navigating concept lattices with tag clouds
	3.5 Relation to information retrieval

	4 ConceptCloud browser
	4.1 Tag cloud interface
	4.2 Advanced visualization in ConceptCloud
	4.2.1 Personalization in tag clouds
	4.2.2 Filtering tag clouds
	4.2.3 Customized visualizations
	4.2.4 Scripting tag cloud viewers

	5 Illustrative application examples
	5.1 JUnit repository
	5.2 Rubygems repository
	5.3 Industrial application
	5.3.1 Threats to validity
	5.3.2 Discussion

	5.4 Conclusions

	6 Performance evaluation
	7 User study
	7.1 Experimental setup
	7.2 Population
	7.3 Tasks
	7.4 Analysis and results
	7.4.1 Summary statistics
	7.4.2 Statistical significance
	7.4.3 Question types

	7.5 Discussion
	7.6 Threats to validity

	8 Related work
	8.1 Visualizing software and bug repositories
	8.1.1 Team structure and developer expertise visualizations
	8.1.2 Co-evolution of production and test code
	8.1.3 Centralized data structures and visualizations for multiple software development artifacts

	8.2 Tag cloud visualizations of software
	8.3 Tag clouds and navigation
	8.4 Software and formal concept analysis

	9 Conclusions and future work
	 Acknowledgments
	 Supplementary material
	 References

