
Towards Automated Synthesis of Data Mining Programs

Wray Buntine*
Dept. of EECS, UC Berkeley

wrayQic.eecs.berkeley.edu

Bernd Fischer+ and Thomas PressburgerS
NASA Ames Research Center

{tisch, ttp}@ptolemy . arc. nasa. gov

Abstract discovery community.

Code synthesis is routinely used in industry to generate
GUIs and for database support. In this paper we consider
whether code synthesis could also be applied as a rapid pro-
totyping method to the data mining phase of knowledge dis-
covery. Rapid prototyping of statistical data analysis algo-
rithms would allow experienced analysts to experiment with
diierent statistical models before choosing one, but without
requiring prohibitively expensive programming efforts. It
would also smooth the steep learning curve often faced by
novice users of data mining tools and libraries. Finally, it
would accelerate dissemination of essential research results.
For the synthesis task, we use a specification language that
generalizes Bayesian networks, a dependency model on vari-
ables. Using decomposition methods and algorithm tem-
plates, our system transforms the network through several
levels of representation into pseudo-code which can be trans-
lated into the implementation language of choice. Here, we
explain the framework on a mixture of Gaussians model used
in some commercial clustering tools. We show the effective-
ness of our framework by generating pseudo-code for some
more sophisticated algorithms from recent literature.

1 Introduction

A key component of the data mining task within knowl-
edge discovery is statistical data analysis. Applied and
computational statisticians who perform this task on
smaller data sets use experimentation with different
statistical models and development of specialized algo-
rithms to achieve reliable and useful results, especially
in situations where the data cannot be cast into a form
suitable for one of the standard algorithms. This ca-
pability is not practically available to the knowledge

An alternative approach to algorithm prototyping
from the statistics community is implemented in the
BUGS system [14]. A probability model is simulated
directly from its specification using Gibb’s sampling.
However, BUGS cannot make use of more efficient
special-purpose algorithms because of its underlying
simulation kernel. This restricts its applicability under
real-world data mining conditions, e.g., scaling up to
large data sets. We see the popularity of BUGS as
an existence proof that rapid prototyping provides a
needed capability for data mining.

In this paper we develop an alternative approach to
rapid prototyping of data mining tools based on pro-
gram synthesis, the automatic derivation of a program
that meets a given specification. We apply these meth-
ods to synthesize data analysis programs from Bayesian
network specifications using a library of efficient alge
rithm templates together with core special-purpose al-
gorithms and general purpose solvers, as suggested in
[3]. We show that this approach can address non-trivial
data analysis problems.

Our approach is motivated by three observations.
First, the success of BUGS demonstrates the need for
data analysis tools suitable for reliable rapid prototyp-
ing. Second, Bayesian networks provide a ready, unify-
ing specification language, as seen by their widespread
use in communities such as applied Bayesian statistics
and neural information processing [15, 71; their role for
the data mining community is to provide a flexible data
modeling language [4]. Finally, program synthesis has
been proven to be competitive in other domains. It
offers:

*Funded by NASA Universities Grant 05106 & Ultimode Inc.
t Research Institute for Advanced Computer Science
t Recom Technologies, Inc.

Permission to make digital or hard copies of all or part of this work fat
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies hear this notice and the full citation on the tirst page. To copy
othcrwisc, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD-99 San Diego CA USA

l Rapid turn-around: even for large tasks mature
synthesis systems usually require less than a few
minutes to produce code [lo, 23.

l Reliability: synthesized code is used in production
systems to schedule military logistics [2] or to price
stock options [13].

l Eficiency: synthesized code can be an order of
magnitude faster than hand-crafted code [2].

Copyright ACM 1999 I-581 13-143-7/99/08...$5.00

372

However, to the best of our knowledge, program synthe-
sis has not previously been applied to data analysis al-
gorithms; an edited discussion on its relevance appears
in [5]. Specific advantages for data analysis, other than
rapid prototyping, are that generated code should be
time and space efficient; to achieve this we would rely
on high-performance optimizing compiler techniques [l]
coupled to our pseudo-code, as discussed in Section 3.2.

2 Preliminaries

2.1 A simple problem

As a simple running example to illustrate our concepts
we will use mixture of Gaussians (cf. Fig. 1) which is
covered in detail in many statistical texts. It is a model
for the measured data vector 2 based on parameter
vectors p’, j&o’ that are to be estimated. Figure l(left)

Figure 1: A mixture of Gaussians: data and model

shows a two dimensional version of the problem where
each Gaussian can be fully covariate. Here, example
data is represented with a scatter plot; projections of
the component Gaussians that make up the distribution
are shown on both axes. The dots are roughly clustered
in four blobs: top left, bottom right, bottom left, and
a diagonal blob. Hence, C, the number of Gaussians
being “mixed”, is four. An intuitive interpretation of
this mixture model is that we first generate data from
four individual Gaussians, mix these up according to
some proportions, and throw away the information of
the original Gaussian source.

The Bayesian network1 for the model is given in
Fig. l(right). Bayesian networks are acyclic directed
graphs that define probabilistic dependencies between
variables; the shaded variables are supplied in the data
and the remaining are to be inferred. The box around
the variables c and x indicates that they are data vectors
where each of the 200 components is independently
and identically distributed. The vector c’ (the “hidden
variable” of the model which captures the assignment of
the dots to the blobs) is discrete, with each entry taking
a value {1,2, C}, and the vector 3c’ is real-valued. The
full joint probability for this model is

‘Tutorials and references are available at wu. auai. org.

313

where p parameterizes the discrete distribution over
each discrete value ci for i = 1,. . . ,200, and (p[j],a[j])
are the Gaussian parameters for each of j = 1,. . . ,C
Gaussian peaks in the data. The precise form of the
prior distributions for p,p, u is left unspecified here;
they could be considered as variables for a maximum
likelihood analysis, or be fully specified for a Bayesian
analysis.

This kind of problem is traditionally handled using an
algorithm known as Expectation-Maximization (EM);
our presentation follows [ll]. In the mixture of
Gaussian problem, one common interpretation of the
learning task is to seek to maximize CL, logPr(zi 1
p’, 3,:). The problem here is that the inner probabilities
are themselves a sum over ci, Pr(xi 1 p’, p, G) =

cg, W~i,Ci I p’,Iz,a’), and the combination with the
log makes the formula intractable. To overcome this,
a new set of parameters is introduced and a cyclic “re-
estimation” method is used as follows:

1. Set qi,j = Pr(~=j]zi,p’,fi,Z)fori=l,..., Nand
j=l , . . . , C. Thus ais a discrete distribution on Z.

2. Maximize &+,- [log Pr(rc’, c’l p’, 5, Z)] for p’, 3, a’ given
(7 above. Here, the log probability is evaluated
according to the correct model, and then c’ is
quantified out by averaging using $

This EM algorithm applies for these general probability
forms, and not just the mixture of Gaussians.

2.2 Indexed variables, Bayesian networks

In data analysis, indexed variables as vectors are ubiq-
uitous: data Z = {xi,. . . , XN) with independent and
identical distributions, and vectors of parameters e’ =
(01 , . . . , 0~) that behave similarly (e.g., different nodes
in a neural net). The representation must allow full
vectors, 3, generic single components, xi, and particu-
lar single components, zs. During synthesis, the system
needs to determine dependencies between these differ-
ent combinations of variables, and the Bayesian network
performs the role of a data-flow graph used in compil-
ers [l]. In Bayesian networks, vector variables should
not be “unfolded” (i.e., represented fully) because that
obscures the model’s regularities and increases the net-
work’s size. Instead, the network contains the most
general representation and is unfolded only by demand
and only locally.

Our system uses Prolog-terms; a theory of indexed
Bayesian networks, where indices are represented as
Prolog variables is developed in [S]. We have extended
these results using difference sets2 to work with non-
ground probability queries since we seek to determine

2Difference sets are substitutions representing equalities and
inequalities to define a set of variables with inclusion/exclusion.

probabilities over indexed vectors. Tests for indepen-
dence on these indexed Bayesian networks are easily
developed in Lauritzen’s framework which uses ances-
tral sets and set separation [8].

2.3 Expressions for probabilities

During synthesis, probability expressions are repeatedly
evaluated and converted into mathematical formula for
analysis or insertion into code. Some probabilities
can easily be extracted from a Bayesian network by
enumerating the component probabilities at each node:

Lemma 1 Let U, V be aeta of variables over a Bayeaian
network with U f~ V = 0. Then V fl descendants(U) =
0 and parents(U) C V hold in the corresponding
dependency graph ifl the following probability statement
holds:

Pr(UIV) = Pr(UIparente(U)) = ~Pr(u~porents(u))
UEU

How can probabilities not satisfying these conditions
be converted to symbolic expressions? Symbolic prob-
abilistic inference [9], for instance extracts an efficient
expression for a particular probability, p(UIV). We have
developed another result that lets us extract probabili-
ties on a large class of mixed discrete and real, poten-
tially indexed variables, where no integrals are needed
and all marginalization is done by summing out discrete
variables. We give the non-indexed case below; this is
readily extended to indexed variables, and our proofs
are constructive. Lemma 2 lets us evaluate a probability
by a summation: Pr(U 1 V) = &EDomCU,I Pr(U’ =
u’, U] V). Lemma 3 lets us evaluate a probability by a
summation and a ratio:

Pr(UI V) = d4
c uEDom(U)q(") '

where q(u) = ‘&EDom(U,) Pr(U’ = u’, U, V/V’ 1 V’).
Since the lemmas also show minimality of the sets
U’ and V/V’, they also give the minimal conditions
under which a probability can be evaluated by discrete
summation without integration.

Lemma 2 Vndeacendanta(U) = 0 holds and ancestors(V)
is independent of U given V ifl there exiata a set
of variables U’ such that Lemma 1 holds if we re-
place U by U u U’. Moreover, the unique min-
imal set U’ satisfying these conditions ia given by
ancestors(U) /(ancestors(V) U V)

Lemma 3 Let V’ be a subset of V/descendants(U)
such that anceatora(V’) ia independent of (UUV)/(V’U
anceatora(V’)) given V’. Then Lemma 2 holds if we
replace U by U U V/V’ and V by V’. Moreover, there is
a unique maximal set V’ satisfying these conditions.

3 The Framework

3.1 Specification language PN

Cur specification language PN (Probabilistic Networks)
is a simple textual notation to describe networks
as in Fig. l(right) and to specify the distributions
and equations at each node. The following small
specification is already sufficient to model the Mixture
of Gaussians .

constant Int N = 200, C=4;
Real muCC1, sigmaCC1;
ProbabilityVector rho;
for(i=l,N) c[i] - Discrete(rho);
for(i=i,N) x[i] - Gaussian(mu Cc [ill , sigma Cc [ill 1 ;
optimize mu,sigma,rho

for Pr(xImu,sigma,rho) given x;

The first three lines define the model constants N and C
and declares the parameter vectors ji, 0’ and ji with their
respective types and dimensions; all types are built-
in. Since the parameter vectors are to be estimated
using a maximum likelihood analysis, no probability
distributions are specified.

The next two lines define the hidden variable Z and
the observed data vector 2 which will ultimately be-
come the only input to the synthesized program. Both
vectors are independently and identically distributed,
as the for-construct mirrors the box-notation of Fig-
ure l(right).

The Bayesian network for the distribution is ex-
tracted from the specification dynamically and pro-
cessed extensively with graph operations to deter-
mine applicability of different transformations. The
above model is thus represented by the following small
database, where each literal represents all arcs into a
single node:

depends(sigma,[]). depends(rho,U).
depends(mn.Csigmal). depends(c(I),[rho]).
dapends(x(I),[inu,sigma,c(I)]).

The last lines of the specification contain the opti-
mization statement. It specifies the variables to be op-
timized together with the initial probability expression;
the trailing clause given {x} identifies 2 as the initial
data vector. A different analysis, e.g., a Bayesian ver-
sion, can be specified simply by changing the optimiza-
tion statement.

3.2 Pseudo-code

For two reasons, our system generates an intermediate
level pseudo-code and not any particular target lan-
guage. First, pseudocode is easier to translate into a
variety of languages. Second, and more important, it is
easier to optimize. Standard implementation languages,
such as C++ and C, allow programming constructs that

374

defeat good optimization, and the array languages of-
ten result in a programming style that defeats good op-

timization as well, as programmers attempt to avoid
explicit iteration “at all costs.” Thus program synthe
sis has the added advantage that it can probably make
better use of modern code optimization capabilities [l]
than most programmers.

3.3 Outline of the implementation

The system implementation comprises 9000 lines of Pro-
log, including a package for term rewriting. A number
of procedures are specifically designed for manipulating
indexed sums and products, and probabilities over ind+
pendently and identically distributed array variables as
in Section 2.2. We also have a database of distributions,
and a term rewrite system for simplifying formula and
probabilities in various ways: simplifying the log of a
formula, moving a summation inwards, splitting a for-
mula into its linear components, symbolically deriving
a derivative, testing for positivity, and testing for non-
zero.

Internally, our system uses three conceptually dif-
ferent levels of representation. Probabilities (includ-
ing logarithmic and conditional probabilities) are the
most abstract level. They are processed via methods for
Bayesian network decomposition or matches with core
algorithms such as EM. Formulae are introduced when
probabilities of the form Pr(U 1 parents(U)), where
parents(U) is the set of variables appearing in the def-
inition for U, are detected, either in the initial net-
work, or after the application of network decomposi-
tions. Atomic probabizities (i.e., U is a single variable)
are directly replaced by formulae based on the given
distribution and its parameters. General probabilities
are decomposed into sums and products of the respec-
tive atomic probabilities. Pseudo-code programs are the
lowest level of representation. They contain no proba-
bilities and are ready for immediate optimization using
symbolic or numeric methods but they can still be de-
composed into independent subproblems. Each of the
program transformations we apply operates on or be
tween these levels.

3.4 Transformations for optimization

Our current list of transformations is as follows. Decom-
position of a problem into independent sub-problems is
always done. Decomposition of probabilities is driven
by the Bayesian network. We also have a separate sys-
tem for handling decomposition of formulae. A formula
can be cJecomposed along a loop, e.g., the problem “op-
timize 0 for I& f(&)” is transformed into a for-loop over
subproblems “optimize Bi for f(f3i)“. More commonly,
“optimize 19, C$ for f(f3) + g(d)” is transformed into the
two subprograms “optimize 8 for f(e)” and “optimize
4 for 9(d)“.

The lemmas in Section 2.3 are applied to change the
level of representation and thus for simplification of
probabilities.

The statistical algori’thm schema currently imple-
mented is EM; others that can be encoded with the
current primitives are mean-field methods for exponen-
tial family, iterative proportional fitting, and iterative
reweighted least-squares [15, 71. Usually, the schemas
require a particular form of the probabilities involved;
they are thus tightly coupled to the decomposition and
simplification transformations. E.g., EM is a way of
dealing with situation where Lemma 2 applies to vec-
tors of data.

Likelihoods of the exponential family (i.e., sub-expres-
sions of the form log I& Pr(zi 10)) are identified in the
initial specification or in intermediate representations
and simplified into linear expression with terms such aa
mean and mean(

As final resort, we pass formulae which cannot be
handled symbolically off to a general purpose package
for numerical optimization.

4 Some Examples

4.1 Mixture of Gaussians

Here, we show how our system derives pseudo-code
for the mixture of Gaussians example as specified in
Section 2.1.

The probability in the initial optimization state-
ment matches the conditions of Lemma 2; moreover,
U’ is just {q which has the same dimensions as the
given data vector 2. This condition triggers the
EM algorithm as described in Section 2.1, and in-
stantiates its schema, resulting in the partial program:

vhile(converging(~,a,P))
for((i,j), (Ci,2OOl,C1.41))

W = Pr(Ci = jlZi = j,/.l,U);
optimize {/.6,a,p}

for LogPr(Q, Ci 1 /.ki , uci, p)

given {Ci N Qi,*, x}

In this, converging is a generic convergence criterion
imposed over the variables $, a’,$ Given C< N qi,e
implies we quantify q out of the objective by averaging;
the for-loop bounds were easily extracted from the
specification. The instantiated schema also contains
two recursive calls to the synthesis system. The first
is hidden in the the evaluation of qi,j using Lemma 3;
the pseudo-code resulting from this call consists only
of the symbolic expression representing the value of
the probability. The second is represented explicitly
by the optimization statement. Here, Q is averaged
out with the discrete distribution with parameters qi,+ ,
and the log probability is evaluated using Lemma 1.
The Bayesian (sub-) network to evaluate this reduced
problem reveals that 3 is independent of 3, @ thus the
optimization problem can be decomposed. The second

375

half of this decomposition contains the optimization
goal logPr(zi 1 pci, a,,) which (under the given
distribution for 9) is simplified into $I ~i,j log Pr(ai 1
pj,aj). This formula is then decomposed along the
index j, leaving

while (converging (p, Q, p) 1
for((i. j), (C1,2001, EI.41))

Qi,j = Pr(Zj ICi = j, /Jq U) ;
optimize+ : Cj pj = 1 I cf=,(cf: Qij)Pj) i
for(j, Cl,411

optimize({pj,aj}. C:zlqi,j lOgPr(ZiI~j,Uj))))

The first optimization statement here is solved exactly
to yield that p’ is set to sweighted frequencies. The
second optimize statement is matched with a weighted
log probability of a Gaussian, and thus turned into an
expression for each pj, gj involving &weighted means of
5Y and z;. This is then solved exactly for pi, Uj. Divide

by zero is detected to occur here when Ci”, qi,j = 0
for some j. Thus, the usual EM algorithm for mixture
of Gaussians is derived.

4.2 Additional examples

We have tested our system on a variety of different prob-
lems. These include the simple Bayes classifier, linear
regression on non-linear basis functions with Bayesian
smoothing, and a “curve clustering” model suggested
by Smyth which attempts to fit multiple curves at once.
Our system yielded correct pseudocode in all cases. We
also modelled the distributional clustering framework of
[12] but without introducing their “temperature” pa-
rameter. This method is the basis of techniques for
featurizing documents by generating clusters of related
words, and versions of it are used in text mining.

5 Conclusions

The one aspect of our framework not demonstrated
is the generation of target code from pseudo-code,
and thus a final empirical evaluation of the algorithms
generated. We are developing a back-end for Lisp and
Matlab. We have demonstrated the general feasibility
of our approach, but also raised issues for future work.
Necessary research to make this method suitable for
data mining at a commercial level is to adequately
address numerical issues such as divide by zero and
ill-conditioned matrices, and to have the algorithms
scale on large data-sets. We note that many divide
by zero and ill-conditioning problems are actually due
to modeling (e.g., too many basis functions are being
used) and need to be addressed at the level of the
statistical model. While scaling to large data sets is
beyond the scope of our current research, we believe our
demonstration here is an important first step towards
a reliable prototyping system for data mining programs
while scaling technology itself matures.

References

PI

[31

PI

PI

PI

PI

PI

PI

PO1

PI

P21

P31

M

P51

BACON, D., GRAHAM, S., AND SHARP, 0. Compiler
optimizations for high-performance computing. ACM
Computing Surveys 26, 4 (1994).

BLAINE, L., GILHAM, L.-M., LIU, J., SMITH, D. R.,
AND WESTFOLD, S. Planware - domain-specific
synthesis of high-performance schedulers. In Proc.
13th Intl. Conf. Automated Software Engineering (Hon-
olulu, Hawaii, Oct. 1998), D. F. RRdmiles and B. Nu-
seibeh, Eds., IEEE Comp. Sot. Press, pp. 270-280.

BUNTINE, W. Operations for learning with graphical
models. J. Artijicial Intelligence Research 2 (1994),
159-225.

BUNTINE, W. Graphical models for discovering knowl-
edge. In Advances in Knowledge Discovery and Data
Mining, U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. S. Uthurssamy, Eds. MIT Press, 1995.

Will domain-specific code synthesis become a silver
bullet? IEEE Intelligent Systems (1998). In Trends
and Controversies.

HADDAWY, P. Generating bayesian networks from
probablity logic knowledge bases. In Proc. 10th Conf.
on Uncertainty in Artificial Intelligence (San Francisco,
CA, USA, July 1994), R. L. de Man&as and D. Poole,
Eds., Morgan Kaufmann Publishers, pp. 262-269.

JORDAN, M., Ed. Learning in Graphical Models.
Kluwer Academic Publishers, Dordrecht, 1998.

LAUFUTZEN, S., DAWID, A., LARSEN, B., AND LEIMER,
H.-G. Independence properties of directed Markov
fields. Networks 20 (1990), 491-505.

LI, Z., AND D’AMBRQSIO, B. Efficient inference in
Bayes nets as a combinatorial optimization problem.
International J. Approximate Reasoning 11, 1 (1994),
55-81.

LOWRY, M., PHILPOT, A., PRESSBURGER, T., AND
UNDERWOOD, I. AMPHION: Automatic programming
for scientific subroutine libraries. In Proc. 8th Intl.
Symp. on Methodologies for Intelligent Systems (Oct.
1994), Z. W. Ra4 and M. Zemankova, Eds., LNAI 869,
Springer, pp. 326-335.

NEAL, R., AND HINTON, G. A view of the EM
algorithm that justifies incremental, sparse, and other
variants. In Jordan [7].

PEREIRA, F., TISHBY, N., AND LEE, L. Distributional
clustering of English words. In Proc. ACL-93 (June
1993).

RANDALL, C., KANT, E., AND KOSTEK, S. Automatic
synthesis of financial modeling codes. In Proc. Intl.
Association of Financial Engineers First Annual Com-
putational Finance Conf. (Aug. 1996).

THOMAS, A., SPIEGELHALTER, D., AND GILKS, W.
BUGS: A program to perform Bayesian inference using
Gibbs sampling. In Bayesian Statistics 4, J. Bernardo,
J. Berger, A. Dawid, and A. Smith, Eds. Oxford
University Press, 1992, pp. 837-42.

WHITTAKER, J. Gmphical Models in Applied Multi-
variate Statistics. Wiley, 1990.

376

