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Abstract. Specification-based retrieval provides exact content-oriented access to component libraries but re-
quires too much deductive power. Specification-based browsing evades this bottleneck by moving any deduction
into an off-line indexing phase. In this paper, we show how match relations are used to build an appropriate index
and how formal concept analysis is used to build a suitable navigation structure. This structure has thesingle-focus
property(i.e., anysensible subset of a library is represented by a single node) and supportsattribute-based(via
explicit component properties) andobject-based(via implicit component similarities) navigation styles. It thus
combines the exact semantics of formal methods with the interactive navigation possibilities of informal meth-
ods. Experiments show that current theorem provers can solve enough of the emerging proof problems to make
browsing feasible. The navigation structure also indicates situations where additional abstractions are required to
build a better index and thus helps to understand and to re-engineer component libraries.
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1. Introduction

Large software libraries represent valuable assets but the larger they grow, the harder it
becomes to capitalize on them for reuse purposes. The two main problems are to keep the
overview over the library and to extract appropriate components. Solving both problems
requires better library organizations and better retrieval algorithms than a linear search
through a flat list of components.

Libraries are thus often structured by syntactic means, e.g., inheritance hierarchies. But
this is misleading because syntactic means need not express any semantic relation between
components. Information science offers semantic methods for library organization and
component retrieval (Maarek et al., 1991; Prieto-D´ıaz, 1991) but these methods are informal
because they rely only on the meaning conveyed by words.

As a more exact alternative, the application of formal specification methods to software
libraries has been investigated, starting with Katz et al. (1987), Perry (1989), and Rollins
and Wing (1991). The general idea is quite simple. Each component is associated with a
formal specification which captures its relevant behavior. Any desired relation between two
components (e.g., refinement, matching, or reusability) is expressed by a logical formula
composed from the associated specifications. An automated theorem prover is used to check
the validity of the formula. If (and only if ) the prover succeeds the relation is considered
to be established. The most ambitious of these approaches isspecification-based retrieval
(Jeng and Cheng, 1995; Moorman Zaremski and Wing, 1997; Penix et al., 1995; Mili et al.,
1997; Schumann and Fischer, 1997; Fischer et al., 1998). It allows arbitrary specifications



180 FISCHER

as search keys and retrieves all components from a library whose indexes satisfy a given
match relation with respect to the key.

However, in spite of all research efforts (cf. (Mili et al., 1998) for a detailed survey), it is
still far away from being practicable. Notwithstanding all progress in automated deduction,
the required theorem proving capabilities remain the main bottleneck. Here, we investigate
a more practical approach,specification-based browsingof component libraries. Its crucial
success factor is thatany difficult and time-consuming deduction can be moved into an
off-line indexing phase (“pre-processing”) and can thus be separated from navigation. The
user works only on the pre-processed, fixednavigation structurewhich reflects the semantic
properties of the components with respect to the index.

We show thatdifferentmatch relations must be used to build an appropriate index and
discuss how formal concept analysis can be used to build a concept lattice which serves
as navigation structure. Both techniques—specification-based library organization (Jeng
and Cheng, 1993; Mili et al., 1997) and concept-based browsing (Godin et al., 1989;
Lindig, 1995a, b)—have been proposed before, but their combination is new and unique to
this research. It thus combines the exact semantics of formal methods with the interactive
navigation of informal methods.

Experiments show that this approach is feasible. Apart from writing the specifications in
the first place, indexing can be fully automated. Current theorem provers can solve enough
of the emerging problems, even with modest computational resources. Calculation of the
concept lattice is fast enough and navigation works without delay.

Specification-based browsing is not only useful for reuse but also for analyzing, un-
derstanding, and re-engineering component libraries. Although browsing is defined via
specifications, they are not actually required for navigation. Instead, symbolic names can
be used which “hide” the actual formulas. An intelligent choice of such abstractions can thus
speed-up and improve understanding. The lattice even indicates situations where additional
abstractions are required to build a better index.

2. Browsing vs. retrieval

Library browsing and retrieval are closely related but following Mili et al. (1998) a clear
distinction can be made.Retrievalconsists of extracting components that satisfy apre-
defined matching criterion. Its main operation is thus the satisfaction check ormatching.
The criterion is usually given by an arbitrary user-defined search key orquerywhich is
matched against the candidates’ indices. Retrieval supports a top-down design approach:
the desired component is first designed (i.e., specified) and then looked up in the library.
Its main concern is thusprecision: components should not be retrieved unless they are
absolutely relevant.

Browsingconsists of inspecting candidates for possible extraction, but without a prede-
fined criterion. Its main operation is thusnavigationwhich determines in what order the
components are visited and whether they are visited at all. Browsing supports a bottom-up
design approach: the library is first inspected and then the system is designed (i.e., com-
posed) to take maximal advantage of the library. Its main concern is thusrecall: components
should not be rejected unless they are absolutely irrelevant.
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Browsing usually works stepwise and we denote the set of all components which are
visible in one step as thefocus. In contrast to retrieval, it requires no search key but works
on a pre-processed, usually hierarchical navigation structure which is computed from an
indexing scheme. Browsing can be implemented via retrieval if the indexing scheme is
considered as a set of queries; the canonical navigation structure is then obtained by ordering
the indexing scheme by inclusion on the retrieval results.

In the specification-based case, these differences prove to be crucial for the greater
practicability of browsing. The pre-processing of the navigation structure allows us to resort
to off-line proving and thus to evade the deductive bottleneck. Less obvious but equally
important, the browsing setup also benefits the proof problems in two ways. First, since all
involved specifications are written by alibrary administratorand not by arbitrary users, the
specifications can be kept much more uniform in style. This allows some obvious prover
tuning. Second, thedata mismatchproblem (i.e., the use of different data representations
in the query and component specifications, respectively) can be mitigated. Consider for
example a graph library where the graphs are represented as map from nodes to node sets.
The library administrator can take this into account and avoid a mismatch when formulating
the indexing scheme while a user of a retrieval system does not have this information and
might thus as well choose a representation as a list of node pairs. This, however, forces the
prover to show for each candidate that both data representations are equivalent. Moreover,
the library administrator can provide data reification functions (Jones, 1990) which can be
stored parallel to the library and used to resolve occurring mismatches.

A restricted class of mismatches can even be resolved automatically. Asignature mis-
matchis a simple structural data mismatch between two components, e.g., different number
or order of parameters. Signature matching techniques (Rittri, 1991; Moorman Zaremski
and Wing, 1995) resolve such simple mismatches using unification of the type terms, taking
the typing rules and semantic models of the applied programming language into account.
More advanced approaches as for example by DiCosmo (1995) even construct isomorphisms
which can subsequently be used as reification functions. As a side effect, signature match-
ing also identifies and renames the appropriate parameters of the different specifications.
For convenience, all example specifications in this paper already mirror this identification
and renaming step.

3. Refinement lattices reconsidered

Formal specifications can be used to order components and hence to organize libraries
hierarchically. These hierarchies can then be exploited to optimize retrieval or to compute a
navigation structure. The obvious question is how to order the components and the obvious
answer is byrefinementor plug-in-compatibility (Jones, 1990; Moorman Zaremski and
Wing, 1997; Fischer et al., 1998). Given two componentsG andSwith respective axiomatic
specifications(preG, postG) and(preS, postS), S is said to refineG (or to be more specific
thanG, SwG, or G to subsumeS), iff

(preG ⇒ preS)∧ (preG ∧ postS⇒ postG) (1)

holds.1 Intuitively, (1) expresses the fact that a more specific componentScan be plugged
into any place where the more general componentG is used or required because it has a



182 FISCHER

wider domain and produces more detailed results thanG. Using a relational view (i.e., speci-
fications are considered as sets of valid(input, output)-pairs), Mili et al. (1997) show that (1)
defines a partial order which induces a lattice-like structure on the set of all specifications.
This structure is generally known as therefinement latticealthough strictly speaking it is
no lattice.

Turning the refinement lattice into a navigation structure for library browsing exposes,
however, some unexpected problems. First of all, libraries do not offer enough structure,
i.e., the refinement hierarchies they induce are too shallow. While this is a good thing from
a design point of view—it simply says that the library contains only little redundancy—
it is a bad thing for browsing. It can be overcome by the introduction of meta-nodes or
abstractions. Such specifications do not represent real, existing components but just factor
out similarities between some of them. As an example, consider the specification of an
abstract element filter:2

filter some (l : list) r : list
pre l 6= [ ]
post ∃l1, l2 : list, i : item · l = l1y [i]y l2 ∧ r = l1y l2

filter some specifies only that a singleton element is removed from the list (hence it cannot
be empty) but not which one. It is thus via (1) refined by both componentstail andlead:

tail (l : list) r : list lead (l : list) r : list
pre l 6= [ ] pre l 6= [ ]
post ∃i : item · l = [i] y r post ∃i : item · l = r y [i]

However, a na¨ıve introduction of meta-nodes yields unexpected results. If we introduce
another meta-nodesegment

segment (l : list) r : list
pre true
post ∃l1, l2 : list · l = l1 y r y l2

to capture the property that both components return continuous sublists of their argument,
this does not work: neithertail nor lead refinesegment. The reason for this at first glance
counterintuitive behavior is thatsegment is specified as a total function (presegment = true)
but both tail and lead are partial. And while we can fix this particular flaw by setting
segment’s precondition also tol 6= [ ], this soon becomes increasingly infeasible. If the
library also contains components which work on sorted lists only, we have to integrate this
property into the precondition, too. In effect, if we want an abstraction which captures all
segment-like components we have to adjoin all occurring preconditions conjunctively. If,
however, two of them are contradictory the result becomes false andsegment subsumes the
entire library.

The solution to this dilemma is easy. While we can use refinement to index components
with abstractions, we additionally need a second relation to model the above situation.
Since we are only interested in the effect of the calculation (i.e., the postconditionpostG)
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we can droppreG. We wantpostG to hold on the appropriate domain only, hence

preS∧ postS⇒ postG (2)

which is also known as conditional compatibility (Fischer et al., 1998) or weak post match
(Moorman Zaremski and Wing, 1997) in deduction-based retrieval. We can then considerG
asderived attributeor feature(Penix et al., 1995) ofS, Sw f G because it holds whenever
the execution of the component associated withS was legal (preS holds) and terminated
(postS holds.) In our example,segment is a feature oftail andlead, as expected. It is easy
to verify that features are inherited along with the refinement relation, i.e., ifR refinesS
andG is a feature ofS, thenG is a feature ofR, too.

A similar problem arises when we want to consider preconditions only. We can use the
simple abstractiontotal

total ( )
pre true
post true

which does not even refer to the input- and output-parameters of the actual component to
subsume all total functions. But it is much harder to index partial functions properly. The
meta-node

requires non empty (l : list)
pre l 6= [ ]
post true

correctly subsumes all functions which work on non-empty lists only but it is not really
appropriate: it also subsumes all total functions and is thus not discriminative.

Hence, we need a third relation. Since we are now only interested in the properties of
the legal domains, we can drop the postconditions. But in contrast to refinement we want
the domain ofSnow to be more restricted, hence

preS⇒ preG (3)

Again, G is a derived attribute ofS—it is a requisite, S wr G—and using (3),requires
non empty now works as index. Requisites are also compatible with refinement but in
contrast to features theirabsenceis propagated. IfR refinesS andG is no requisite ofS,
thenG cannot be a requisite ofR.

Figure 1 shows the index for the examples in this paper. The components are represented
as rows, the attributes as columns; the page numbers refer to the respective specifications.
The symbols indicate which relations have been used to index the components with the
respective attributes. We also see that the example library is indeed shallow: eachcomponent
indexes only itself.

While we need all three relations to express all indexing information of interest,3 (1)–(3)
are not the only sensible relations we could use. Instead of indexing a componentS with
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Figure 1. Example index.

its requisites, we could also indexS with all requisites itdoes notrequire, i.e., with all its
valid border conditions. In terms of preconditions, this is formalized by

¬preG ⇒ preS (4)

and denoted bySwr̄ G: G is not a requisite forS, or Salso works onG. Hence, we have
of coursetail 6wr̄ requires non empty but for a function

p order list (l : list) r : list
pre partial order(l)
post partially ordered(l)∧ permutation(l,r)

which partially orders a list according to an underlying relation (provided that this relation
constitutes a partial order on the elements in the argument list), we havep order list wr̄

requires non empty as expected: (4) rewrites tol= [ ] ⇒ partial order(l) and empty lists
are always partially ordered. In principle, (4) is not necessary. We can achieve the same
effect using a modified version

works on empty (l : list)
pre l = [ ]
post true

of requires non empty and refinement:p order list w works on empty. However, this relies
on the fact thatpostworks on empty = true—otherwise, the postcondition part of (1) would not
be valid. More important, it also hides the fact thatrequires non empty andworks on empty
are complementary to each other. We will later show how this fact can be used to improve
browsing.
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We now use (1)–(3) to compute an appropriately modified version of the refinement
lattice but even this variant is not yet adequate for browsing. It still lacks thesingle-focus
property, i.e., it does not contain enough structure to represent the focus by a single node.
Consider for examplelead andtail. Apart from further refinements, they are the only two
components which have the featuresegment and are subsumed byfilter some at the same
time: byfilter some we have to remove an element, but bysegment we are not allowed to
split the list. Hence, there are only the two choices of removing the element either at the
beginning or at the end of the list. Yet there is no meta-node to represent this and a user
has to keep his focus on both distinguishing properties to capture the conceptual similarity
of the components.

The deeper reason for this is that even the modified refinement lattice has lattice-like
properties only on the set ofall possiblespecifications, not on arbitrary subsets or libraries.
True lattices, on the other hand, have the single-focus property by definition and we will
show how to transform the refinement lattice into a true lattice using formal concept analysis.

4. Concept lattices

4.1. Formal concept analysis

Formal concept analysis (Wille, 1982; Ganter and Wille, 1996; Davey and Priestley, 1990)
applies lattice-theoretic methods to investigate abstract relations between objects and their
attributes. A concept lattice is a structure with strong mathematical properties which reveals
hidden structural and hierarchical properties of the original relation. It can be computed
automatically from any given relation.

Definition 1. A formal contextis a triple(O,A,R) whereO andA are sets of objects
and attributes, respectively, andR ⊆ O ×A is an arbitrary relation.

Contexts can be imagined as cross tables where the rows are objects and the columns are
attributes. Hence, the index shown in figure 1 can also be considered as a formal context,
provided that the different relations (i.e.,w,wr andw f ) are merged.

Definition 2. Let (O,A,R) be a context,O ⊆ O and A ⊆ A. Thecommon attributes
of O are defined byα(O)

def= {a ∈ A | ∀o ∈ O : (o,a) ∈ R}, thecommon objectsof A by
ω(A)

def= {o ∈ O | ∀a ∈ A : (o,a) ∈ R}.

Objects from a concept share a set of common attributes and vice versa. Concepts are
pairs of objects and attributes which are synonymous and thus characterize each other.

Definition 3. Let C be a context.c = (O, A) is called aconceptof C iff α(O) = A and
ω(A) = O. πO(c)

def= O andπA(c)
def= A are calledc’s extentandintent, respectively. The

set of all concepts ofC is denoted byB(C).

Concepts can be imagined as maximal rectangles (modulo permutation of rows and
columns) in the context table, e.g., ({lead, tail}, {segment, requires non empty, filter some}).
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They are partially ordered by inclusion of extents (and intents) such that a concept’s extent
includes the extent of all of its subconcepts (and its intent includes the intent of all of its
superconcepts).

Definition 4. Let C be a context,c1 = (O1, A1), c2 = (O2, A2) ∈ B(C). c1 andc2 are
ordered by thesubconcept relation, c1 ≤ c2, iff O1 ⊆ O2. The structure ofB and≤ is
denoted byB(C).

The intent-part follows by duality. As an immediate consequence of the preceding defi-
nitions we get that the strict order corresponds to strict inclusion of extents and intents, i.e.,
c1 < c2 iff O1 ⊂ O2 andA1 ⊃ A2.

The following basic theorem of formal concept analysis states that the structure induced
by the concepts of a formal context and their ordering is always a complete lattice and that
greatest lower bound ormeetand least upper bound orjoin can also be expressed by the
common attributes and objects. (Cf. figure 2 for an example lattice.)

Theorem 5(Wille, 1982). LetC be a context. ThenB(C) is a complete lattice, theconcept
latticeof C. Its meet and join operation( for any set I⊂ B(C) of concepts) are given by

∧
i∈I

(Oi , Ai ) =
(⋂

i∈I

Oi , α

(
ω

(⋃
i∈I

Ai

)))
∨
i∈I
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(
ω

(
α

(⋃
i∈I

Oi

))
,
⋂
i∈I

Ai

)

The concept lattice is sometimes also referred to as theGalois latticebecauseα andω
form a Galois connection betweenO andA. Hence,α ◦ω andω ◦α are closure operators
onA andO, respectively; in Theorem 5 their application maintains the “maximal rectangle”
property of the resulting concepts. Consider for example the meet of the concepts(i ) =
({run, lead, tail}, {segment}) and(i i ) = ({lead, tail, copy first}, {requires non empty}) in
figure 2. The intersection of their extents is{lead, tail}, i.e., the objects common to both
concepts. The straightforward union of their intents, however, would be too small. Since
both lead and tail also have the attributefilter some in common, ({lead, tail}, {segment,
requires non empty}) is not a valid concept. This omission is repaired by the application
of the closure operator. Essentially, the meet and join operations thus only factor out the
common objects and attributes, respectively, of any given set of concepts.

Each attribute and object has a uniquely determined defining concept in the lattice which
allows a sparse labeling of the lattice. The defining concepts can be calculated directly from
the attribute or object, respectively, and need not be searched in the lattice.

Definition 6. Let B(O,A,R) be a concept lattice. Thedefining conceptof an attribute
a ∈ A (objecto ∈ O) is the greatest (smallest) conceptc such thata ∈ πA(c) (o ∈ πO(c))
holds. It is denoted byµ(a) (σ(o)).

Theorem 7(Davey and Priestley, 1990). For any concept lattice we haveµ(a)= (ω({a}),
α(ω({a}))) andσ(o) = (ω(α({o})), α({o})).
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For example, for the defining concept of the attributefilter segment we first calculate
ω({filter segment})={lead, tail} and then obtainµ(filter segment) = (iii ) by application
of the closure operator (cf. figure 2).

4.2. From refinement lattices to concept lattices

Lindig (1995a) has shown that keyword-indexed components can be considered as a formal
context with the components as objects and the (informal) keywords as attributes. We now
lift this idea to formal specifications.

Definition 8. Let L = (L , R, F, A) be a formally specified library with components
L, requisitesR, featuresF , and abstractionsA. Its induced contextis defined byCL =
(L , L ∪ R∪ F ∪ A, wr ∪w f ∪w).

Again, we consider the components as objects, and, of course, the keywords are replaced
by (the names of ) the specifications4 but the context table is slightly more complicated.
To prevent different components from “collapsing” into a single concept if the index is
insufficient, the component specificationsL double as objects and attributes. The context’s
relation is obtained by merging the different relations; the individual relations, however,
remain unchanged.

We then calculate the concept lattice from this context. Figure 2 shows the result for
the example context. Each bullet represents a concept. The labels above the bullet are the

Figure 2. Example concept lattice.
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attributes defined by this concept. E.g., the concept (iii ) defines the attributefilter some.
However, since attributes in this representation are inherited downwards, its intentπA is the
set{segment, requires non empty, filter some}. None of the attributes are equivalent in the
sense that they index the same set of components. Hence, each concept introduces only one
attribute. The labels below the bullet denote the objects defined by this concept, e.g.,lead
is defined by the concept (iv). Objects are inherited upwards such thatlead is also in the
extent of all of its superconcepts. Since none of the actual components in the test library
subsumes an other, each concept introduces at most one object and is atomic if it introduces
an object at all.

In general, the concept lattice is not an “extension” of the refinement lattice: for two
attributesa1,a2 with µ(a1)≤µ(a2) it is possible to be completely unrelated, i.e., neither of
the relations (1)–(3) holds. E.g.,µ(filter some) ≤ µ(segment) butsegment is not a feature
of the abstractionfilter some. Moreover, the actual position of the defining concept of an
attribute depends on the components actually contained in the library. If for examplerun
is removed from the library,total is “moved downwards” and merged withreverse because
reversethen remains as the only component in the library bearing this attribute. However,
for two reasons, the concept lattice is an adequate representation of theindexing scheme.
First, subconcepts preserve refinement of the original components. Second, a superconcept
can be distinguished from any subconcept by an attribute which isnotvalid for at least one
component in the extent of the superconcept but is valid forall components in the extent of
the subconcept. Formally:

Proposition 9. LetB(CL) be the concept lattice of the contextCL induced by a libraryL
and c1, c2∈ CL with c1< c2. Then exists n∈πO(c2) such that either
1. ∃m ∈ πO(c1) ·m 6= n ∧mw n, or
2. ∃a ∈ R · a ∈ πA(c1) ∧ a /∈ πA(c2) ∧ n 6wr a ∨
∃a ∈ F · a ∈ πA(c1) ∧ a /∈ πA(c2) ∧ n 6w f a ∨
∃a ∈ A · a ∈ πA(c1) ∧ a /∈ πA(c2) ∧ n 6w a.

This proposition, which follows from Definitions 3 and 4, makes the concept lattice
already suitable for specification-based navigation: when we move from a superconcept
to a subconcept, we either follow an original refinement relation on components, or we
discard at least one and thus due to the lattice structure all components from the extent
that do not share the propertya. For example, by moving from(i ) to (iii ), we discard the
componentrun from the context because it does not share the the propertiesfilter some or
requires non empty which are both in the intent of the concept(iii ).

However, we can impose even more structure if we duplicateR and usewr̄ in addition
to define the induced context. Then, Proposition 9 holds appropriately and, additionally,
we get.

Proposition 10. LetB(CL) be the concept lattice of the contextCL induced by a libraryL.
Then, for any two complementary requisites a, ā ∈ R we have∀c ∈ L · c wr a⇔ c 6wr̄ ā
and consequentlyµ(a)∧µ(ā) = ⊥ andµ(a) ∨ µ(ā) = >.
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Hence, the defining concepts of two complementary requisites are complementary to
each other in the lattice. Moreover, their extents divide the entire library into two parti-
tions which is not the case for two arbitrary complementary elements of the lattice. In the
example, it is easy to show thatcwworks on empty⇔ cwr̄ requires non empty; hence, we
can defineworks on empty = requires non empty. From this, we know that the respec-
tive defining concepts(v) and(ii) are complementary lattice elements and, moreover, that
πO(v)∪πO(ii)= L andπO(v)∩πO(ii) = ∅ hold. This partioning property does not hold
for the other complementary elements, e.g.,(v) and(iii ).

5. Navigation in concept lattices

Lindig (1995a) has also shown how concept lattices can be used as navigation structure
for interactive and incremental retrieval (i.e., browsing in our terminology). The focus is
represented by (the extent of ) a concept. Narrowing the focus is a downward movement in
the lattice and is done in two steps:

1. The user selects an additional attribute. As a consequence of the lattice structure, the
system can support this selection by calculating all attributes which actually narrow the
focus but do not sweep it entirely. It can thus prevent navigation into dead ends (i.e., an
empty focus.)

2. The system calculates the new focus in the lattice as the meet (which exists due to
Theorem 5) of the actual focus and the defining concept of the selected attribute (obtained
by Theorem 7.)

Similarly, the focus can also be widened again by de-selecting an attribute. The system
then calculates the new focus using the join operation.

In the specification-based case, navigation works quite similarly. We use the derived
properties (i.e.,R, F , andA) as navigation attributes. Since the property sets are pairwise
disjoint, we can even split the set of navigation attributes into three dimensions. These
dimensions are not independent of each other but can be selected independently because all
interdependencies are contained in the concepts of the lattice. If we use the modified context
(i.e., duplicateR and use (1)–(4)), we get a fourth dimension. This is still independent but
due to Proposition 10, independent selection fromR and R̄ is not beneficial. Instead, we
can toggle between them, in addition to selection/de-selection.

Initially, all attributes are de-selected and the focus concept is>: the focus is the entire
library. Now, for an example, assume that we selectsegment. This reduces the focus
to πO(i ) = {run, lead, tail}. Further refinement is possible by attributes whose defining
concepts have a strictly smaller but non-bottom meet with the current focus concept. Thus,
for (i ), any navigation attribute is possible. If we selectrequires non empty, the new focus
concept is(i )∧ (ii) = (iii ), i.e., the choice ofrequires non empty eliminatesrun from the
focus. Moreover, it leavesfront segment as the only possible further refinement.

This navigation style isattribute-based: the focus is essentially a function of the selected
attributes. Due to their dual nature, concept-lattices also allowobject-based navigation.
Here, the user selects or de-selects a single component and the system calculates the new
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focus similarly. However, selecting an additional component widens the focus and is thus
realized by the join operation.

While attribute-based navigation depends on the explicit and learned choice of functional
properties and thus is more suited for reuse purposes, object-based navigation exposes
implicit conceptual similarities of components: the intent of the focus concept contains all
properties that are common to all selected components; its extent also contains all other
components that share these properties, even if they have not been selected explicitly.
Hence, it is more appropriate for library understanding and re-engineering.

6. Practical aspects

We made a series of experiments to support the claim that browsing is more practical in the
specification-based case than retrieval. For these, we used a variant of the list processing
library which we also used in our retrieval experiments (Fischer et al., 1998). It comprises
5 requisites, 31 features, 44 abstractions, and 39 components. All example specifications
in this paper are taken from that library.

6.1. Calculation of the refinement lattice

Even if the calculation of the refinement lattice is done in advance and is thus not time-
critical in principle, it is not obvious that it is feasible at all. Two questions are of main
concern:

1. How high is the computational effort in practice?
2. How difficult are the proof problems in practice? Are current theorem provers powerful

enough?

The answer to both questions depends on the number and structure of the arising proof
problems.

At first glance, it seems that we have to check each requisite, feature, abstraction, and
component against each other to calculate the modified refinement lattice. However, in
practice this can be optimized due to three observations. First, we do not need to compare
the components and abstractions pairwise but can use recursive comparison as in (Jeng and
Cheng, 1993) because refinement is transitive. Then, we do not need to check requisites
and features against each other but only against the components and abstractions. Finally,
since the former are compatible with refinement, we can “sink them in” once we have the
refinement lattice on the other nodes ready. In the worst case, the number of problems
is thus |R ∪ F ∪ A ∪ L| · |A ∪ L|. Nevertheless, still too many problems arise to be
handled manually. As in other software engineering applications, a fully automated system
is required which feeds and controls the prover. However, the sheer numbers become a
problem only because most of the proof problems (approximately 85% in our experiments)
are logically invalid and thus not provable at all. But theorem provers do usually not check
for unprovability and are thus stopped by time-out only. Hence, dedicated disproving filters
or decision procedures for (at least some) of the involved theories are required.
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Nevertheless, the computation is practically feasible. Using techniques from (Fischer
et al., 1998) we generated the full set of more than 14.000 proof tasks (i.e., “ready-to-
run” versions of the problems which also contain appropriate axioms and prover control
information) and filtered out approximately 9.100 as unprovable. This took approximately
7 hours on a Sun UltraSparc 170. For simplicity, we did not use the optimizations explained
above. This would have reduced the original number of tasks to about 11.000.

We then used the automated theorem prover SPASS (Weidenbach et al., 1996) on a
network of 16 PCs to check the surviving tasks. With a time-out of 60 seconds, SPASS was
able to solve 1.250 tasks. For the remaining problems, we re-generated a different version
of the tasks, using a different axiomatization of the background theory and different prover
control parameters. After a third iteration, SPASS had solved a total of 1.460 or almost
80% of the original 1836 valid problems. This required a total of approximately 210 hours
runtime, or equivalently, a weekend of real time.

6.2. Calculation of the concept lattice

Concept lattices can grow exponentially in the number of attributes and objects. In practice,
however, the worst case rarely occurs and a non-exponential behavior is usual. Godin et al.
(1993) and Lindig (1995a) give more experimental evidence for this. Moreover, algorithms
to construct the concept lattice incrementally are known (Godin and Missaoui, 1994 ; Godin
et al., 1995).

For our example library, the concept lattices derived from the full (i.e., manually com-
puted) and the approximated (i.e., automatically computed using SPASS) contexts contained
153 and 180 concepts, respectively. Their computation took approximately a second and is
thus negligible compared to the time required for proving.

The granularity of the concept lattice is adequate for browsing purposes. In the optimal
case, the lattice contains 153− 39− 1= 113 inner nodes (i.e., essentially the non-atomic
elements) which represent all meaningful—as defined by the indexing attributes—of the
possible 239 subsets of library components. 33 of the 113 inner nodes are combinations of
the original attributes which are discovered by concept analysis. These can be used to build
a better index (cf. Section 6.5).

In the experiment, the approximated concept lattice derived from the automatically com-
puted context contains more elements. The additional elements are required to cover the
sparser and more rugged context which contains more but smaller maximal rectangles.
However, even though the automatically computed index is always a subcontext of the full
index, due to the soundness but incompleteness of the applied theorem prover(s), the derived
concept lattices are arbitrary with respect to each other. In particular, no obvious algebraic
relation (e.g., subdirect image) between the two lattices holds.

In practice, the difference between the lattices plays no major role. As with specification-
based retrieval, the incompleteness of the applied prover translates into a loss of recall, i.e.,
a concept might not contain all components that actually share its attributes. Due to its
soundness, however, all components in the focus share all displayed attributes.
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Figure 3. Browser interface: Initial state.

6.3. Navigation

During our experiments it became quickly obvious that neither the modified refinement
lattice nor the concept lattice are suitable for presentation because they are too big and
complex. Lindig (1995a) makes the same observation and describes a simple text-based
interface which works on the attribute and object names only. The navigation process is very
fast: the system responds without noticeable delay, even for much larger concept lattices
than we are currently investigating.

This system can easily be adapted to our case; moreover, it can be modified to support
object-based navigation also. Figures 3 and 4 show two snapshots of a conceived simple
interface which does not distinguish between the different attribute types.

The system displays selectable and selected attributes, respectively, to the left, and the
indexed and rejected components, respectively, to the right. Each of the four lists isactivein
the sense that the user can control the navigation from it: clicking on a selectable attribute or
indexed component narrows the focus, clicking on a selected attribute or rejected component
widens the focus. For any action, the system calculates the new focus as described in
Section 5 and updates the display appropriately.

A closer inspection of the two snapshots seems to reveal that the interface “drops”
attributes during browsing while it always displays all components in the library. This,
however, is a feature and not a bug. In order to prevent an attribute-based navigation into a
dead end, the system offers only the attributes in a sensible neighborhood of the current focus
(i.e., attributes having a non-bottom meet with the focus) for further selection. Non-selected
and non-selectable attributes (i.e.,total andworks on empty) can be ignored because they
can in no way contribute to navigation. For object-based navigation, the situation is different
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Figure 4. Browser interface: After selectingsegment andrequires non empty.

because it has no equivalent notion of dead ends—the entire library (i.e., the extent of the
top concept) is a suitable selection. Hence, allcomponentsare selectable and must thus be
displayed always.

The actual definitions of the attributes as well as the original source codes of the com-
ponents can be displayed in separate windows; these can be requested by a further single
mouse mouse click on the respective attribute or component name.

6.4. Scale-up

Scaling specification-based browsing to large libraries is a serious challenge: a library with
10 requisites, 100 features and 1000 abstractions and components gives in the worst case
already rise to more than 1.1 million proof tasks.

To handle such many tasks, it is necessary to exploit the structure of thesubsumption
lattice as soon as it emerges. E.g., iffront segment w segment has already been established
then lead w f front segment should be checked beforelead w f segment. If the former
holds, the latter holds automatically, due to transitivity. However, since bothfront segment
and segment are features, establishingfront segment w segment initially increases the
number of tasks compared to the estimate in Section 6.1; the effectiveness of this optimiza-
tion thus depends on the particular library.

Similarly, invalid proof tasks can be saved, if theabsenceof features (requisites, abstrac-
tions) is exploited. If, e.g.,p order list 6w f segment can be shown,p order list cannot satisfy
any of the features more specific thansegment, and the corresponding proof tasks can be
dismissed. However, due to the undecidability of first-order logics, it is not legal to con-
clude the absence of the featuresegment from the failure to provep order list w f segment.
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Instead, in practice an appropriately modified version

preS∧ postS⇒¬postG

of the proof task must be checked which unfortunately again increases the total number of
tasks.

Computationally more complicated components, e.g., graph or numerical algorithms,
obviously induce more complicated proof tasks. Here the key to scaling is to find an abstract
domain representation that factors out most of the complexity, supported by using the right
abstractions and features. Then the conceptual difference between the specificationsSand
G that accounts for most of the difficulties can be kept small and the prover has a reasonable
chance to succeed.

The above techniques should be sufficient to tackle even large, diverse libraries of func-
tional components as for example the Standard Template Library (Stepanov and Lee, 1994).
Other component types, e.g., objects or entire modules, fit in principle also into this frame-
work but require an appropriate redefinition of the different match conditions. However,
components whose effects cannot be expressed naturally in a pre/post-condition style, e.g.,
graphical routines, cannot be handled and there is no obvious way to extend specification-
based browsing appropriately.

6.5. Knowledge acquisition

All specification-based library access methods critically depend on adequate and correct
component specifications. These can either be supplied and verified by the component
designer during the forward engineering phase, using standard program verification tech-
niques, or in a reverse engineering phase reconstructed from existing libraries, using pro-
gram understanding techniques as for example described by Gannod et al. (1998).

These component specifications can then be used to construct an initial indexing seed.
Initial abstractions can be derived semi-automatically from the original specifications by
logical weakening; Gannod et al. (1998) also describe a syntax-directed method for this.
Initial requisites and features can be derived automatically by splitting of the original
specifications; any resulting indiscriminate attributes are merged into a single concept
by construction of the lattice. Once such an initial seed is available, specification-based
browsing can already support further knowledge acquisition.

Consider for example a seed comprising the same component specifications as in figure 2
where

run (l : list) r : list
pre true
post ∃l1 : list · l = r y l1∧ ordered(r)
∧ ∀i : item, l2 : list · l = r y [i] y l2 ⇒¬ordered(r y [i])

computes the longest ordered initial subsegment (i.e., run) of a list, but only the initial
propertiesworks on empty, requires non empty, total, andsegment. From this seed, an
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Figure 5. Concept lattice for initial seed.

initial concept lattice is calculated. The structure of this lattice, as shown in figure 5, then
helps to improve indexing.

Typically, two situations prompt improvements:

– unlabeled concepts
– unexpected extents

A concept remains unlabelled when a set of components (i.e., its extent) is characterized
only by a combination of more general attributes but not by a single specific attribute. In
figure 5, the concept(i ) remains unlabelled, i.e., defines no attribute. Its extentleadandtail
is thus characterized bysegment andrequires non empty, but both properties are defined
by more general concepts and thus index larger subsets of the library than onlyleadand
tail. To capture the similarity of both components, the user can introduce the missing
specific attribute, e.g.,filter some. In general, the least specific attribute indexing the same
subset of the library (i.e., having the same extent) results from the separate conjunction of
the pre- and postconditions of all attributes in the intent of the concept; this attribute is a
feature (requisite) only if all involved attributes are features (requisites) and an abstraction
otherwise.

The introduction of missing attributes to relabel previously unlabelled concepts provides
more explicit information about the concepts but does not change the structure of the concept
lattice. In principle, it does thus not improve the accuracy of the actual browsing process.
In practice, however, the lattice may well be re-arranged, due to the incompleteness of the
prover. A theoretical improvement can be guaranteed if the introduced attributes apply to
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some set of components previously not occurring as extent of a concept and the prover is
complete. Such attributes require a genuine understanding of the involved specifications;
they can thus not be derived automatically as the attributes for unlabelled concepts but object-
based navigation can at least help to identify appropriate candidate sets: if the common
superconcept of a set of similar components unexpectedly also includes some “intuitively”
different components in its extent, then this intuitive difference can be formalized and used
as additional attribute. Consider for example again the initial seed lattice of figure 5. Object-
based navigation confirms that bothtail andlead already have a common superconcept, that
has the attributesrequires non empty andsegment, and, as expected, no other objects. But
it also reveals that there is no concept which has the extent oflead andrun only—selecting
both also causestail to appear. To disambiguatetail, the user must introduce the feature

front segment (l : list) r : list
pre true
post ∃l1 : list · l = r y l1

which factors out the common property oflead andrun.

7. Related work

Most work on applying specification-based techniques to software libraries examines re-
trieval only. Relevant for browsing are the investigation of different match relations
(Moorman Zaremski and Wing, 1997) and their effect on software reuse (Fischer and
Snelting, 1997; Fischer et al., 1998). Penix et al. (1995) introduce features as indexes to
speed up retrieval. The deductive synthesis systemAMPHION (Stickel et al., 1994) com-
poses programs from retrieved matching components but does not support user-guided
library exploration.

Jeng and Cheng (1993) build a two-tiered hierarchy from the library. The lower level
is based on a modified definition of subsumption which works modulo arbitrary user-
defined congruences on literals and is thus unsound in general. The upper level uses a
similarity metric derived from the normal forms of the specifications. This hierarchy is
then visualized to support browsing. Mili et al. (1997) only use subsumption to build a
hierarchical representation of a library and exploit that only to optimize retrieval.

In programming language research, (Liskov and Wing, 1994) and (Leavens and Weihl,
1995) apply formal methods to the specification and verification of object-oriented class
libraries. There, behavioral subtyping corresponds to subsumption.

Concept lattices or Galois lattices have been developed as a means to structure arbitrary
observations. They have already been applied to various problems in software engineering,
e.g., inference of configuration structures (Krone and Snelting, 1994), identification of
modules (Lindig and Snelting, 1996; Siff and Reps, 1997) and objects (Sahraoui et al.,
1997) in legacy programs, or reorganization of inheritance hierarchies (Snelting and Tip,
1998). Snelting (1998) gives a comprehensive overview of applications in program analysis.
The application of concept lattices to software component libraries, however, seems to be
obvious only in retrospect, and there is only little related work. Godin et al. (1989) also
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uses concept lattices for navigation but presents the entire lattice to the user and offers only
a subset of all possible attributes for selection. As far as navigation is concerned, the work
by Lindig (1995a, b) is thus most closely related to our own work. But there, object-based
navigation, which is instrumental in knowledge acquisition, is not supported.

8. Conclusions

Only specification-based methods can provide exact content-oriented access to software
components. Retrieval, however, still requires more deductive power than current theorem
provers and hardware can offer. Browsing can evade this bottleneck by moving any time-
consuming deduction into an off-line indexing phase.

In this paper, we have shown that different match relations must be used to index a
library properly and how this index is turned into a navigation structure using formal
concept analysis. Experiments show that it is feasible to calculate an approximation of the
index which is accurate enough for browsing purposes, using current theorem provers and
hardware (e.g., SPASS on a small network of PCs.) The computational effort, however, is
still high.

The concept lattice reveals the implicit structure of a library as it follows from the index.
It can even indicate situations where a finer index is required. Due to its dual nature, the
lattice allows two complementary navigation styles which are based either on attributes or on
objects. Due to the lattice nature, both navigation styles automatically have the single-focus
property and refrain the user from reaching dead ends.

In our approach, theorem provers are used to derive formally defined properties of
components. For navigation, these formal definitions are still available but not actually
required—symbolic property names suffice. However, since informally defined and de-
rived properties (e.g., reliability) are usually also represented by symbolic names (e.g.,
trustworthy), concept-based browsing allows a smooth integration of formal and informal
attributes and thus refutes a conjecture of Boudriga et al. (1992) that formal and informal
methods are incompatible. Moreover, informal attributes can even be used to distinguish
functional equivalent variants of a component from each other.

Future work essentially concerns scaling-up to larger components and larger libraries.
The most important aspect here is the tractability of the emerging proof tasks, especially
when data mismatches need to be resolved via complicated reification functions. We also
expect the fraction of non-theorems to grow further with increasing library size; dedicated
disproving techniques are thus another area of interest. Since the remaining tasks are homo-
geneous in style, learning theorem provers (Denzinger and Schulz, 1996; Denzinger et al.,
1997) can be expected to perform well on them. Finally, to handle really large libraries the
simple interface described in Section 6.3 probably needs to be adapted, e.g., by integrating
some of the hierarchical structure provided by the lattice.
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Appendix

This short appendix contains the remaining specifications used in the text.

copy first (l : list) r : list
pre l 6= [ ]
post r = [hd l] y l

reverse (l : list) r : list
pre true
post len l = len r ∧∀ i : nat · i ≤ len l⇒ l(i) = r(1 + len l − i)

Notes

1. For the sake of brevity, we omit the quantification over the respective argument and return variables and
their identification via type compatibility predicates. For argumentsEx and result variablesEy, the full form is
∀ExG, ExS, EyG, EyS ·T(ExG · EyG, ExS · EyS)⇒ ((preG(ExG)⇒ preS(ExS))∧ (preG(ExG)∧postS(ExS · EyS)⇒ postG(ExG ·
EyG))).

2. We use VDM-style specifications for our examples. Here,y means concatenation of lists, [ ] the empty
list, [i ] a singleton list with itemi .

3. For example, we cannot split the abstractiontotal into a requisite and a feature which have both the valuetrue

because both of them index the entire library.
4. Without loss of generality we can assume thatL , R, F , andA are pairwise disjoint.
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