
Using Fast Model-Based Fault Localisation to Aid Students
in Self-Guided Program Repair and to Improve Assessment

Geoff Birch
University of Southampton

gb2g10@ecs.soton.ac.uk

Bernd Fischer
Stellenbosch University

bfischer@cs.sun.ac.za

Michael Poppleton
University of Southampton
mrp@ecs.soton.ac.uk

ABSTRACT
Computer science instructors need to manage the rapid improve-
ment of novice programmers through teaching, self-guided learn-
ing, and assessment. Appropriate feedback, both generic and per-
sonalised, is essential to facilitate student progress. Automated
feedback tools can also accelerate the marking process and allow
instructors to dedicate more time to other forms of tuition and stu-
dents to progress more rapidly. Massive Open Online Courses rely
on automated tools for both self-guided learning and assessment.

Fault localisation takes a significant part of debugging time. Pop-
ular spectrum-based methods do not narrow the potential fault lo-
cations sufficiently to assist novices. We therefore use a fast and
precise model-based fault localisation method and show how it can
be used to improve self-guided learning and accelerate assessment.
We apply this to a large selection of actual student coursework sub-
missions, providing more precise localisation within a sub-second
response time. We show this using small test suites, already pro-
vided in the coursework management system, and on expanded test
suites, demonstrating scaling. We also show compliance with test
suites does not predictably score a class of “almost correct” sub-
missions, which our tool highlights.

Keywords
Debugging; Model-Based Fault Localisation; Student Code Sub-
missions; Assessment; Self-Training

1. INTRODUCTION
Introductory programming courses typically require instructors

to assess a large number of small programs by novice program-
mers. Many of these programs contain errors, ranging from small
mistakes to complete design and implementation failures, reflecting
the students’ misunderstanding of the task or their solution attempt.
With limited resources the best learning outcomes are achieved if
students are (in the former case) automatically directed towards the
locations of their mistakes to allow self-guided repairs, so that the
instructors can focus (in the latter case) on addressing fundamental
misunderstandings. However, existing basic assessment tools (such
as Ceilidh [2], ASSYST [14], and BOSS [16]) based on simple
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITiCSE ’16, July 09 - 13, 2016, Arequipa, Peru
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4231-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2899415.2899433

compilation tests, test suites, or model solutions do not provide the
detailed feedback necessary for self-guided repairs and do not sup-
port instructors in quickly separating solutions with small mistakes
from complete failures. Compilation tests do not give any feedback
for syntactically correct programs, test suites can give misleading
results if programs contain simple errors that affect a large number
of test cases, and model solutions cannot account for the variability
of student programs.

In this paper we address these issues and describe a fast and ac-
curate fully automated fault localisation tool for C programs and
demonstrate its application to a corpus of student programs. Our
tool assumes that the programs are specified only by test suites and
returns a list of source code locations where a single assignment
fault can be repaired to bring the program into compliance with the
entire test suite. Such weak specifications make accurate locali-
sation challenging: spectrum-based fault localisation methods [37]
are unable to sufficiently narrow down the list of possible fault lo-
cations [24], while more precise model-based methods [10] suffer
from high run-times. We have recently presented [3] an intelli-
gent search algorithm to scale up model-based fault localisation,
but demonstrated it only on a single localisation benchmark. It is
thus an open question whether model-based fault localisation can
be exploited in aiding novice programmers, in particular with de-
bugging, and in improving the assessment of their solutions; more
precisely, we investigate the following research questions:

RQ1 Does model-based fault localisation scale to large submis-
sion databases of real-world student code? Is it fast enough,
and does it accurately pin-point fault locations, given typical
test suites?

RQ2 Does model-based fault localisation improve over the more
common spectrum-based methods?

RQ3 Can model-based fault localisation improve automated grad-
ing based on functional correctness over test suites?

Our experiments with real-world student code from an existing
submissions database are encouraging. Our tool can indeed accu-
rately pin-point fault locations and so allow students to surmount
the final hurdle to completing writing of source code that fully
complies with a test suite without requiring advanced debugging
skills. The short list of locations where an assignment repair is
possible, provided by our tool, can aid students in pinpointing im-
provements before they resubmit their code. The run-times of our
tool are competitive with the common, fast spectrum-based locali-
sation techniques while providing significantly more accurate fault
localisation, which is of high value to novice programmers. This
also allows our tool to work with existing coursework submission

168

mailto:gb2g10@ecs.soton.ac.uk
mailto:bfischer@cs.sun.ac.za
mailto:mrp@ecs.soton.ac.uk
http://dx.doi.org/10.1145/2899415.2899433

systems and workflows, for both self-training and grading, even at
the scale required by Massive Open Online Courses (MOOCs).

Our tool also provides instructors with automated assistance de-
tecting submissions which would provide perfect compliance with
a single assignment edit (e.g. incrementing a counter before return-
ing it as the final value) but fail the test suite. This will allow test
suite-based automated graders to identify submissions whose qual-
ity is being underestimated by this functional assessment method;
repair information also provided by our tool can help instructors
manually grading the submission. We show that real-world stu-
dent submissions which are a single assignment edit away from
full compliance with a test suite are not provided with a fair mark
by grading against that test suite.

2. RELATED WORK
Novice programmers can be divided into three classes [23, 35]:

stoppers, who give up; tinkerers, who appear to modify their code
at random; and movers, who are already able to engage with feed-
back to make progress. Even though the movers already demon-
strate debugging skills beyond the average of their cohort, all three
classes still need high-quality, novice-friendly debugging feedback
to allow a self-guided refinement of their solutions towards a cor-
rect answer. Enhanced (syntax) error messages appear to be in-
effectual in this respect [8], but when students are given hints re-
garding failures over a test suite, their effort increases compared to
students not given hints [6]. On-demand programming feedback
provides students the motivation to iterate on submissions [20].
Moreover, a correlation has been found between sessions where
students were provided with feedback from a test suite and ses-
sions that improved the student’s score [31], indicating this assisted
self-training. However, despite its benefits, students are somewhat
resistant to a pure test-driven development (TDD) approach [5],
as for example embodied in the Web-CAT [9] submission system,
partly because TDD also requires expertise in developing test suites
as a prerequisite to demonstrating programming ability.

A significant part of the debugging process is finding the location
where the file needs to be changed to repair the fault [34]. Tools like
AskIgor [38] provide cause chains to assist programmers in local-
ising faults from test failures. While this lowers the threshold, it
still requires too much debugging expertise for novices. Our tool
instead provides a list of locations where a single assignment fault
can be repaired to bring the program into compliance with the en-
tire test suite. Giving tinkerers viable repair locations massively
reduces the mutation space they are exploring. Giving movers vi-
able repair locations directs their effort, allowing faster debugging
times [22]. This should increase the chance that both will realise
the repair and convert a program failure into a learning event.

For programmers to retain their status of movers, they must be
provided with feedback in terms of suitable scaffolding to over-
come progress stalls and achieve an otherwise unattainable goal [36].
Tinkerers who are unable to be scaffolded into movers will eventu-
ally become stoppers due to lack of progress [35]. Since the abso-
lute number of locations shown before the actual repair site is criti-
cal to allowing progress before programmer interest drop-off gener-
ates stoppers [22], the provided list of locations to investigate must
be short. Unfortunately, widespread spectrum-based fault local-
isation methods are unable to provide sufficiently short candidate
lists. Pham et al. [24] tested Tarantula and Ochiai tools and on three
variants of an algorithm, with an average length of 13 statements,
they found over 9 statements shared the same top suspiciousness
ranking. Localisation thus becomes a function of luck.

However, the feedback cannot be too prescriptive or too detailed.
Complete program synthesis repair tools such as Auto Grader [29]

remove all debugging or repair self-training from the process, triv-
ialising the contribution and so learning of the student. Our tool
bridges the gap between standard error reports, which many stu-
dents lack the expertise to use, and fully automated repair suites.

Automated submission and assessment systems deliver imme-
diate feedback to students for self-training, which is enjoyed by
students and feeds into improvements throughout courses that use
it [17]. They include tools to help accelerate grading of final sub-
missions, providing both self-training and grading benefits [32].
Such assessment tools take many forms. Ceilidh [2] uses regu-
lar expressions to specify the test output of compiled student code,
providing more freedom to define the expected answers than tra-
ditional test suites. ASSYST [14] contains style and complexity
analysis tools that provide metrics beyond test suite correctness,
and evaluate non-functional aspects such as code quality and ef-
ficiency. FrenchPress [4] focuses on analysis of code style and
design, attempting to isolate errors only made by novices in Java
programming. AutoGrader [12] requires students to program to a
public interface, allowing whitebox testing at the cost of restricting
the form of the code submissions. Pex4Fun [33] uses automated
test case generation to guide student submissions and to scale to
MOOC capacities. This approach requires students to demonstrate
advanced debugging skills. Scheme-Robo [28] compares the pro-
gram source to a model answer, assuming that Scheme’s functional
design limits the variability of meaningfully different programs that
correctly answer the question.

Student code exhibits a wide range of program forms and per-
formance characteristics [30, 21, 18, 26] and students do not nec-
essarily work towards solutions that are similar to an instructor-
authored model answer. It is thus inadvisable to only provide feed-
back directing students towards model answers. Vujošević-Janičić
et al. [15] use a static verifier as well as test suites when student
solutions do not match the control flow of the model answer. A
weighting system then mixes these feedback components to guide
students to repair code errors and transform the structure towards
that of the model answer or to grade the submission. ASys [13]
attempts to overcome the limitation of functional testing using test
suites with a customisable semi-automated grading system. Mark-
ing templates describe extensions to the test suite for a question,
generating new tests specific to the student submission that ver-
ify each assessment property defined in the template. In their use
on campus, 48% of the grading work was automatically handled
by the tools. Interestingly, most of the marks difference between
the group using ASys and the control group going through tradi-
tional grading was accountable to errors made in the manual mark-
ing process. Similarly, our tool provides added feedback beyond
functional grading using test suites, identifying student programs
which “almost” conform to the question requirements and can be
fixed with a single assignment edit. Our tool can also enrich exist-
ing systems like ASys, providing this alternative test of closeness
to compliance when using test suites in other contexts.

Instructors spending several minutes per student per submission
for feedback [19] cannot scale to MOOC environments with thou-
sands of students per course. To test the scaling of an automated
hint system to these environments, AutoTeach [1] provides stu-
dents with access to a hint system which uncovers partial model
answers to assist with learning. Such systems, while scaling very
well, strictly constrain students to working towards a single model
answer. However, the deployment of test suite grading for MOOCs
is gaining traction [25] with the drawbacks of formatting issues
(3.2% of submissions were awarded zero marks due to formatting
issues, not functional failures) and failure to detect almost-correct
submissions weighed against the benefits of providing some form

169

/* ... */
int v = a*b;
/* ... */
assert(o==d); //added spec
exit(0);

int t = symbolic();
/* ... */
int v = (t==5) ? symbolic() : a*b;
/* ... */
assert(o==d);
exit(0);

int t = symbolic();
/* ... */
int v = (t==5) ? symbolic() : a*b;
/* ... */
assume(o==d);
assert(0); exit(0);

Figure 1: Program Transform Process: (a) Code with Test Case Spec; (b) Model of Code; (c) Inverted Model

of code assessment, as manual grading is not viable. Such issues
can be reduced via importing more advanced tools into the grading
system, assuming their run-time cost can be kept low enough for
MOOC execution.

3. DATA SET
We use a data set of around 30k passing and 150k failing Java and

Python programs collected by the automated assessment system of
the University of Auckland [26]. These programs were written by
students to answer 1693 different Computer Science coursework
questions. We translated the programs into a C-representation us-
ing a simple converter that was designed to retain the style and
functionality of programs without translating any detailed differ-
ences between the languages, such as language-specific handling of
integer overflows. This translation would allow the mapping back
of locations to the original Java or Python source code, although our
model-based downstream components currently only reason within
the specifications of the C programming language they have been
translated into. We consider the translated programs in C to be
the corpus on which we are testing the efficacy of our tool. Our
methods are more directly applicable for native reasoning on Java
or Python programs by using suitable downstream components de-
signed for those languages.

We rejected programs that produced translation failures (typi-
cally due to unsupported standard library calls), that use floating-
point arithmetic (which is not yet supported for symbolic explo-
ration by our downstream components), that comprise less than
three assignments (to avoid trivial localisation tasks), or that Klee
or GCov (which we use as downstream components) could not pro-
cess. We then analysed the data set to identify pairs where a student
had submitted a failing program which, after a single assignment
edit, was later found in the database passing the full test suite. This
yielded 304 pairs. These programs contain an average of 5 assign-
ments in 11 statements (as counted by GCov).

We ran a script to analyse each provided test suite (averaging 7.8
tests per pair) and generated new test suites that randomly picked
inputs within an order of magnitude of the existing values. The
passing program from the code pair was used as oracle to establish
desired output values. These large test suites average 154 tests per
pair, with 80 failing.

4. METHOD
Model-based fault localisation [27] is the application of model-

based diagnosis methods [7] to programs. It involves three main
steps: (i) the construction of a logical model from the original pro-
gram; (ii) the symbolic analysis of this model; and (iii) mapping
any faults found in the model back to program locations. The ap-
proach to model-based fault localisation used by our tool is to trans-
form the program so that a symbolic program verification tool can
be reused for all three steps.

Our tool is fed a C program and a set of failing test cases written
in the form of an input and a desired output. The worked example
of Figure 1 gives excerpts from a C program that, for the fifth as-

signment, declares an int v equal to a*b and eventually assigns the
final value to int o.

Each test case is taken as a search branch to be explored for po-
tential assignment locations. The input and desired output are en-
coded into the program via an expanded argv/stdin. In this encod-
ing the desired output is assigned to d (not shown). String input and
output is also possible by iterating over an output char array, check-
ing it against the chars that would be created by stdout commands
before they were transformed into these checks. Every assignment
in the encoded C program is modified to allow the symbolic pro-
gram verification tool to exhaustively explore different assignment
values when that location is activated, creating the program model.
In the example this is done with a toggle variable t which selects
the location to explore with the symbolic call in Figure 1b. Fi-
nally, this model is “inverted” [10] which forces the verifier to sup-
press any assertion failures in the original model but generate new
counter-examples if the program can terminate normally without
violating these assertions. This is achieved by converting asser-
tions to assumptions in the model and replacing any point where
the program ends successfully with a new failing assertion, shown
in Figure 1c.

This complete transformation effectively searches the model to
find assignments which are possible repair locations. That is, every
such assignment can be edited to a symbolic value which corrects
the flow of one failing test case and results in the desired output be-
ing generated, i.e. not violating the assume(o==d) statement in
the worked example’s inverted model. Assignments where a sym-
bolic value is found for every failing test case are returned as repair
locations.

The localisation process effectively generates a look-up table at
each returned location that will repair all failing test cases. For
each failing test case, the alternative value of the assignments will
be reported (via a counter-example) for each location flagged by
this process. The flagging process means the chosen assignment
values lead to the end of the program without failure of the original
specification. All passing test cases define their own correct values
for the assignments (they already execute within the test suite spec-
ification). So this look-up table is a genuine repair for the full test
suite, albeit repairing only from the test cases provided as specifi-
cation.

A multiprocess design that takes advantage of modern consumer
processor architectures is used to accelerate the process [3]. Each
test case is dispatched as a task to a worker pool with any pruning
percolated to future tasks. The symbolic execution load is min-
imised by two features. Firstly, intelligent pruning of the search
space, i.e. not searching known-unrepairable assignments in subse-
quent test cases after the search has started. Secondly, minimising
the disruption of an intractable (a risk of model-checking programs)
or slow search branch by monitoring and evicting tasks to be retried
later after the search space has been pruned.

The end result of this method is that we generate a genuine list of
repair locations as specified by test cases for any repair that could
be expressed as a look-up table for the right-hand side of an assign-
ment, within the limits of symbolic analyser accuracy.

170

5. EXPERIMENTS AND DISCUSSION

5.1 Experimental Setup
We generated all results on a 3.1GHz Core i5-2400. Our tool,

using the Klee 1.1 symbolic analyser, operates as described in sec-
tion 4. Spectrum-based fault localisation results using Ochiai and
Tarantula formulas [37] are provided by Hawk-Eye [11]. As the
rank of the fault location did not vary between formulas with this
data set, both are referred to simply as the Hawk-Eye result.

5.2 Evaluation Strategy
Localisation tools typically produce a ranked list of locations,

based on the generated suspiciousness value of each location. The
rank is calculated using Hawk-Eye’s middle-line strategy, ranking
equally suspicious statements with the mid-point rank. For ex-
ample, statements with suspiciousness (0.1, 0.4, 0.8, 0.4, 0.4) are
ranked (5th, 3rd, 1st, 3rd, 3rd). Results from our model-based tool
have been converted from an unranked list using the same middle-
line strategy (where all locations returned are given a suspicious-
ness of 1.0 and all others a suspiciousness of 0.0).

Localisation performance is reported in the average percentage
of other locations that will be searched before the fault is found
when iterating over the locations in rank order. So in the above ex-
ample, if the second statement is the fault location then the ranked
localisation scores 50%. If the first statement (which is ranked last)
was the fault then this would score 100%, the worst possible score,
indicating every other returned statement would be searched before
the fault was reached. A score near 0%, indicating very few lo-
cations ranked above the location used by the student to repair the
submission in the database, means fewer instances of the debug-
ging process stalling before repair synthesis can begin. Spectrum-
based methods have been shown to provide rankings insufficient
for novices [22] or even be unable to discriminate between most
locations [24].

5.3 Results for Original Test Suites
On the 304 failing student submissions and the instructor-author-

ed test suites, our tool returns the faulty assignment after, on aver-
age, only 16% of other assignments. In Figure 2a the p.p. differ-
ence to the spectrum-based results (i.e. percentage points closer to a
perfect 0% localisation) is plotted for every student submission, or-
dered by relative advantage. Positive differences indicate our tool’s
advantage. Hawk-Eye, on this data set, ranks the statement the stu-
dent later used to repair the program after an average of 63% of
other statements, 47 percentage points adrift (dashed line). No cor-
relation was found between the program size and the comparative
performance of our tool compared with Hawk-Eye.

On average, Hawk-Eye is provided eight test cases for each sub-
mission which are used to rank eleven statements. Our tool is pro-
vided with an average of four failing test cases, due to the small
test suite size, and localises over the average of five assignments in
each submission. These localisations are produced in an average of
0.3 seconds per submission by both our tool and Hawk-Eye. 254
times our tool was a fraction of a second ahead, 48 times Hawk-Eye
was a fraction of a second ahead, and twice our tool hit too many
pathological cases to adapt and only provided results at the tool’s
ten second time-out.

Our tool regularly pin-pointed the assignment later used by the
student to bring the submission into compliance with the test suite.
125 of the 304 student submissions were returned from our tool
with only that assignment flagged, the ideal result [22]. All other
assignments were eliminated as viable repair candidates for the test
suite specification. The limited number of failing test cases did

not hinder our tool on this sample of short, real-world student pro-
grams.

When looking at those 125 submissions, Hawk-Eye ranked the
repair statement after an average of 65% of other statements. Only
15 of those submissions provided the repair in the first third of the
ranked list. The best ranking from Hawk-Eye for the statement the
student used to repair the program was after 25% of other state-
ments.

This comparison strongly supports the use of our tool for assist-
ing students in repairing single-assignment faults in small program
submissions, even when only specified by a very small test suite.
When a student has made a mistake on constructing an assignment
in an otherwise solid submission, an expensive debugging process
may be averted by use of this feedback.

(a) Original Test Suite (b) Extended Test Suite

Figure 2: Comparison of Results: Our Tool vs Hawk-Eye

5.4 Results for Extended Test Suites
When the large test suite was used, Hawk-Eye showed a mod-

est improvement. Although Figure 2b shows it continued to lag
our tool significantly, at a 42 percentage point deficit (dashed line).
Running an average of 154 test cases through each submission re-
sulted in localisation of the repair statement to rank below 58% of
other statements. Our tool, provided with an average of 80 fail-
ing test cases, did not improve from the 16% localisation score
achieved previously. This lack of further improvement is due to a
combination of different factors. Over a third of these submissions,
with the smaller test suite, already provided perfect results using
our tool; some programs will contain several assignments where a
genuine repair is possible so there is no more compact list of repair
locations; and some programs are resistant to analysis by symbolic
analysis, which does not change with test suite size. This may have
provided very little room for improvement by our tool.

However, the run-time on these much larger test suites confirm
the scalability of our tool, an area where model-based fault localisa-
tion has traditionally suffered [10]. Our tool averaged 0.9 seconds
per submission while Hawk-Eye lagged behind, averaging 1.1 sec-

171

onds. Included in that average, three times our tool hit too many
pathological cases to adapt and only completed at the time-out.

Hawk-Eye never ranked the statement that was used to repair the
program as the most suspicious when localising on the data set,
with either the original or extended test suite.

5.5 Effects of Programming Language
Comparing data for submissions originally written in Java to

those in Python showed no significant skew to the data points ex-
plored. Translating a simple subset of each language into C syntax
generated comparable subsets.

(a) Original Test Suite (b) Extended Test Suite

Figure 3: Histogram of Test Suite Failure Percentage

5.6 Grading Support
To confirm the value of this localisation data for detecting “al-

most correct” student submissions that test suites do not highlight,
we extracted the test suite results for the data set. As each of these
student submissions was selected because there exists a single edit
to an assignment which brings it into compliance with the com-
plete instructor-authored test suite, they should be graded within a
generally narrow distribution, reasonably close to a fully compli-
ant solution. However, as Figure 3a shows in a histogram of the
test suite compliance score of these programs, this is not the case.
The average submission fails for 51% of the test cases (dashed line)
and the distribution of scores is very uneven, not clustering around
a single value. As there are so few test cases per submission, the
histogram buckets have been set to best show the distribution curve.

When expanding out to the much larger test suite in Figure 3b,
the average submission fails for 59% of the test cases (dashed line).
Here the distribution of grades is less flat, with clumping at both
poles. Half of the “almost correct” submissions are scored with
80% or more of the test suite failing. Our tool will accelerate
automation-assisted marking by flagging nearly-good code with the
likely location of a repair that will radically increase a test suite-
based grading.

5.7 Threats to Validity
Our tool and the slice used on the database of student programs

to generate the pairs for analysis makes a single-fault assumption.
This is a common assumption in the fault localisation field but does
not reflect real world debugging, although the existence of many
code pairs in this data set does confirm real-world applicability.

The slicing of the student programs via a simple language trans-
lation stage, without any translation of library calls, and rejection
of unparseable code restricts the form of programs explored. This
slice assumes a repair possible via assignment modification. The
choice of symbolic analyser (with an integer solver) also restricts
the type of programs processed. Some programs are not suitable
for automated localisation, such as those that never terminate on
some inputs, and these would not make it through the database
slice. These restrictions could add a bias to the student programs
explored which could unfairly advantage one tool or call the gener-
alisability of these results into question.

The open-source script used to execute the spectrum-based lo-
calisation was written in Java. Executing Java scripts is known to
come with a high initialisation time cost to start the JVM. Due to
the short run-times involved, this may have inflated the run-time
costs of this technique beyond some competing implementations
based on the same GCov underlying tool.

6. CONCLUSIONS AND FUTURE WORK
Novice programmers are unlikely to be capable of advanced de-

bugging techniques. Coursework and charettes provide an oppor-
tunity for fast, accurate fault localisation to assist in educational
institutions, which have already built up databases and workflows
around test suite specified exercises. We have demonstrated a fast,
model-based fault localisation tool on a collection of single-fault,
real-world student submissions. The high quality localisation in-
formation reduces the search space for novice debuggers working
down a list of potential repair locations when compared to the re-
sults from spectrum-based techniques (cf. RQ2). In over a third of
the sampled failing student programs, our tool used the test suite
to provide a localisation result that uniquely identified the loca-
tion later used by the student to repair the program and rejected all
other locations. This reinforces the qualitative difference between
model-based fault localisation that reasons over a model of the stu-
dent program to derive a list of feasible repair locations compared
to a spectrum-based ranking process that infers suspiciousness of
each program statement (cf. RQ1). These short, often exact, lists of
potential assignment repair locations can direct students to the site
of improvement, assisting in the construction of a final submission
that fully complies with the test suite.

Spectrum-based techniques showed marginal location ranking
improvements with much larger test suites than found in the pro-
vided data set. This was, however, still vastly inferior to our tool’s
output (which did not significantly vary with test suite size) and
came with an increased run-time cost. The run-time cost of our
high quality localisation matches that of fast spectrum-based fault
localisation, even with large test suites, ensuring that our approach
is viable even at the scale required by MOOCs (cf. RQ1).

We have demonstrated that these submissions, which are a single
assignment edit away from full compliance with a test suite, would
not be scored predictably if scoring were based on compliance with
the test suite only. This confirms the need for tools which can iso-
late such “almost correct” student submissions (cf. RQ3).

Future studies into this tool can survey the real world perfor-
mance of tool-assisted learning in classroom environments and the
effect on student progress when one group is provided with this
high quality localisation information in typical student program-
ming tasks. Such studies can validate this feedback as valuable for
novices, improving total debugging time and reducing the number
of students who stop before completing a source code submission
fully conforming to the provided test suite. The integration of this
localisation feedback into student integrated development environ-
ments must be managed to maximise and quantify student comfort
and views on the ease-of-use of this additional information. Future
studies could be done with direct interaction tracking, surveys, or
analysis of achievement changes when this tool is introduced to an
existing course.

The underlying methods used by this tool are programming lan-
guage and symbolic analyser agnostic. This will allow future tests
using other programming languages and beyond the restrictions of
the currently selected downstream components.

172

7. ACKNOWLEDGEMENTS
We would like to thank Ewan Tempero and Paul Denny at the

University of Auckland for access to an anonymised copy of their
student exercises and submissions to those exercises, from which
we generated our data set. We would also like to thank Eli Ben-
dersky, author of the PyCParser; the Automated Software Testing
Group at Beihang University for Hawk-Eye; all the contributors to
the KLEE symbolic virtual machine project; and contributors to all
downstream components of these tools and Linux Mint.

This academic research was funded by the Engineering and Phys-
ical Sciences Research Council, UK. Funding number 1239954.

8. REFERENCES
[1] P. Antonucci et al. An Incremental Hint System For

Automated Programming Assignments. ITiCSE ’15, pp.
320–325, 2015.

[2] S. D. Benford et al. The Ceilidh System for the Automatic
Grading of Students on Programming Courses. ACM
Southeast Regional Conf., pp. 176–182, 1995.

[3] G. Birch, B. Fischer, and M. R. Poppleton. Fast
Model-Based Fault Localisation with Test Suites. TAP ’15,
LNCS 9154, pp. 38–57, 2015.

[4] H. Blau and J. Eliot. FrenchPress Gives Students Automated
Feedback on Java Program Flaws. ITiCSE ’15, pp. 15–20,
2015.

[5] K. Buffardi and S. H. Edwards. Exploring Influences on
Student Adherence to Test-Driven Development. ITiCSE ’12,
pp. 105–110, 2012.

[6] K. Buffardi and S. H. Edwards. Responses to Adaptive
Feedback for Software Testing. ITiCSE ’14, pp. 165–170,
2014.

[7] J. deKleer and B. Williams. Diagnosing Multiple Faults. J.
Artificial Intelligence, 32(1):97–130, 1987.

[8] P. Denny, A. L. Reilly, and D. Carpenter. Enhancing Syntax
Error Messages Appears Ineffectual. ITiCSE ’14, pp.
273–278, 2014.

[9] S. H. Edwards. Using Software Testing to Move Students
from Trial-and-Error to Reflection-in-Action. SIGCSE ’04,
pp. 26–30, 2004.

[10] A. Griesmayer, S. Staber, and R. Bloem. Automated Fault
Localization for C Programs. Electronic Notes in Theoretical
Computer Science, pp. 95–111, 2007.

[11] Hawk-Eye: 2010. http://code.google.com/p/hawk-eye/.
[12] M. T. Helmick. Interface-based Programming Assignments

and Automatic Grading of Java Programs. ITiCSE ’07, pp.
63–67, 2007.

[13] D. Insa and J. Silva. Semi-Automatic Assessment of
Unrestrained Java Code: A Library, a DSL, and a Workbench
to Assess Exams and Exercises. ITiCSE ’15, pp. 39–44,
2015.

[14] D. Jackson and M. Usher. Grading Student Programs Using
ASSYST. SIGCSE ’97, pp. 335–339, 1997.

[15] M. Vujošević-Janičić et al. Software Verification and Graph
Similarity for Automated Evaluation of Students’
Assignments. Inf. Softw. Technol., 55(6):1004–1016, 2013.

[16] M. Joy, N. Griffiths, and R. Boyatt. The Boss Online
Submission and Assessment System. J. Educational
Resources in Computing, 5(3):2A, 2005.

[17] M-J. Laakso et al. Automatic Assessment of Exercises for
Algorithms and Data Structures - a Case Study with

TRAKLA2. In Finnish/Baltic Sea Conf. on Comp. Sci. Edu.,
pp. 28–36, 2004.

[18] R. Lister et al. Naturally Occurring Data As Research
Instrument: Analyzing Examination Responses to Study the
Novice Programmer. SIGCSE Bull., 41(4):156–173, 2010.

[19] T. MacWilliam and D. J. Malan. Streamlining Grading
Toward Better Feedback. ITiCSE ’13, pp. 147–152, 2013.

[20] L. Malmi, A. Korhonen, and R. Saikkonen. Experiences in
Automatic Assessment on Mass Courses and Issues for
Designing Virtual Courses. ITiCSE ’02, pp. 55–59, 2002.

[21] M. McCracken et al. A Multi-National, Multi-Institutional
Study of Assessment of Programming Skills of First-year CS
Students. ITiCSE-WGR ’01, pp. 125–180, 2001.

[22] C. Parnin and A. Orso. Are Automated Debugging
Techniques Actually Helping Programmers? ISSTA ’11, pp.
199–209, 2011.

[23] D. N. Perkins et al. Conditions of Learning in Novice
Programmers. J. Educational Computing Research,
2(1):37–55, 1986.

[24] L. H. Pham et al. Assisting Students in Finding Bugs and
their Locations in Programming Solutions. Int. J. Quality
Ass. in Eng. and Tech. Edu., 3(2):12–27, 2014.

[25] V. Pieterse. Automated Assessment of Programming
Assignments. Comp. Sci. Edu. Research Conf., CSERC ’13,
pp. 45–56, 2013.

[26] A. L. Reilly et al. On the Differences Between Correct
Student Solutions. ITiCSE ’13, pp. 177–182, 2013.

[27] R. Reiter. A Theory of Diagnosis from First Principles. J.
Artificial Intelligence, 32(1):57–95, 1987.

[28] R. Saikkonen, L. Malmi, and A. Korhonen. Fully Automatic
Assessment of Programming Exercises. ITiCSE ’01, pp.
133–136, 2001.

[29] R. Singh, S. Gulwani, and A. S. Lezama. Automated
Feedback Generation for Introductory Programming
Assignments. PLDI ’13, pp. 15–26, 2013.

[30] E. Soloway and J. C. Spohrer. Studying the Novice
Programmer. 1988.

[31] J. Spacco et al. Towards Improving Programming Habits to
Create Better Computer Science Course Outcomes. ITiCSE
’15, pp. 320–325, 2015.

[32] M. Striewe, M. Balz, and M. Goedicke. A Flexible and
Modular Software Architecture for Computer Aided
Assessments and Automated Marking. CSEDU ’09, pp.
54–61, 2009.

[33] N. Tillmann et al. Teaching and Learning Programming and
Software Engineering via Interactive Gaming. ICSE ’13, pp.
1117–1126, 2013.

[34] Q. Wang, C. Parnin, and A. Orso. Evaluating the Usefulness
of IR-Based Fault Localization Techniques. ISSTA ’15, pp.
1–11, 2015.

[35] J. Whalley and N. Kasto. A Qualitative Think-Aloud Study
of Novice Programmers’ Code Writing Strategies. ITiCSE
’15, pp. 320–325, 2015.

[36] D. Wood, J. S. Bruner, and G. Ross. The Role of Tutoring in
Problem Solving. J. Child Psychology and Psychiatry,
17(2):89–100, 1976.

[37] X. Xie et al. A Theoretical Analysis of the Risk Evaluation
Formulas for Spectrum-based Fault Localization. In TOSEM
’13, 22(4):31A, 2013.

[38] A. Zeller. Isolating Cause-Effect Chains with AskIgor. IWPC
’03, pp. 296–297, 2003.

173

	Introduction
	Related Work
	Data Set
	Method
	Experiments and Discussion
	Experimental Setup
	Evaluation Strategy
	Results for Original Test Suites
	Results for Extended Test Suites
	Effects of Programming Language
	Grading Support
	Threats to Validity

	Conclusions and Future Work
	Acknowledgements
	References

