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Abstract discovery community. 

Code synthesis is routinely used in industry to generate 
GUIs and for database support. In this paper we consider 
whether code synthesis could also be applied as a rapid pro- 
totyping method to the data mining phase of knowledge dis- 
covery. Rapid prototyping of statistical data analysis algo- 
rithms would allow experienced analysts to experiment with 
diierent statistical models before choosing one, but without 
requiring prohibitively expensive programming efforts. It 
would also smooth the steep learning curve often faced by 
novice users of data mining tools and libraries. Finally, it 
would accelerate dissemination of essential research results. 
For the synthesis task, we use a specification language that 
generalizes Bayesian networks, a dependency model on vari- 
ables. Using decomposition methods and algorithm tem- 
plates, our system transforms the network through several 
levels of representation into pseudo-code which can be trans- 
lated into the implementation language of choice. Here, we 
explain the framework on a mixture of Gaussians model used 
in some commercial clustering tools. We show the effective- 
ness of our framework by generating pseudo-code for some 
more sophisticated algorithms from recent literature. 

1 Introduction 

A key component of the data mining task within knowl- 
edge discovery is statistical data analysis. Applied and 
computational statisticians who perform this task on 
smaller data sets use experimentation with different 
statistical models and development of specialized algo- 
rithms to achieve reliable and useful results, especially 
in situations where the data cannot be cast into a form 
suitable for one of the standard algorithms. This ca- 
pability is not practically available to the knowledge 

An alternative approach to algorithm prototyping 
from the statistics community is implemented in the 
BUGS system [14]. A probability model is simulated 
directly from its specification using Gibb’s sampling. 
However, BUGS cannot make use of more efficient 
special-purpose algorithms because of its underlying 
simulation kernel. This restricts its applicability under 
real-world data mining conditions, e.g., scaling up to 
large data sets. We see the popularity of BUGS as 
an existence proof that rapid prototyping provides a 
needed capability for data mining. 

In this paper we develop an alternative approach to 
rapid prototyping of data mining tools based on pro- 
gram synthesis, the automatic derivation of a program 
that meets a given specification. We apply these meth- 
ods to synthesize data analysis programs from Bayesian 
network specifications using a library of efficient alge 
rithm templates together with core special-purpose al- 
gorithms and general purpose solvers, as suggested in 
[3]. We show that this approach can address non-trivial 
data analysis problems. 

Our approach is motivated by three observations. 
First, the success of BUGS demonstrates the need for 
data analysis tools suitable for reliable rapid prototyp- 
ing. Second, Bayesian networks provide a ready, unify- 
ing specification language, as seen by their widespread 
use in communities such as applied Bayesian statistics 
and neural information processing [15, 71; their role for 
the data mining community is to provide a flexible data 
modeling language [4]. Finally, program synthesis has 
been proven to be competitive in other domains. It 
offers: 

*Funded by NASA Universities Grant 05106 & Ultimode Inc. 
t Research Institute for Advanced Computer Science 
t Recom Technologies, Inc. 

Permission to make digital or hard copies of all or part of this work fat 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies hear this notice and the full citation on the tirst page. To copy 
othcrwisc, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
KDD-99 San Diego CA USA 

l Rapid turn-around: even for large tasks mature 
synthesis systems usually require less than a few 
minutes to produce code [lo, 23. 

l Reliability: synthesized code is used in production 
systems to schedule military logistics [2] or to price 
stock options [13]. 

l Eficiency: synthesized code can be an order of 
magnitude faster than hand-crafted code [2]. 
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However, to the best of our knowledge, program synthe- 
sis has not previously been applied to data analysis al- 
gorithms; an edited discussion on its relevance appears 
in [5]. Specific advantages for data analysis, other than 
rapid prototyping, are that generated code should be 
time and space efficient; to achieve this we would rely 
on high-performance optimizing compiler techniques [l] 
coupled to our pseudo-code, as discussed in Section 3.2. 

2 Preliminaries 

2.1 A simple problem 

As a simple running example to illustrate our concepts 
we will use mixture of Gaussians (cf. Fig. 1) which is 
covered in detail in many statistical texts. It is a model 
for the measured data vector 2 based on parameter 
vectors p’, j&o’ that are to be estimated. Figure l(left) 

Figure 1: A mixture of Gaussians: data and model 

shows a two dimensional version of the problem where 
each Gaussian can be fully covariate. Here, example 
data is represented with a scatter plot; projections of 
the component Gaussians that make up the distribution 
are shown on both axes. The dots are roughly clustered 
in four blobs: top left, bottom right, bottom left, and 
a diagonal blob. Hence, C, the number of Gaussians 
being “mixed”, is four. An intuitive interpretation of 
this mixture model is that we first generate data from 
four individual Gaussians, mix these up according to 
some proportions, and throw away the information of 
the original Gaussian source. 

The Bayesian network1 for the model is given in 
Fig. l(right). Bayesian networks are acyclic directed 
graphs that define probabilistic dependencies between 
variables; the shaded variables are supplied in the data 
and the remaining are to be inferred. The box around 
the variables c and x indicates that they are data vectors 
where each of the 200 components is independently 
and identically distributed. The vector c’ (the “hidden 
variable” of the model which captures the assignment of 
the dots to the blobs) is discrete, with each entry taking 
a value {1,2, . . . . C}, and the vector 3c’ is real-valued. The 
full joint probability for this model is 

‘Tutorials and references are available at wu. auai. org. 
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where p parameterizes the discrete distribution over 
each discrete value ci for i = 1,. . . ,200, and (p[j],a[j]) 
are the Gaussian parameters for each of j = 1,. . . ,C 
Gaussian peaks in the data. The precise form of the 
prior distributions for p,p, u is left unspecified here; 
they could be considered as variables for a maximum 
likelihood analysis, or be fully specified for a Bayesian 
analysis. 

This kind of problem is traditionally handled using an 
algorithm known as Expectation-Maximization (EM); 
our presentation follows [ll]. In the mixture of 
Gaussian problem, one common interpretation of the 
learning task is to seek to maximize CL, logPr(zi 1 
p’, 3,:). The problem here is that the inner probabilities 
are themselves a sum over ci, Pr(xi 1 p’, p, G) = 

cg, W~i,Ci I p’,Iz,a’), and the combination with the 
log makes the formula intractable. To overcome this, 
a new set of parameters is introduced and a cyclic “re- 
estimation” method is used as follows: 

1. Set qi,j = Pr(~=j]zi,p’,fi,Z)fori=l,..., Nand 
j=l , . . . , C. Thus ais a discrete distribution on Z. 

2. Maximize &+,- [log Pr(rc’, c’l p’, 5, Z)] for p’, 3, a’ given 
(7 above. Here, the log probability is evaluated 
according to the correct model, and then c’ is 
quantified out by averaging using $ 

This EM algorithm applies for these general probability 
forms, and not just the mixture of Gaussians. 

2.2 Indexed variables, Bayesian networks 

In data analysis, indexed variables as vectors are ubiq- 
uitous: data Z = {xi,. . . , XN) with independent and 
identical distributions, and vectors of parameters e’ = 
(01 , . . . , 0~) that behave similarly (e.g., different nodes 
in a neural net). The representation must allow full 
vectors, 3, generic single components, xi, and particu- 
lar single components, zs. During synthesis, the system 
needs to determine dependencies between these differ- 
ent combinations of variables, and the Bayesian network 
performs the role of a data-flow graph used in compil- 
ers [l]. In Bayesian networks, vector variables should 
not be “unfolded” (i.e., represented fully) because that 
obscures the model’s regularities and increases the net- 
work’s size. Instead, the network contains the most 
general representation and is unfolded only by demand 
and only locally. 

Our system uses Prolog-terms; a theory of indexed 
Bayesian networks, where indices are represented as 
Prolog variables is developed in [S]. We have extended 
these results using difference sets2 to work with non- 
ground probability queries since we seek to determine 

2Difference sets are substitutions representing equalities and 
inequalities to define a set of variables with inclusion/exclusion. 



probabilities over indexed vectors. Tests for indepen- 
dence on these indexed Bayesian networks are easily 
developed in Lauritzen’s framework which uses ances- 
tral sets and set separation [8]. 

2.3 Expressions for probabilities 

During synthesis, probability expressions are repeatedly 
evaluated and converted into mathematical formula for 
analysis or insertion into code. Some probabilities 
can easily be extracted from a Bayesian network by 
enumerating the component probabilities at each node: 

Lemma 1 Let U, V be aeta of variables over a Bayeaian 
network with U f~ V = 0. Then V fl descendants(U) = 
0 and parents(U) C V hold in the corresponding 
dependency graph ifl the following probability statement 
holds: 

Pr(UIV) = Pr(UIparente(U)) = ~Pr(u~porents(u)) 
UEU 

How can probabilities not satisfying these conditions 
be converted to symbolic expressions? Symbolic prob- 
abilistic inference [9], for instance extracts an efficient 
expression for a particular probability, p(UIV). We have 
developed another result that lets us extract probabili- 
ties on a large class of mixed discrete and real, poten- 
tially indexed variables, where no integrals are needed 
and all marginalization is done by summing out discrete 
variables. We give the non-indexed case below; this is 
readily extended to indexed variables, and our proofs 
are constructive. Lemma 2 lets us evaluate a probability 
by a summation: Pr(U 1 V) = &EDomCU,I Pr(U’ = 
u’, U ] V). Lemma 3 lets us evaluate a probability by a 
summation and a ratio: 

Pr(UI V) = d4 
c uEDom(U)q(") ' 

where q(u) = ‘&EDom(U,) Pr(U’ = u’, U, V/V’ 1 V’). 
Since the lemmas also show minimality of the sets 
U’ and V/V’, they also give the minimal conditions 
under which a probability can be evaluated by discrete 
summation without integration. 

Lemma 2 Vndeacendanta(U) = 0 holds and ancestors(V) 
is independent of U given V ifl there exiata a set 
of variables U’ such that Lemma 1 holds if we re- 
place U by U u U’. Moreover, the unique min- 
imal set U’ satisfying these conditions ia given by 
ancestors(U) /( ancestors(V) U V) 

Lemma 3 Let V’ be a subset of V/descendants(U) 
such that anceatora(V’) ia independent of (UUV)/(V’U 
anceatora(V’)) given V’. Then Lemma 2 holds if we 
replace U by U U V/V’ and V by V’. Moreover, there is 
a unique maximal set V’ satisfying these conditions. 

3 The Framework 

3.1 Specification language PN 

Cur specification language PN (Probabilistic Networks) 
is a simple textual notation to describe networks 
as in Fig. l(right) and to specify the distributions 
and equations at each node. The following small 
specification is already sufficient to model the Mixture 
of Gaussians . 

constant Int N = 200, C=4; 
Real muCC1, sigmaCC1; 
ProbabilityVector rho; 
for(i=l,N) c[i] - Discrete(rho); 
for(i=i,N) x[i] - Gaussian(mu Cc [ill , sigma Cc [ill 1 ; 
optimize mu,sigma,rho 

for Pr(xImu,sigma,rho) given x; 

The first three lines define the model constants N and C 
and declares the parameter vectors ji, 0’ and ji with their 
respective types and dimensions; all types are built- 
in. Since the parameter vectors are to be estimated 
using a maximum likelihood analysis, no probability 
distributions are specified. 

The next two lines define the hidden variable Z and 
the observed data vector 2 which will ultimately be- 
come the only input to the synthesized program. Both 
vectors are independently and identically distributed, 
as the for-construct mirrors the box-notation of Fig- 
ure l(right). 

The Bayesian network for the distribution is ex- 
tracted from the specification dynamically and pro- 
cessed extensively with graph operations to deter- 
mine applicability of different transformations. The 
above model is thus represented by the following small 
database, where each literal represents all arcs into a 
single node: 

depends(sigma,[]). depends(rho,U). 
depends(mn.Csigmal). depends(c(I),[rho]). 
dapends(x(I),[inu,sigma,c(I)]). 

The last lines of the specification contain the opti- 
mization statement. It specifies the variables to be op- 
timized together with the initial probability expression; 
the trailing clause given {x} identifies 2 as the initial 
data vector. A different analysis, e.g., a Bayesian ver- 
sion, can be specified simply by changing the optimiza- 
tion statement. 

3.2 Pseudo-code 

For two reasons, our system generates an intermediate 
level pseudo-code and not any particular target lan- 
guage. First, pseudocode is easier to translate into a 
variety of languages. Second, and more important, it is 
easier to optimize. Standard implementation languages, 
such as C++ and C, allow programming constructs that 
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defeat good optimization, and the array languages of- 
ten result in a programming style that defeats good op- 

timization as well, as programmers attempt to avoid 
explicit iteration “at all costs.” Thus program synthe 
sis has the added advantage that it can probably make 
better use of modern code optimization capabilities [l] 
than most programmers. 

3.3 Outline of the implementation 

The system implementation comprises 9000 lines of Pro- 
log, including a package for term rewriting. A number 
of procedures are specifically designed for manipulating 
indexed sums and products, and probabilities over ind+ 
pendently and identically distributed array variables as 
in Section 2.2. We also have a database of distributions, 
and a term rewrite system for simplifying formula and 
probabilities in various ways: simplifying the log of a 
formula, moving a summation inwards, splitting a for- 
mula into its linear components, symbolically deriving 
a derivative, testing for positivity, and testing for non- 
zero. 

Internally, our system uses three conceptually dif- 
ferent levels of representation. Probabilities (includ- 
ing logarithmic and conditional probabilities) are the 
most abstract level. They are processed via methods for 
Bayesian network decomposition or matches with core 
algorithms such as EM. Formulae are introduced when 
probabilities of the form Pr(U 1 parents(U)), where 
parents(U) is the set of variables appearing in the def- 
inition for U, are detected, either in the initial net- 
work, or after the application of network decomposi- 
tions. Atomic probabizities (i.e., U is a single variable) 
are directly replaced by formulae based on the given 
distribution and its parameters. General probabilities 
are decomposed into sums and products of the respec- 
tive atomic probabilities. Pseudo-code programs are the 
lowest level of representation. They contain no proba- 
bilities and are ready for immediate optimization using 
symbolic or numeric methods but they can still be de- 
composed into independent subproblems. Each of the 
program transformations we apply operates on or be 
tween these levels. 

3.4 Transformations for optimization 

Our current list of transformations is as follows. Decom- 
position of a problem into independent sub-problems is 
always done. Decomposition of probabilities is driven 
by the Bayesian network. We also have a separate sys- 
tem for handling decomposition of formulae. A formula 
can be cJecomposed along a loop, e.g., the problem “op- 
timize 0 for I& f(&)” is transformed into a for-loop over 
subproblems “optimize Bi for f(f3i)“. More commonly, 
“optimize 19, C$ for f(f3) + g(d)” is transformed into the 
two subprograms “optimize 8 for f(e)” and “optimize 
4 for 9(d)“. 

The lemmas in Section 2.3 are applied to change the 
level of representation and thus for simplification of 
probabilities. 

The statistical algori’thm schema currently imple- 
mented is EM; others that can be encoded with the 
current primitives are mean-field methods for exponen- 
tial family, iterative proportional fitting, and iterative 
reweighted least-squares [15, 71. Usually, the schemas 
require a particular form of the probabilities involved; 
they are thus tightly coupled to the decomposition and 
simplification transformations. E.g., EM is a way of 
dealing with situation where Lemma 2 applies to vec- 
tors of data. 

Likelihoods of the exponential family (i.e., sub-expres- 
sions of the form log I& Pr(zi 10)) are identified in the 
initial specification or in intermediate representations 
and simplified into linear expression with terms such aa 
mean and mean( 

As final resort, we pass formulae which cannot be 
handled symbolically off to a general purpose package 
for numerical optimization. 

4 Some Examples 

4.1 Mixture of Gaussians 

Here, we show how our system derives pseudo-code 
for the mixture of Gaussians example as specified in 
Section 2.1. 

The probability in the initial optimization state- 
ment matches the conditions of Lemma 2; moreover, 
U’ is just {q which has the same dimensions as the 
given data vector 2. This condition triggers the 
EM algorithm as described in Section 2.1, and in- 
stantiates its schema, resulting in the partial program: 

vhile(converging(~,a,P)) 
for((i,j), (Ci,2OOl,C1.41)) 

W = Pr(Ci = jlZi = j,/.l,U); 
optimize {/.6,a,p} 

for LogPr(Q, Ci 1 /.ki , uci, p) 

given {Ci N Qi,*, x} 

In this, converging is a generic convergence criterion 
imposed over the variables $, a’,$ Given C< N qi,e 
implies we quantify q out of the objective by averaging; 
the for-loop bounds were easily extracted from the 
specification. The instantiated schema also contains 
two recursive calls to the synthesis system. The first 
is hidden in the the evaluation of qi,j using Lemma 3; 
the pseudo-code resulting from this call consists only 
of the symbolic expression representing the value of 
the probability. The second is represented explicitly 
by the optimization statement. Here, Q is averaged 
out with the discrete distribution with parameters qi,+ , 
and the log probability is evaluated using Lemma 1. 
The Bayesian (sub-) network to evaluate this reduced 
problem reveals that 3 is independent of 3, @ thus the 
optimization problem can be decomposed. The second 
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half of this decomposition contains the optimization 
goal logPr(zi 1 pci, a,,) which (under the given 
distribution for 9) is simplified into $I ~i,j log Pr(ai 1 
pj,aj). This formula is then decomposed along the 
index j, leaving 

while (converging (p, Q, p) 1 
for((i. j), (C1,2001, EI.41)) 

Qi,j = Pr(Zj ICi = j, /Jq U) ; 
optimize+ : Cj pj = 1 I cf=,(cf: Qij)Pj) i 
for(j, Cl,411 

optimize({pj,aj}. C:zlqi,j lOgPr(ZiI~j,Uj)))) 

The first optimization statement here is solved exactly 
to yield that p’ is set to sweighted frequencies. The 
second optimize statement is matched with a weighted 
log probability of a Gaussian, and thus turned into an 
expression for each pj, gj involving &weighted means of 
5Y and z;. This is then solved exactly for pi, Uj. Divide 

by zero is detected to occur here when Ci”, qi,j = 0 
for some j. Thus, the usual EM algorithm for mixture 
of Gaussians is derived. 

4.2 Additional examples 

We have tested our system on a variety of different prob- 
lems. These include the simple Bayes classifier, linear 
regression on non-linear basis functions with Bayesian 
smoothing, and a “curve clustering” model suggested 
by Smyth which attempts to fit multiple curves at once. 
Our system yielded correct pseudocode in all cases. We 
also modelled the distributional clustering framework of 
[12] but without introducing their “temperature” pa- 
rameter. This method is the basis of techniques for 
featurizing documents by generating clusters of related 
words, and versions of it are used in text mining. 

5 Conclusions 

The one aspect of our framework not demonstrated 
is the generation of target code from pseudo-code, 
and thus a final empirical evaluation of the algorithms 
generated. We are developing a back-end for Lisp and 
Matlab. We have demonstrated the general feasibility 
of our approach, but also raised issues for future work. 
Necessary research to make this method suitable for 
data mining at a commercial level is to adequately 
address numerical issues such as divide by zero and 
ill-conditioned matrices, and to have the algorithms 
scale on large data-sets. We note that many divide 
by zero and ill-conditioning problems are actually due 
to modeling (e.g., too many basis functions are being 
used) and need to be addressed at the level of the 
statistical model. While scaling to large data sets is 
beyond the scope of our current research, we believe our 
demonstration here is an important first step towards 
a reliable prototyping system for data mining programs 
while scaling technology itself matures. 
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