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Abstract

Data analysis is an important scientific task which is required whenever information needs to
be extracted from raw data. Statistical approaches to data analysis, which use methods from
probability theory and numerical analysis, are well-founded but difficult to implement: the
development of a statistical data analysis program for any given application is time-consuming
and requires substantial knowledge and experience in several areas. In this paper, we describe
AutoBayes, a program synthesis system for the generation of data analysis programs from
statistical models. A statistical model specifies the properties for each problem variable (i.e.
observation or parameter) and its dependencies in the form of a probability distribution. It is a
fully declarative problem description, similar in spirit to a set of differential equations. From
such a model, AutoBayes generates optimized and fully commented C/C++ code which
can be linked dynamically into the Matlab and Octave environments. Code is produced
by a schema-guided deductive synthesis process. A schema consists of a code template
and applicability constraints which are checked against the model during synthesis using
theorem proving technology. AutoBayes augments schema-guided synthesis by symbolic-
algebraic computation and can thus derive closed form solutions for many problems. It is
well-suited for tasks like estimating best-fitting model parameters for the given data. Here, we
describe AutoBayes’s system architecture, in particular the schema-guided synthesis kernel.
Its capabilities are illustrated by a number of advanced textbook examples and benchmarks.

1 Introduction

Data analysis denotes the transformation of raw data (i.e. pure numbers) into a

more abstract form, e.g. summarizing a set of measurements by their mean value and

standard deviation. For most data analysis tasks – especially tasks involving large

data sets – computer support is necessary. Consequently, scientists of all disciplines

spend much time writing and changing data analysis programs, ranging from simple,

straightforward (e.g. linear regression) to truly complex (e.g. image analysis systems

to detect new planets). However, the manual development of a customized data

analysis program for any given application problem is not only time-consuming but

also error-prone. It requires a rare combination of profound expertise in several

areas – computational statistics, numerical analysis, software engineering, and of

course the application domain itself. We believe that the application of program

generation techniques can help to counter these difficulties. In this paper, we describe

AutoBayes, a program generator for scientific data analysis programs.
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Scientific data analysis is usually based on statistical methods. The expected

properties of the data are described in the form of a statistical model: for each

problem variable (i.e. observation or parameter), properties and dependencies are

specified via probability distributions. In many applications, an initial statistical

model of the data is readily available, but the parameters of the model (e.g. mean

values and variances) are unknown. Then, a typical data analysis task is to fit

observed data against the model, i.e. to find the best possible or most likely values

of the unknown parameters under the constraints specified by the model. Here we

concentrate on generating programs for such parameter learning tasks.

AutoBayes starts from a very high-level description of the data analysis problem

in the form of such a statistical model and generates an imperative program

through a schema-based deductive synthesis process. A schema is a code template with

associated semantic constraints which define and restrict the template’s applicability.

The schemas are applied recursively to the entire problem or to subproblems.

AutoBayes augments this schema-based approach by symbolic-algebraic calculation

and simplification to derive closed form solutions for the entire problem (or

subproblems) whenever possible. This is a major advantage over other statistical

data analysis systems which have to use slower and possibly less precise numerical

approximations even in cases where closed form solutions exist. The backend of

AutoBayes is designed to support generation of code for different programming

languages and different target systems. Our current version generates C/C++ code

which can be linked dynamically into the Octave (Murphy, 1997) or Matlab (Moler

et al., 1987) environments; other target systems can be added easily.

We believe that data analysis is a generally very promising application area for

program generation. On the one hand, the domain itself is well-suited. Probability

theory provides an established, domain-specific notation for the statistical models

which can form the basis of a specification language. Statistical models are fully

declarative problem descriptions in this notation; they specify properties and

dependencies of the problem variables but do not prescribe any specific algorithms.

Moreover, probability theory and numerical analysis provide a wide variety of

solution methods and potentially applicable algorithms. On the other hand, the

potential pay-off of program generation is huge. Manual development of data analy-

sis programs is a skill-intensive, time-consuming, and error-prone task. Algorithm

libraries are only of limited help as the algorithms need to be customized, optimized,

and appropriately packaged before they can be integrated. Most importantly, the

development process for data analysis programs is typically highly iterative: the

underlying model is usually changed many times before it is suitable for the

application; often the need for these changes becomes apparent only after an initial

solution has been implemented and tested on application data. However, since even

small changes in the model can lead to entirely different solutions, e.g. requiring

a different approximation algorithm, developers are often reluctant to change (and

thus improve) the model and settle for sub-optimal solutions. For example, the

data analysis routines of the TOMS ozone spectrometer were over-simplified to

ignore very low ozone readings, thus delaying the detection of the ozone hole over

the Antarctic by several years (Centre for Atmospheric Science, 1999). Automated
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Fig. 1. Bayesian network for the mixture of Gaussians example.

program synthesis can help to solve such problems. It encapsulates a considerable

part of the required expertise and allows the developers to program in models,

thereby increasing their productivity. By automatically generating code from these

models, many programming errors are prevented and turn-around times are reduced.

This paper is an extended version of Fischer et al. (2000); design rationales and

some preliminary results of the AutoBayes project have also been reported in

Buntine et al. (1999). Section 2 contains a very short introduction into probabilistic

and graphical reasoning; we refer to the cited literature for more information.

Section 3 explains the mixture of Gaussians model in more detail; that model is used

as the running example throughout this paper. We then proceed in sections 4 and 5

with a detailed description of the system architecture and the code synthesis process.

Section 6 illustrates in detail the derivation of code for the running example; it also

contains an overview of a number of other example problems solved by AutoBayes.

We compare our approach to related work in section 7 before we conclude and

discuss future work in section 8.

2 Probabilistic and graphical reasoning

Graphical models such as Bayesian networks are a common representation method

in machine learning and statistical data analysis (Pearl, 1988; Buntine, 1994; Frey,

1998; Jordan, 1999). They combine probability theory and graph theory. From a

computational point of view, their appeal is that they can replace some expensive

probabilistic reasoning by faster graphical reasoning.

AutoBayes uses a version of hybrid Bayesian networks to represent the specified

statistical model internally; figure 1 shows a network for the mixture of Gaussians

example which we use throughout this paper. A Bayesian network is a directed,

acyclic graph whose nodes represent random variables and whose edges define

probabilistic dependencies between the random variables. In a hybrid Bayesian

network nodes can represent discrete as well as continuous random variables;

these are usually represented by boxes and circles, respectively. In the example,
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c is the single discrete random variable while µ, σ, φ, and x are all continuous

random variables. Shaded nodes represent known variables, i.e. input data; here,

only x is known. Distribution information for the random variables is attached to the

respective nodes; here, x is distributed as a Gaussian. Lightly shaded boxes enclosing

a set of nodes represent vectors of independent, co-indexed random variables. In the

example, µ and σ are both vectors of size Nclasses which always occur indexed in

the same way. As a consequence, a box around a single node represents the familiar

concept of a vector of independent and identically distributed variables.

The edges in a Bayesian network can sometimes be interpreted as causal influence

links between the respective variables. For example, the edge from µ to x represents

the influence the (hypothetical) choice of µ has on the observed data x. More

precisely, however, the edges encode a conditional independence relationship: each

node is independent of its ancestors given its parents. In the example, x is thus

independent of φ given c, µ, and σ. Consequently, the conditional probability P (x |
c, φ, µ, σ) is equal to – and can thus be simplified to – P (x |c, µ, σ). The network thus
superimposes a structure on the global joint probability distribution which can be

exploited to optimize probabilistic reasoning. Hence, the example defines the joint

probability P (x, c, φ, σ, µ) in terms of simpler probabilities:

P (x, c, φ, σ, µ) = P (φ) · P (c |φ) · P (µ) · P (σ) · P (x |c, µ, σ)

Probabilistic reasoning is currently subject to a – sometimes heated – debate

between two different schools of thought, the so-called “frequentist” and “Bayesian”

approaches. The basic difference between the two approaches is their view of

probability. In the frequentist approach, a probability is viewed as a relative frequency

which is the outcome of a long series of repeated identical experiments. In a strictly

frequentist sense no inference can thus be made based on single events. In the

Bayesian approach, a probability is viewed as a degree of belief that an event

occurs. Prior beliefs and knowledge of the state of the analyzed system are specified

by prior distributions or priors for short. New data is then considered evidence which

is combined with the priors, using Bayes rule:

P (h |d) = P (d |h) · P (h)
P (d)

The posterior probability P (h |d) that the hypothesis h holds under the new data

d is thus expressed in terms of the likelihood P (d | h) and the prior P (h); the

probability of the data, P (d), is a normalizing constant. Despite these fundamental

differences in interpretation, the techniques applied in both approaches are quite

similar. A frequentist analysis can usually be simulated in the Bayesian approach

by choosing an appropriate non-informative prior, or, intuitively, by leaving the

model parameters uninterpreted. AutoBayes can thus be used as a tool in both

approaches; the preference for a particular approach is reflected in the formulation

of the statistical model only.

Graphical methods can be applied to two different kinds of data analysis problems.

In the first case, parameter learning, both data and model are given and the

parameters of the model (in our example µ, σ, and φ) have to be determined. In the
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Fig. 2. (a) Artificial input data for the mixture of Gaussians example: 2400 data points in the
range [290.2, 292.2]. Each point belongs to one of three classes which are Gaussian distributed
with µ1 = 290.7, σ1 = 0.15, µ2 = 291.13, σ2 = 0.18, and µ3 = 291.55, σ3 = 0.21. The relative
frequencies φ for the points belonging to the classes are 61%, 33%, and 6%, respectively. (b)
Histogram (spectrum) of the artificial test data from (a) and Gaussian distributions which
are obtained as the result of the synthesized data analysis program.

second case, structure learning, only the data is given, and both the model and its

parameters have to be determined. This involves a usually heuristic search in the

space of all models, e.g. using a hill climbing method. Within this search, parameter

learning usually re-appears as a subtask. Currently, AutoBayes is set up to handle

parameter learning only – it requires the (parameterized) model specification as

input. However, it can in principle also be employed in the inner loop of a structure

learning algorithm.

Parameter learning is basically an optimization problem. In some cases, closed

form solutions for the optimal parameter values exist and the equations derived

from the network structure and the probability density functions can be solved

symbolically. In general, however, iterative methods must be applied to solve the

optimization problem. Typically, learning and classification algorithms as for ex-

ample k-Means or Expectation Maximization (EM) are used. For some subproblems,

classical numerical optimization algorithms like Newton, Gauss–Newton, or other

variants are applicable.

3 Example: mixture of Gaussians

Throughout this paper, we will illustrate how AutoBayes works by means of a

simple but realistic classification example. Figure 2(a) shows the raw input data, a

vector of real values. We know that each data point falls into one of three classes;

each class i is Gaussian distributed with mean µi and standard deviation σi. The data

analysis problem is to infer from the given data the relative class frequencies φi (i.e.

how many points belong to each class) and the unknown distribution parameters µi
and σi for each class.

This example and its underlying model are deliberately rather simple but the

model can already be used in several applications. Berkowitz (1979) describes an

application in physics where gas atoms (or molecules) are excited with a specific

energy (e.g. light from a laser). They can then absorb this energy by excitation or
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1 model mog as ’Mixture of Gaussians’;
2
3 const int n_points as ’number of data points’;
4 with 0 < n_points;
5 const int n_classes := 3 as ’number of classes’;
6 with 0 < n_classes;
7 with n_classes << n_points;
8
9 double phi(0..n_classes - 1) as ’class probabilites’;
10 with 1 = sum(I := 0..n_classes - 1, phi(I));
11 double mu(0..n_classes - 1), sigma(0..n_classes - 1);
12
13 int c(0..n_points) as ’class assignment vector’;
14 c ~ discrete(vector(I := 0..n_classes - 1, phi(I)));
15
16 data double x(0..n_points - 1) as ’data points (known)’;
17 x(I) ~ gauss(mu(c(I)), sigma(c(I)));
18
19 max pr(x | {phi, mu, sigma}) wrt {phi, mu, sigma};

Fig. 3. AutoBayes-specification for the mixture of Gaussians example. Line numbers have
been added for reference in the text; keywords are underlined.

electron emission. This basic mechanism generates spectral lines like those observed

in the light of stars. Single atoms usually have sharp, well-defined spectral lines

but the more complex molecules (e.g. CH4 or NH3) can have several peaks of

binding energy, depending on their internal configuration. Thus, they can absorb

(or emit) energy at different levels. Figure 2(b) shows a spectrum of the energy

of emitted photoelectrons which is directly related to the excess energy of photons

over the photoionization potential of CH4 molecules (for details see Berkowitz (1979,

Figure 67)). Since CH4 has three distinct internal configurations, the spectrum shows

three distinct peaks.

In a simple statistical model, each of the peaks is assumed to be independently

Gaussian distributed and the percentage of molecules in a specific configuration is

assumed to be known. When we measure the binding energies for a large number

of CH4 molecules (with unknown internal configurations), we obtain a data set

similar to the one shown in figure 2(a). We can then use a program implementing

the statistical model to classify the data points into the three classes and to obtain

the parameters. Figure 2(b) shows the histogram of the data, superimposed with

Gaussian curves using the parameter values estimated by the program generated by

AutoBayes.

Figure 3 shows the detailed statistical model for this problem in AutoBayes’s

specification language. The model (called “Mixture of Gaussians” – line 1) assumes

that each of the n points data points (line 5) belongs to one of n classes classes;

here n classes has been set to three (line 3), but n points is left unspecified.

Lines 16 and 17 declare the input vector and distributions for the data points.1

1 Vector indices start with 0 in a C/C++ style.
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Each point x(I) is drawn from a Gaussian distribution c(I) with mean mu(c(I))

and standard deviation sigma(c(I)). The unknown distribution parameters can

be different for each class; hence, we declare these values as vectors (line 11). The

unknown assignment of the points to the classes (i.e. distributions) is represented by

the hidden (i.e. not observable) variable c corresponding to the internal configuration

of the molecule. The class probabilities or relative frequencies are given by the also

unknown vector phi (lines 9–14). Since each point belongs to exactly one class,

the sum of the probabilities must be equal to one (line 10). Additional constraints

(lines 4, 6, 7) express further basic assumptions of the model. Finally, we specify the

goal inference task (line 19), maximizing the conditional probability pr(x|{phi,

mu, sigma}) with respect to the parameters of interest, phi, mu, and sigma. This

means we are interested in obtaining the values for the model parameters which best

fit the given data.

This classification problem is a typical task in (unsupervised) machine learning for

which a variety of algorithms and approaches exist (see, for example (Mitchell, 1997)

and (Bishop, 1995)). AutoBayes currently implements two such algorithms which

are known in the literature as k-Means and Expectation Maximization or simply EM

algorithm (Dempster et al., 1977; McLachlan & Krishnan, 1997), respectively. Both

algorithms are applicable to a variety of mixture models (McLachlan & Peel, 2000)

which underpin many classification tasks similar to our running example.

The EM-algorithm is an iterative numerical algorithm which applies to maximiza-

tion tasks of the form max P (U|V ) wrt V , given a set W of hidden variables. In our

example, U = {x}, V = {phi, mu, sigma}, and W = {c}. The algorithm basically

consists of three steps; the first step performs initializations. In our implementation,

the initialization just “guesses” values for the hidden variables by performing

random assignments. These assignments are made to a matrix q where q(i,j)

is the probability that point i belongs to class j. Then an iteration is performed

over the remaining two steps, the expectation or E-step, and the maximization or M-

step. This iteration is performed until the changes of the involved variables become

sufficiently small. During the iteration, E-step and M-step change the position of

the distribution parameters.

• M-step: given the current distribution of W (in our example, the values of the

matrix q) and the data U, new values for the distribution parameters V are

estimated by maximizing P ({W,U} | V ) with respect to V . In our example,

this maximization results in new estimates of mu and sigma for each of the

classes.

• E-step: given the current estimated values for the distribution parameters V

and the data U, the probability distribution of W is calculated. In the discrete

case, as in our example, this distribution can be obtained relatively easily by

summing up over the domain of W . Thus, in our case, we update the matrix

q to reflect the new estimates of the parameters.

The individual steps of this generic algorithm need to be adapted for the spe-

cific model. For example, the maximization step requires information about the
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x(I) ~ gauss(mu(c(I)),sigma(c(I)));

raw data fitted data
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max pr(x | {phi, mu, sigma} wrt {phi, mu, sigma};

const int n_p;

const int n_c := 3;

for i=0;i<n_p;i++ {

  for j=0;j<n_c;j++ {

    sigma[j] = ...

    mu[j]    = ...

  }
}

internal representation

intermediate code

Fig. 4. System architecture of AutoBayes.

distribution of all variables and involves substantial symbolic calculations (e.g. as

discussed in section 6 and shown in the for-loop near the bottom of figure 7).

4 System architecture

4.1 Overview

AutoBayes’s overall system architecture is shown in figure 4. In a first processing step,

the given specification is parsed and converted into an internal form and the Bayesian

network is constructed. This step can also generate an external representation for

visualization purposes, using the dot graph drawing tool (Koutsofios & North,

1996). The synthesis kernel, which will be described in detail in section 5, then

analyzes the network, tries to solve the given optimization task, and instantiates

appropriate algorithm schemas which are given in a schema library. The output of

the synthesis kernel is a program in a procedural intermediate language. AutoBayes’s
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backend (see section 4.2) takes this intermediate code, optimizes it and generates

code for the chosen target system. Currently, we target Octave (Murphy, 1997) and

Matlab (Moler et al., 1987), but only small parts of the code generator are system-

specific; new target systems can thus be added easily. The synthesis kernel also

produces detailed documentation along with the code (see section 4.3). Furthermore,

AutoBayes can synthesize code which generates artificial data for the model, e.g.

for visualization and testing purposes (see section 4.4).

All parts of the AutoBayes system rely heavily on a symbolic subsystem and some

auxiliary system modules (e.g. pretty-printer, set representations, I/O functions).

For symbolic mathematical calculations, we implemented a small but reasonably

efficient rewriting engine in Prolog. Graph handling, simplification of mathematical

expressions, and an equation solver are implemented on top of it. The system

architecture is designed in such a way that most of its parts can be re-used in different

domains. In particular, backend and symbolic subsystem are entirely independent

of the data analysis domain. The entire system has been implemented in SWI-

Prolog (Wielemaker, 1998) and comprises about 31,000 lines of documented Prolog

code. Since AutoBayes requires a combination of sound symbolic mathematical

calculation, rewriting, and general purpose operations (e.g. output to multiple files,

handling of strings, interface to the operating system), Prolog is a reasonable choice

as the underlying implementation language. SWI-Prolog proved to be a very stable

and efficient development platform with reasonable debugging facilities.

4.2 Generating code

The synthesis kernel of AutoBayes generates code in an intermediate language

before the code for the actual target system is produced. This intermediate language

is a simple procedural language with several domain-specific extensions as for

example convergence loops, vector normalization, simultaneous vector assignment,

and assertions and annotations. The intermediate language is still close enough to

the current target languages (i.e. C and C++) such that the translation down into

the chosen target language remains simple. The domain-specific constructs allow

target-specific optimizations and transformations. For example, the sum-construct of

the intermediate language for calculating the sum of array elements can be converted

into a usual for-loop, an iterator construct for sparse matrices, or a direct call to a

summation-operator (e.g. when generating interpreted Matlab code).

The actual target-specific portion of the code-generator is rather straightforward

and can be adapted to different target languages and environments. With the help

of rewrite rules all constructs of the intermediate language are transformed into

constructs of the target language and printed using a generic pretty-printer. The

backend also generates boilerplate code to interface the algorithm with the target

system, and to check for correct types of arguments. The synthesized code is also

optimized. However, standard optimizations (e.g. evaluation of constant expressions)

are left for the subsequent compilation phase – there is no need to perform the same

optimization steps as any modern compiler.

The current AutoBayes-version generates C++-code for Octave (Murphy, 1997),
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C-code for Matlab (Moler et al., 1987), and stand-alone C-code. Future work will

include code-generators for CASE-tools for embedded systems, e.g. ControlShell

(ControlShell, 1999).

4.3 Generating documentation

Certification procedures for safety-critical applications (e.g. in aircraft or spacecraft)

often mandate manual code inspection. This inspection requires that the code is

readable and well documented. Even for programs not subject to certification,

understandability is a strong requirement as manual modifications are often neces-

sary, e.g. for performance tuning or system integration. However, existing program

generators often produce code that is hard to read and understand. To overcome this

problem, AutoBayes generates explanations along with the programs which show

the “synthesis decisions”: which algorithm schema has been used, how the schema

parameters have been instantiated, etc. Model assumptions and proof obligations

that could not be discharged during synthesis are laid out clearly. This makes the

synthesis process more transparent and provides traceability from the generated

program back to the model specification.

AutoBayes generates extensively commented code: approximately one third of

the output lines are automatically generated comments (see figure 7 for an example).

This is achieved by embedding documentation templates into the code templates.

Future versions of AutoBayes will not only generate fully documented code; we

aim to produce a detailed standardized design-document for the generated code.

4.4 Generating artificial test data

Visualization and simulation plays an important role in the development of data

analysis programs. An AutoBayes model specification contains enough information

to synthesize code which generates artificial data according to the specification. For

example, the data set in figure 2(a) has been generated that way. Generating artificial

test data is very helpful in understanding the model and the generated code. If the ar-

tificial data does not match real data sets (or the scientist’s expectations), the specified

model might not reflect the reality properly. Artificial data sets can also be used to

assess and evaluate the performance of the synthesized code before real data becomes

available. This feature is of particular interest in cases where the domain theory

allows instantiation of different algorithms for the same specification. For example,

if AutoBayes synthesizes different variants for initialization of the hidden variable,

their coarse relative performance can be assessed using the generated test data.

5 The synthesis kernel

5.1 Network construction

The synthesis kernel takes the internal representation of the model specification

and builds an initial Bayesian network. Each variable declaration in the model

corresponds directly to a network node. Each distribution declaration of the form
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x ∼ D(Θ) (for a distribution D) induces edges from the distribution’s parameters

Θ to the node corresponding to the random variable x; these edges reflect the

dependency of the (random) values of x on the values of the parameters Θ. Building

the network is relatively straightforward and requires no sophisticated dataflow

analysis because the model is purely declarative. However, Θ needs to be flattened,

i.e. nested random variables need to be lifted and fresh index variables need to be

introduced in their place in order to represent the dependencies properly. Hence, the

example declaration x(I) ~ gauss(mu(c(I)), sigma(c(I))) induces not only the

two obvious edges but three (see figure 1): mu(J) −→ x(I), sigma(J) −→ x(I),

and c(I) −→ x(I). Note that x and c are still co-indexed but that each x(I) now

depends on all mu(J) and sigma(J), reflecting the unknown values of their original

indices c(I). A compact representation of the indexed nodes and their dependencies

is achieved by using Prolog-variables to represent index variables.

5.2 Schema-guided synthesis

Synthesis proceeds from this initial network and the original probabilistic inference

task by exhaustive application of schemas. A schema can be understood as an

“intelligent macro”: it comprises a pattern, a parameterized code template, and a set of

preconditions or applicability constraints. The pattern and code template are similar

to the left- and right-hand side of a traditional macro definition; they comprise the

syntactic part of the schema. Schema-guided synthesis, however, is not just macro

expansion. Different schemas can match the same pattern, possibly in different

ways. During synthesis, these schemas are tried exhaustively in a left-to-right, depth-

first manner. Whenever a dead end is encountered (i.e. no schema is applicable),

AutoBayes backtracks. This control regime allows AutoBayes to generate code as

a composition of different schemas, thus “re-inventing” data-analysis algorithms

from simple building-blocks. Furthermore, backtracking in AutoBayes results in the

synthesis of program variants if multiple schemas are applicable and thus yields the

capability to generate multiple solutions for the same problem.

The constraints of a schema refine its semantics: a schema can be understood as an

axiom which asserts that the program (i.e. the appropriately instantiated template)

solves the probabilistic inference task specified by the pattern if the constraints are

satisfied; however, checking the constraints may instantiate the template parameters

further. The search process mentioned above is thus a proof search; the proof is

constructive in the sense that it actually generates a program (the witness) and does

not just assert its existence.

Network decomposition schemas

AutoBayes uses four different kinds of schemas. Network decomposition schemas are

encodings of independence theorems for Bayesian networks (see for example (Pearl,

1988)). They describe how a probabilistic inference task over a given network can be

decomposed equivalently into simpler tasks over simpler networks and, hence, how

a complex data analysis program can be composed from simpler components. The
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applicability constraints for these schemas can be checked by pure graph reasoning.

Consider for example the following decomposition theorem:

Let U,V be sets of vertices in a Bayesian network such that U ∩ V = ∅. Then
V ∩ descendants(U) = ∅ and parents(U) ⊆ V implies

P (U |V ) = P (U |parents(U))

=
∏

u∈UP (u |parents(u))

This theorem allows us to simplify the conditional probability P (U | V ) into
P (U |parents(U)). This means that we can safely ignore all assumptions not reflected

in the network by incoming edges. Then P (U |parents(U)) can further be decomposed

into a finite product of atomic probabilities (i.e. each variable depends only on the

parameters of its associated distribution), provided that the applicability constraints

hold over the network; here, descendants(U) is the set of all nodes (directly or

indirectly) reachable from nodes in U excluding U. Within AutoBayes, this theorem

is implemented by the following network decomposition schema for maximizing the

probability P (U |V ) with respect to a set of variables X:

schema(max P (U |V ) wrt X, Template):-

U ∩ V = ∅
∧ V ∩ descendants(U) = ∅
∧ parents(U) ⊆ V ∧ . . .

→ Template = begin

〈∀u ∈ U : max P (u |parents(u)) wrt (X ∩ parents(u)〉
end

The schemas are written as Prolog-rules. During the search for applicable schemas,

pattern-matching with the rule head (first line) is attempted. When the match

succeeds, the schema variables (U,V , and X) are bound, and the body of the

rule (separated by the :- from the head) is processed. Here, the body is a

logical implication. The implication’s antecedents directly encode the applicability

constraints as AutoBayes’s symbolic reasoning engine contains an operationalization

of the graph predicates. The schema’s code template consists of a code fragment

bracketed by begin and end. Its body is a sequence of simpler maximization tasks

which are solved by recursive calls to the synthesizer. Their ordering is irrelevant

because the u ∈ U are independent of each other; this is a consequence of the

applicability constraints.

In our ongoing example, this decomposition schema is applied when the inter-

mediate goal max pr({c, x}|{phi, mu, sigma}) wrt {phi, mu, sigma} is pro-

cessed. With U = {c, x}, V = {phi, mu, sigma}, and X = {phi, mu, sigma},

it is easy to see that all requirements for the schema are satisfied (see figure 1 for

the dependencies among the variables). Thus, we obtain the following two (simpler)

maximization goals: max pr(c|phi) wrt {phi} and max pr(x|{c, mu, sigma})

wrt {mu, sigma}.

A number of similar decomposition theorems have been developed in probab-

ility theory; AutoBayes currently includes three different schemas based on such
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theorems, with the one shown above being by far the simplest. For details on the

other schemas, see (Buntine et al., 1999).

Formula decomposition schemas

Formula decomposition schemas are similar to the network decomposition schemas

above but they work on complex formulae instead of a single probability. The

following schemas are typical members of this class:

• Index decomposition applies to an inference task for a formula which contains

multiple occurrences of probabilities involving vectors and “unrolls” this task

into a loop over the simpler inference task for a single vector element. In our

example, one subtask is max pr(x | {c, mu, sigma}) wrt {mu, sigma}.

Since the vector x is independently and identically distributed (i.e. has the

same distribution for each data point), maximization can be done separately

for each index I. Thus, we obtain the code fragment for I=0..n points-1

: 〈max pr(x(I) | {c(I), mu, sigma}) wrt {mu, sigma}〉.
• Split/back-substitute splits a mixed discrete-continuous maximization problem

into two separate discrete and continuous subproblems, respectively, and

substitutes a symbolic solution of the continuous subproblem back into the

discrete subproblem.

• Iterate-range solves a discrete maximization problem by iteration over the

finite range of the variables.

Most of the applicability constraints for these decomposition schemas can still be

checked by graph reasoning but some checks involving the formula structure require

substantial symbolic reasoning.

Statistical algorithm schemas

Proper statistical algorithm schemas are also graph-based but they are not simple

consequences of the independence theorems. These schemas involve larger modi-

fications of the graph, e.g. the introduction of new nodes with known values, and

storing the results of intermediate calculations. These schemas thus enable the

further application of the decomposition schemas; however, they are much more

intricate and less theorem-like. Hence, their correctness is proven independently,

or they are just empirically validated during construction of the domain theory.

Statistical algorithm schemas also have much larger and usually iterative code

templates associated with them and they can require substantial symbolic reasoning

during instantiation. AutoBayes currently implements two such algorithms, namely

k-Means and the EM algorithm.

As already described in section 3, the EM-algorithm schema applies to maxi-

mization tasks of the form max P (U|V ) wrt V , given a set W of hidden variables.
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Within AutoBayes, EM is encoded as the following schema:

schema(max P (U |V ) wrt V , Template):-

. . .

〈determine W 〉
. . .

→ Template = begin

Initialize: guess values for W

while-converging(V )

M-step: max P ({W,U} |V ) wrt V

E-step: calculate P (W | {U,V })
end

end

Each of the three steps (initialization,M-, and E-step) causes recursive calls to the

synthesizer. The maximization task in the M-step triggers further decompositions

by the assumption that the hidden variables W are now known.

Numerical algorithm schemas

The graph-based reasoning continues until all conditional probabilities P (U|V )
have been converted into atomic form, i.e. parents(U) = V . This means that

all random variables occurring in the parameters of U’s (joint) distribution are

known. Such probabilities can thus be replaced by the appropriately instantiated

probability density functions. AutoBayes’s domain theory contains rewrite rules

for the most common probability density functions. In our example, pr(x(I) |

{mu(J), sigma(J)}) is rewritten into

(
√
2π sigma(J))−1 exp

(

(x(I)− mu(J))2

−2 sigma(J)2

)

,

thus instantiating the usual formula for Gaussian distributions. Density functions

for problem-specific distributions can also be defined as part of an AutoBayes

specification.

With this elimination step the original probabilistic inference task becomes a

pure optimization problem which can be solved either symbolically or numerically.

AutoBayes first attempts to find closed form symbolic solutions, which are much

more time-efficient during runtime than iterative numeric approximation algorithms.

In order to solve the optimization problem, AutoBayes symbolically differentiates

the formula with respect to the optimization variables, sets the result to zero

and tries to symbolically solve this system of simultaneous equations. Symbolic

differentiation is implemented as a term rewrite system; however, some variable

dependency checks require conditional rewrite rules. For example, it has to be

checked whether the dependent variable of the derivative occurs in a term or not.

Equation solving currently employs only a variant of Gaussian variable elimination;

whenever a variable can be isolated modulo the symbolic model constants, the

remaining equation is solved by a polynomial solver.
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If no symbolic solution can be found, AutoBayes applies iterative numerical

optimization algorithm schemas, e.g. as described in (Press et al., 1992) and (Gill

et al., 1981), and found in most general-purpose numeric libraries. The current

version of AutoBayes incorporates the Newton-Raphson and the Nelder-Mead

simplex algorithms. However, program synthesis can substantially improve the black-

box style reuse typical for libraries. It can instantiate actual parameters symbolically

and partially evaluate the inlined expressions. This provides further optimization

opportunities, often in the inner loops of the algorithms. Moreover, symbolic and

numeric methods complement each other well. While for many more complex models

no complete closed form solutions exist, AutoBayes can usually solve for some

variables symbolically. These variables can then be split away from the optimization

problems such that the iterative numeric methods need to be applied only to the

smaller remaining problems.

Assumptions and proof obligations

During symbolic calculation in the synthesis kernel, a number of soundness as-

sumptions may accumulate. For example, the expression x/x can be simplified to 1

only if x 6= 0 can be shown. Other assumptions stem from the specification or from

the applied schemas. Assumptions that cannot be discharged during synthesis are

brought to the user’s attention. Assumptions which can be checked efficiently during

runtime are converted into assertions which are then inserted into the synthesized

code (e.g. x 6= 0 or n classes ≪ n points). This approach ensures soundness and

reliability of the generated code.

6 Examples and results

6.1 Mixture of Gaussians

In this section, we discuss synthesis and execution of the example described in

section 3. The specification shown in figure 3 already comprises the entire input to

AutoBayes. After parsing the specification, AutoBayes generates the dependency

graph (cf. figure 1) and tries to decompose the original goal

max pr(x | {phi, mu, sigma}) wrt {phi, mu, sigma}

into independent parts. In this case, however, the graph is not directly decomposable,

and the system tries to match and to instantiate one of the statistical algorithm

schemas. Here, the EM-schema is applicable and the system identifies c as the single

hidden variable, i.e. W = {c}. For representation of the distribution of the discrete
hidden variable c, a matrix q is generated, where q(I, J) is the probability that the

ith point falls into the jth class. This array is then initialized using random values.

The E-step essentially yields a discrete distribution

c(I) ~ discrete(vector(J := 0..n classes - 1, q(I, J)).

For the M-step, AutoBayes is recursively called with the new goal

max pr({c, x} | {phi, mu, sigma}) wrt {phi, mu, sigma}.
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Now, the network decomposition schema described in section 5.2 applies with U =

{c, x}, V = {phi, mu, sigma}, and X = {phi, mu, sigma} which spawns two

new subgoals. The first subgoal

max pr(c | phi) wrt {phi}

can be unrolled over the independent and identically distributed vector c, using an

index decomposition schema, resulting in

max

n classes−1
∏

I:=0

pr(c(I) | phi) wrt {phi}.

This yields a constrained maximization problem in the vector phi (cf. the constraint

with 1 = sum(I := 0..n classes - 1, phi(I)) in line 10 of the specification)

which is solved by an application of the Lagrange multiplier schema. This in turn

results in two subproblems for a single instance phi(J) and for the multiplier which

are both solved symbolically. The detailed formulas can be found in figure 7 near

Decomposition I.

The second subgoal from the decomposition schema,

max pr(x | {c, mu, sigma}) wrt {mu, sigma},

can be unrolled in a similar fashion but since c and x are co-indexed, unrolling

proceeds over both (also independent and identically distributed) vectors in parallel:

max

n points−1
∏

I:=0

pr(x(I) | {c(I), mu, sigma}) wrt {mu, sigma}.

The probability pr(x(I) | {c(I), mu, sigma}) is atomic because parents(x(I))

= {c(I), mu, sigma}. It can thus be replaced by the appropriately instantiated

Gaussian probability density function:

max

n points−1
∏

I:=0

(
√
2π sigma(c(I)))−1 exp

(

(x(I)− mu(c(I)))2

−2 sigma(c(I))2
)

wrt {mu, sigma}.

The next step is to “wrap” a log around the formula. This step does not change

the maximizing values because log is a strictly monotone function, but it makes the

maximization problem easier. We now have

max

n points−1
∑

I:=0

(

(x(I)− mu(c(I)))2

−2 sigma(c(I))2 − log
√
2π− log sigma(c(I))

)

wrt {mu, sigma}.

Now, the hidden variable c is marginalized using the distribution calculated in the

E-step. This is accomplished here by summing over the domain of c, i.e. all possible

classes, resulting in:

max

n points−1
∑

I:=0

n classes−1
∑

J:=0

q(I, J)

(

(x(I)− mu(J))2

−2 sigma(J)2 − log
√
2π − log sigma(J)

)

wrt {mu, sigma}.
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Fig. 5. (a) Bayesian network for the mixture of Gaussians example, automatically generated
by AutoBayes from the textual specification; (b) convergence behavior: differences between
old and new parameters (log-scale) over iteration step. Only the first 1000 iteration cycles are
shown.

octave:2> mog
usage: [vector mu, vector phi, vector sigma] = mog(vector x)
octave:3> x = [ ... ]; % x contains data to be analyzed
octave:4> [mu,phi,sigma] = mog(x) % call the synthesized code
mu =

291.12
291.28
290.69

...
Fig. 6. Octave sample session using code (function “mog”) generated by AutoBayes.

This numerical optimization problem for the whole vectors mu and sigma is

then simplified by another application of the index decomposition schema into

a subproblem for two single instances mu(J) and sigma(J); the fact that both

vectors can be unrolled in parallel is again a consequence of the graph structure.

In a last step, Gaussian elimination is used to solve this subproblem symbolically,

yielding an expression to first calculate mu(J) and then sigma(J):

mu(J) =

n points−1
∑

I:=0

(1/q(I,J))

n points−1
∑

K:=0

x(K) q(K,J),

sigma(J) =

n points−1
∑

I:=0

(1/
√

q(I,J))

n points−1
∑

K:=0

√

q(K,J) (x(K)-mu(K))2.

For the entire example, AutoBayes synthesizes a C++ file consisting of 389 lines,

including comments and separation lines. A portion of this code is shown in figure 7.

The code is then compiled into a dynamically linkable function for Octave. Thus,

when the function mog (cf. line 1 of the specification) is called within the Octave

environment, the compiled C++ code is invoked automatically. As shown in a

sample run in figure 6, AutoBayes also synthesizes code to show the required

input- and output parameters (“usage”). The entire synthesis process of AutoBayes,

including compilation of the generated C++ code takes about 25 secs. on a 400Mhz

Sun Ultra 60. For further details, see problem M1 in table 1.
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//--------------------------------------------------------
// OCTAVE dynamically linkable procedure
// Problem: mog - Mixture of Gaussians
//--------------------------------------------------------
#include "autobayes.h"
#include "mog_hlp.h"

DEFUN_DLD (mog,input_args,output_args, MOG_HLP_TXT) {
if (input_args.length () != 1 || output_args != 3 ){

octave_stdout << "usage: [vector mu,vector phi,vector sigma] \
= mog(vector x)\n\n";

return retval; }
...
// Check constraints on inputs
ab_assert(0 < n_classes);
ab_assert(0 < n_points);
ab_assert( 10 * n_classes < n_points );

...
// Solve hidden-variable model via EM;
// Initialization: randomize the hidden variable c
for( pv19 = 0;pv19 <= n_points - 1;pv19++ )
c(pv19) = uniform_int_rnd(n_classes - 1 - 0);

...
// EM-loop
do {

...
// Decomposition I;
// the problem to optimize the conditional probability
// pr([c, x] | [phi, mu, sigma]) w.r.t. the variables phi, mu, and sigma
// can under the given dependencies by Bayes rule be decomposed into
// independent subproblems.

// The conditional probability pr([c] | [phi]) is under the given
// dependencies by Bayes rule equivalent to
//
// prod([idx(pv21, 0, n_points - 1)], pr([c(pv21)] | [phi]))
//
// The probability occurring here is atomic and can be replaced by the
// respective probability density function.

// The expression
//
// sum([idx(pv20, 0, n_classes - 1)], log(phi(pv20)) *
// sum([idx(pv21, 0, n_points - 1)], q1(pv21, pv20)))
//
// is optimized w.r.t. the variable phi under the constraint
//
// 0 == sum([idx(pv24, 0, n_classes - 1)], phi(pv24)) - 1
//
// using the Lagrange-multiplier l1.
l1 = n_points;
for( pv23 = 0;pv23 <= n_classes - 1;pv23++ ){

pv75 = 0;
for( pv25 = 0;pv25 <= n_points - 1;pv25++ )
pv75 += q1(pv25, pv23);

phi(pv23) = pv75 / l1;
}

... <continued in next figure>

Fig. 7. For caption see facing page.

We have tested the synthesized code with artificial test data which has been

generated by the test data generator synthesized by AutoBayes from the same

model. The example data set consists of 2400 points divided into 3 classes (cf.

figure 2). From these inputs, the algorithm searches for the values of mu, sigma, and

phi for each class. The convergence, i.e. the normalized change of the parameters to
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...
// The conditional probability pr([x] | [c, mu, sigma]) is under the
// given dependencies by Bayes rule equivalent to
//
// prod([idx(pv34, 0, n_points - 1)],
// pr([x(pv34)] | [c(pv34), mu, sigma]))
//
// The probability occuring here is atomic and can be replaced by the
// respective probability density function.
for( pv45 = 0;pv45 <= n_classes - 1;pv45++ ){

pv76 = 0;
for( pv50 = 0;pv50 <= n_points - 1;pv50++ )
pv76 += q1(pv50, pv45);

if ( 0 == pv76 ){ ab_error( division_by_zero ); }
else {

pv77 = 0;
for( pv52 = 0;pv52 <= n_points - 1;pv52++ )
pv77 += x(pv52) * q1(pv52, pv45);

mu(pv45) = pv77 / pv76;
}

if ( 0 == pv76 ){ ab_error( division_by_zero ); }
else {

pv78 = 0;
for( pv54 = 0;pv54 <= n_points - 1;pv54++ )
pv78 += (-mu(pv45) + x(pv54)) * (-mu(pv45) + x(pv54)) *

q1(pv54, pv45);
sigma(pv45) = pv78 / pv76;

}
}

...
// E-step
for( pv19 = 0;pv19 <= n_points - 1;pv19++ )
for( pv20 = 0;pv20 <= n_classes - 1;pv20++ ){

pv79 = 0;
for( pv68 = 0;pv68 <= n_classes - 1;pv68++ ){

pv81 = exp(-0.5 * (-mu(pv68) + x(pv19)) *
(-mu(pv68) + x(pv19)) /
(sigma(pv68) * sigma(pv68))) * phi(pv68) /

(2 * M_PI * sigma(pv68));
pv80(pv68) = pv81;
pv79 = pv79 + pv81;

}
for( pv68 = 0;pv68 <= n_classes - 1;pv68++ )
pv80(pv68) = pv80(pv68) / pv79;

q1(pv19, pv20) = pv80(pv20);
}

...
// calculate difference between new and old values
for( pv72 = 0;pv72 <= n_classes - 1;pv72++ )
pv82 += abs(-muold(pv72) + mu(pv72)) /

(abs(mu(pv72)) + abs(muold(pv72)));
...

pv71 = pv82 + pv83 + pv84;
...

while(!( pv71 < tolerance ));
...
retval.resize(3);
retval(0) = mu;
retval(1) = phi;
retval(2) = sigma;

return retval;
}

Fig. 7. (Cont.) C++-code for the Mixture of Gaussians example (excerpts).



502 B. Fischer and J. Schumann

Table 1. List of examples

Description cfs Lines of code Tsynth[s]+
# (priors) spec C++ Tcompile[s]

G1 µ ∼ gauss(µ0, τ
1/2
0 ), σ2 Y/Y 12 99 1.5 + 7.1

G2 µ, σ
2 ∼ Γ−1(δ0/2 + 1, σ

1/2
0 δ0/2) Y/Y 13 99 2.0 + 8.8

G3 µ ∼ gauss(µ0, (σ
2/κ0)

1/2), Y/Y 17 126 8.9 + 7.7

σ2 ∼ Γ−1(δ0/2 + 1, σ
1/2
0 δ0/2)

G4 µ ∼ gauss(µ0, τ0), N/N 17 47814.6 + 20.0

σ2 ∼ Γ−1(δ0/2 + 1, σ
1/2
0 δ0/2)

M11D Gaussian mixture N/N 16 38911.7 + 12.4
M22D Gaussian mixture N/N 22 53619.6 + 19.7

(x, y uncorrelated)
M31D Gaussian mixture N/N 24 51918.1 + 16.7

(multi-dimensional classes)
M4 exponential mixture N/N 15 321 6.4 + 10.0

(simple failure analysis)
M5disjoint mixture N/N 21 42519.5 + 11.9
M61D mixture w/priors on σ N/N 20 40115.4 + 15.0
M71D mixture w/priors on µ N/N 24 42418.2 + 16.5
SDstep detection N/N 14 120678.0 + 49.4
ABAbalone classifier N/N 58 131063.5 + 139.1

be optimized during each iteration cycle, is shown in figure 5. This algorithm does

not necessarily converge monotonically. It can reach some local minimum, from

which it has to move away by increasing the error again. This behavior is typical for

many iterative parameter estimation processes. In this case, the final result required

1163 iteration steps, taking approximately 48 secs.2 AutoBayes can automatically

instrument the generated code to produce these runtime figures for debugging and

testing purposes if this is requested via a command line option.

6.2 Other examples

We have also applied the AutoBayes system to a number of different textbook and

benchmark examples. The results of these experiments are shown in table 1. For each

problem, a short description of the task or the used priors is given. cfs indicates

whether a closed form solution exists and, if so, whether it has been found by

AutoBayes. The next two columns give the size of the specification and the respective

number of lines of generated Octave/C++ code, including the automatically

generated comments. Finally, the synthesis time Tsynth (i.e. AutoBayes’s runtime) as

well as the compilation time Tcompile for the GNU g++ compiler (optimization level

-O2) are given. All times are in seconds and have been obtained on a Sun Ultra 60

(400 Mhz, 256MB) using the Unix time command.

2 These figures can change from run to run, since the algorithm starts with a random initial class
assignment for each data point.
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The examples G1 to G4 describe different estimation problems for Gaussian

distributions. Given a sample of n data points and various prior information (e.g.

the variance of the distribution and an estimate of the mean value), the task

is to estimate the remaining parameters of the distribution. For most of these

textbook examples closed form solutions exist (Gelman et al., 1995) and are found

by AutoBayes, which demonstrates the capabilities of its symbolic system. The

examples G3 and G4 also demonstrate how small changes in the specification can

lead to dramatically different programs. G3 uses the so-called conjugate prior for µ

and can still be solved in closed form. In G4, however, the slightly more general semi-

conjugate prior is used (i.e. the variance of the expected mean is generalized from

the form (σ2/κ0)
1/2 to a simple variable τ0) which renders the problem unsolvable

in closed form and, hence, requires the application of an iterative approximation

method, in this case, a Nelder-Mead simplex algorithm.

We have also been able to synthesize code for a large number of mixture problems.

M1 is the example problem used throughout this paper. Variations of the Mixture

of Gaussians problem for uncorrelated two-dimensional observations (M2) and for

hidden variables composed from multiple independent dimensions (M3) as well

as most of the problems given in a textbook on mixture problems (Everitt &

Hand, 1981) have been tried out. All mixture problems are solved by different

instantiations of the EM-schema; however, the different distributions give rise to

different maximization problems in the M-step. An efficient implementation requires

the symbolic solution of the emerging maximization problems. AutoBayes’ symbolic

system is already powerful enough to provide such solutions for the distributions

from the exponential family, including the binomial, exponential (M4), Gaussian,

and Poisson distributions.

AutoBayes can easily be extended to handle more complicated mixture models.

For example, we have added a higher-order mixture-operator to handle non-

parametric mixtures, i.e. models in which the different classes are generated by

different probability distribution functions and not only by different parameter

values of the same distribution. The mixture-operator simply takes a finite list of

the different distributions and mixes them according to the value of the hidden

variable, for example

x(I) ~ mixture(c(I) cases

[ 0 -> binomial(m, p),

1 -> poisson(rate)

]);

describes the mixture between a binomial and a Poisson process used in exampleM5.

Due to the schema-based approach, this extension was completely straightforward

and required only two additional Prolog-clauses, one to declare mixture as the name

of a distribution and one to define its distribution function as a cases-construct over

the distribution functions of its arguments. In particular, no further functionality

specific to the mixture-operator needed to be implemented. Finally, M6 and M7 are

one-dimensional mixture examples with prior information (conjugate prior) on σ and

µ, respectively. These examples demonstrate AutoBayes’s capability to synthesize
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code for classical (i.e. without priors) maximum-likelihood problems as well as for

maximum aposteriori (i.e. Bayesian inference) problems.

The step detection problem SD tries to estimate the time at which the mean of

a Gaussian process changes. Such a change can indicate a failure in the underlying

physical process. The change can easily be specified in AutoBayes:

x(I) ~ gauss(if(I < step, mu1, mu2), sigma);

There are several algorithms for step detection. One of the more common approaches

is the Hinckley-test which first finds the maximizing values for mu1, mu2, and

sigma in terms of the still unknown position step, substitutes these values back

into the original problem, and then finds the maximizing value for step. AutoBayes

“re-invents” this algorithm by composition of three different schemas, a split/back-

substitute schema for separating the problem, range-iteration for solving the discrete

subproblem, and the symbolic solver for handling the continuous part.

The Abalone classification problem AB is a standard machine learning benchmark

from the UCI Machine Learning Repository (Blake & Merz, 1998). Here, the age of

an Abalone mussel has to be predicted from a number of physical measurements,

e.g. its size or weight. Prediction is used because an exact age determination requires

an elaborate procedure – cutting the shell, staining it, and counting the number of

rings through a microscope. In its original form, the age prediction is a difficult

problem because the data set contains only very few entries for very young or very

old abalones. It is thus often simplified by partitioning the ages into three roughly

equally likely categories “young,” “adult,” and “old.” For this simplified version,

AutoBayes generates an unsupervised classifier (i.e. no training phase is required)

which is again based on the EM-schema. It achieves a 54.7% accuracy which is only

slightly worse than the results of some of the supervised classifiers.

In general, these results are very encouraging as they indicate that AutoBayes

can already be applied to realistic examples. Except for the last two examples,

synthesis times are generally in the sub-minute range; they also compare well with

the compile times for the synthesized code. Most of the synthesis time is generally

spent in the symbolic subsystem which we believe can still be optimized substantially.

The only exception here is the step detection example SD where almost 90% of the

synthesis time is spent in the backend. This is a result of the large number of deeply

nested summations which are converted into loops and thus require a substantial

re-arrangement of the code. In the cases where no closed form solution exists, the

scale-up factor (i.e. the ratio between specification size and code size) is generally

around 1:20, which supports our claim that models are much more concise than

programs.

We are currently testing AutoBayes in two larger case studies concerning data

analysis tasks for finding extra-solar planets, either by measuring dips in the lumin-

osity of stars (Koch et al., 2000), or by measuring Doppler effects (Marcy & Butler,

1997), respectively. Both projects required substantial effort to manually set up data

analysis programs. Our goal for the near future is to demonstrate AutoBayes’s

capability to handle major subproblems (e.g. the CCD-sensor registration problem)

arising in these projects.
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7 Related work

AutoBayes combines two different fields, statistics and program synthesis. Con-

sequently, related work can be found in both fields. In statistics, there is a long

tradition of composing programs from library components but there are only a

few, recent attempts to achieve a similar degree of automation as AutoBayes does.

The Bayes Net Toolbox (Murphy, 2000) is a Matlab-extension which allows users

to program in models; it provides several Bayesian inference algorithms which are

attached to the nodes of the network. However, the Toolbox is a purely interpretive

system and does not generate programs. The widely used Bugs-system (Thomas

et al., 1992) also allows users to program in models but it uses yet another, entirely

different execution model: instead of executing library code or generating customized

programs, it interprets the statistical model using Gibbs sampling, a universal –

but less efficient – Bayesian inference technique. Gibbs sampling could easily be

integrated into AutoBayes as an algorithm schema. Mjolsness and Turmon (2000)

introduced the concept of stochastic parameterized grammars. Such grammars allow

a concise model specification in a way very similar to AutoBayes’s specification lan-

guage. However, they are currently only a notational device without any underlying

program execution or synthesis model.

Deductive synthesis is still an active research area, despite its long heritage going

back to Green (1969) and Waldinger (1969). Some systems, however, have already

been applied to real-world problems. The Amphion system (Stickel et al., 1994)

has been used to assemble programs for celestial mechanics from a library of

Fortran components, for example the simulation of a Saturn fly-by. Amphion is

more component-oriented than AutoBayes, i.e. the generated programs are linear

sequences of subroutine calls into the library. It uses a full-fledged theorem prover for

first-order logic and extracts the program from the proof. Ellman and Murata (1998)

describe a system for the deductive synthesis of numerical simulation programs. This

system also starts from a high-level specification of a mathematical model – in this

case a system of differential equations – but is again more component-oriented than

AutoBayes and does not use symbolic-algebraic reasoning. Planware (Blaine et al.,

1998), which grew out of the Kids system (Smith, 1990), synthesizes schedulers for

military logistics problems. It is built on the concept of an algorithm theory which

can be considered as an explicit hierarchy of schemas, but the underlying basic

synthesis process is a different one.

Biggerstaff (1999) presents a short classification of generator techniques (albeit

cast in terms of their reuse effects). AutoBayes falls most closely into the category

of inference-based generators but also exhibits some aspects of pattern-directed

and reorganizing generators, e.g. the typical staging of the schemas into multiple

levels.

8 Conclusions and future work

We have presented AutoBayes, a system for the automatic synthesis of data

analysis programs from specifications in the form of statistical models. AutoBayes
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follows a schema-guided deductive synthesis approach. After constructing the initial

Bayesian network from the given specification (i.e. the statistical model), a variety of

different schemas are tried exhaustively. These schemas are guarded by applicability

constraints and contain code templates which are instantiated. By way of an

intermediate language, AutoBayes generates executable, optimized code for a target

system. The current version produces C/C++-code which can be linked dynamically

into the Octave and Matlab environments. We have tested AutoBayes on a variety

of text-book and benchmark examples. In most cases, runtime for synthesizing code

was well below one minute; compiling the synthesized codes takes roughly the same

amount of time. The code is well documented and robust.

Although we have been able to generate code for various non-trivial textbook

examples, AutoBayes’s capabilities to generate code for a variety of statistical models

must be extended before it can be employed by the working data analyst. We will

add further algorithm schemas for statistical algorithms (e.g. variants of the EM -

algorithm) and for general numerical optimization. Future versions of AutoBayes

will also be extended in such a way that statistical models over time series can

be handled. Here, we are planning to incorporate specific algorithm schemas for

handling a restricted but common class of time-series problems as well as standard

optimization methods like finite differencing.

AutoBayes offers several unique features which result from using program

synthesis instead of compilation and which make it more powerful and more versatile

for the application domain than other tools and statistical libraries. AutoBayes can

generate efficient procedural code from a high-level, declarative specification without

any notion of data flow or control flow. Thus, it covers a relatively large semantic

gap between specification and code and provides substantial leverage. Due to the

concise semantics of the specifications and the domain theory, the synthesized code

is provably correct and always consistent with the specification. Synthesis times are

very short. Changes and modifications of the statistical model can thus be applied

without time-consuming re-implementation of the data analysis program. Such

fast turn-around times are particularly valuable for iterative software engineering

processes as well as for science applications where the underlying models are not yet

well understood. By combining schema-guided synthesis with symbolic calculation,

AutoBayes can find closed form solutions for many problems. Thus, the generated

code for these kinds of problems is extremely efficient and accurate, because it does

not rely on numeric approximations.

AutoBayes can generate different programs for the same specification. Although

the overall functionality of each of the synthesized programs is the same (i.e.

as given in the specification), they can differ substantially with respect to speed,

numerical stability and memory consumption. This feature is based on exhaustive

search and application of algorithm schemas and is naturally supported by Prolog’s

backtracking mechanism. It allows the user to effectively explore the design space.

In combination with AutoBayes’s test data generator the user is thus able to select a

synthesized program which best fits the given application profile. For future versions

of AutoBayes we aim to incorporate user-defined design constraints to control

this search process. The explanation technique offers major benefits, especially for
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safety-critical areas. Code is not only documented for human understanding, but

assumptions made in the specification and during synthesis are checked by assertions

during runtime. This makes the generated code more robust against erroneous inputs

or faulty data.

AutoBayes is still an experimental system and must be extended in various ways.

In particular, the domain coverage of AutoBayes must be increased to handle more

complex models. Nevertheless, we are confident that the paradigm of schema-guided

synthesis is an appropriate approach to program generation in this domain and will

lead to a powerful yet easy-to-use tool.
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