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Abstract

We present an application of automated theorem proving to software engineering:
the reuse of software components based on their formal specifications. Such specifica-
tions can be viewed as contracts. Our work is motivated by the fact that safe reuse can
only be achieved in a contract-based development process, where contracts are used as
the actual medium for component retrieval. Theorem provers can be applied to match
contracts against user queries, thus retrieval becomes a deduction problem. This ap-
plication presents some unique challenges because a huge amount of proof tasks is
generated, most of them being non-theorems. In order to achieve acceptable response
time, our retrieval system NORA/HAMMR uses an incremental filter pipeline. Com-
ponents are first selected or rejected by signature matching and model checking; the
prover is only applied to components which survived earlier stages in the pipeline.
This chapter describes design and underlying technology of NORA/HAMMR. It con-
cludes with several empirical evaluations of retrieval performance in connection with
the provers PROTEIN, SETHEO and SPASS.

1 Reuse by Contract

Reuse of approved components and concepts is a major characteristic of mature engineering
disciplines. In software engineering it has even been considered from the very beginning
(cf. McIlroy’s [McI68] contribution to the seminal NATO conference) but despite ongoing
interest and research it is by no means an established practice.

The most basic technique, reusing code pieces, still prevails. Unfortunately, it is com-
plicated because of the amount of information which must be considered as even some
very fine details of the code must be inspected and checked against the new assumptions.
And while experience tells us that this is possible, it has also taught us that it is difficult.
Code reuse remains inherently risky and the spectacular stories are no success stories. The
investigation of the recent Ariane 5 disaster for example revealed that it was caused by the

∗to appear in: Automated Deduction — A basis for applications, Vol. III, Chapter 11, W. Bibel and
P. H. Schmidt (eds.), Kluwer 1998. Please refer always to the final version. This preprint is not for public
dissemination.
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reuse of an unmodified Ariane 4 software component which led to an uncaught exception
crashing the software and hence the spacecraft [Lio96].

It has been argued that the ultimate reason for the crash was the component’s failure to
make its assumptions explicit. Jézéquel and Meyer [JM97] thus propose to use contracts,
i.e., formal models of the components’ behavior. The best-known contracts are axiomatic
specifications with pre- and postconditions but other formats are also possible, e.g., type
and class invariants or abstract statements. Jézéquel and Meyer conclude that

“reuse without a contract is a sheer folly. From CORBA to C++ to VisualBasic
to ActiveX to Java, the hype is on software components. The Ariane 5 blunder
shows clearly that näıve hopes are doomed to produce results far worse than a
traditional, reuse-less software process. To attempt to reuse software without
assertions is to invite failures of potentially disastrous consequences.”

Reuse by contract embodies this premise: the components are associated with contracts
and organized, retrieved, and reused by these. This approach has three major benefits:

• it supports safe reuse and safe software composition because it can retrieve the
components which provably fulfill the contracts,

• it promotes abstraction because the contracts become the actual medium by which
components are retrieved, and

• it constitutes a formal framework in which every single reuse step can be formally
justified.

In essence, reuse by contract is the application of formal methods to software reuse. Within
our project NORA/HAMMR1 we investigate not only technical problems as for example
scalable and efficient architectures or contract-based library indexing and retrieval tech-
niques but also organizational aspects such as reuse-friendly specification techniques, the
integration into formal software development processes, or the interaction with conven-
tional reuse mechanisms. Our long-term goal is to build a system which smoothly com-
bines component design, implementation, and verification with the systematic reuse of
fully specified and verified component libraries.

In this chapter we will focus on deduction-based software component retrieval because
it is the key problem in reuse by contract: “You must find it before you can reuse it!”2

Its purpose is to check whether the contracts of the client and a candidate component are
compatible in some sense and hence the candidate is suitable for reuse. It thus builds a
proof task from the contracts which formally captures the intended compatibility and uses
automated deduction techniques to solve this task. If the proof obligation can be solved
the candidate is retrieved, if not it is discarded—retrieval becomes a deduction problem.
The crucial point is to retrieve in a short time as many relevant components as possible
(high recall) while maintaining a high fraction of “right” components (high precision).

The basic idea of deduction-based retrieval is very simple and has already been pro-
posed several times before [KRT87, RW91, MM91] but a practical implementation is very

1NORA is no real acronym; HAMMR is a highly-adaptive multi-method retrieval tool. This work has
been supported by the DFG under grants Sn11/2-1, Sn11/2-2, Sn11/2-3 and Schu908-5/1 and within the
SFB 342, subproject A5.

2The First Golden Rule of Software Reuse, attributed to W. Tracz.
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difficult. It is not sufficient to concentrate on the deduction problems because only a care-
fully engineered complete retrieval system generates tractable problems. But one must also
take care of other aspects: integration into the software development process, contract lan-
guage, user interface, response times, or degree of automatization come immediately to
mind. It is the consideration of such non-deductive aspects which sets NORA/HAMMR

apart from other approaches.
The remainder of this chapter is organized as follows. The next section discusses

various forms of proof tasks and their effects on software reuse. Section 3 then reviews
the requirements for a practical tool and develops the architecture of NORA/HAMMR.
Its main feature is a pipeline of filters of increasing deductive strength which maintains
a balance between fast response and high precision. Sections 4 to 6 are each devoted to
a class of such filters: signature matching filters, rejection filters and confirmation filters
with automated theorem provers (ATPs). We describe the respective steps which must
be taken to translate the proof tasks from the application domain and to prepare them
for the different provers. Section 7 details on the experimental evaluation of this process.
We conclude the chapter with a survey of related work and with discussions of the lessons
learnt in this application of automated theorem proving to software engineering and future
work on NORA/HAMMR.

2 Contracts, Retrieval, and Reuse

2.1 Contract Languages

Reuse by contract requires that each component is associated with a contract of its own
which captures the essentials of the components behavior. In practice, components are
usually functions and axiomatic specifications with pre- and postconditions are the most
common form of contracts. Pre- and postconditions of a component c (which we will denote
by prec and postc, respectively) could in principle be formulated in pure FOL but this is
hardly acceptable by the user. Instead, a more convenient specification language with a
rich set of predefined operations must be chosen as contract language or custom logics. In
NORA/HAMMR, we apply VDM-SL [Daw91]. VDM-SL allows a concise formulation and
even the specification of side effects. Figure 1 shows a typical component which has been
taken from our experimental library (cf. Section 7.1).3

Using custom logics, however, usually requires either a specialized deductive component
or a translation into FOL to retain soundness. VDM-SL is based on the three-valued logics
of partial functions or LPF [BCJ84] for which some dedicated provers exist (e.g., mural
[JJ+91] and Isabelle/VDM-LPF [AF97]). But these are not applicable in our case because
they work interactively. We decided not to tailor a fully automatic proof procedure for
LPF (e.g., based on a many-valued prover as 3TAP [BG+91]). Rather, we chose the second
approach and translate the proof tasks from VDM-SL via LPF to FOL. Hence, we can
re-use existing high-performance theorem provers and model checkers for FOL. We apply
an optimized variant of the translation of Jones and Middelburg [JM94] which will be
described in Section 3.4.

3In VDM-SL, ∧ means concatenation of lists, [ ] the empty list, [i] a singleton list with item i, and hd

and tl the functions head and tail, respectively.
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module rotate

exports functions rotate : list
p

−→ list
types item = token; list = seq of item
functions

empty : list −→ bool
empty(l) == l = [ ]

rotate(l : list) l’ : list
pre ¬ empty(l)
post l’ = (tl l) ∧ [hd l]

end rotate

Figure 1: Example component

2.2 Deduction-Based Retrieval and Proof Tasks

The purpose of deduction-based component retrieval is to identify components with com-
patible contracts. However, there are different notions of compatibility modeling different
approaches to reuse by contract. Match relations formalize these notions via their associ-
ated proof tasks formulated in the contract language.

Generally, a component c can be considered as compatible if it bridges the gap between
the pre- and postconditions the client requires. Ideally, c fits completely and can thus
be plugged into the place of the query q because it has a weaker pre- and a stronger
postcondition than required by q. This relation is sometimes [ZW95a, PBA95] formalized
by proof tasks of the form

(preq ⇒ prec) ∧ (postc ⇒ postq) (1)

but this is not entirely adequate.4 Reusable components are usually implemented very
defensive yet general. Hence, they may work on wider domains than expected but their
results on the domain extensions need not to fit the user’s expectations. If we want
to retrieve such components anyway we must restrict the postconditions to the domain
specified by preq:

(preq ⇒ prec) ∧ (preq ∧ postc ⇒ postq) (2)

This variant of plug-in compatibility increases recall compared to the standard variant
but due to the domain restrictions it still supports safe reuse. The retrieved components
can be considered as black boxes and may be reused “as is”, without further proviso or
modification.

Under a weaker notion of compatibility, c is not required to close the gap completely
but must bridge only a part of it. Then, c must have a stronger postcondition than desired,
at least on its own domain, but this domain is not determined by the query:

prec ∧ postc ⇒ postq (3)

In contrast to plug-in compatibility, code reuse based on this conditional compatibility
is potentially unsafe because the client still has to satisfy the open obligation pre c.

4Actually, the proof tasks are universally closed with respect to the formal input and output parameters
of the component and the query. However, to improve readability, we use these traditionally abbreviated
formulations.
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Deduction-based retrieval is also applicable for traditional white-box code reuse. The
partial compatibility match relation

prec ∧ preq ∧ postc ⇒ postq (4)

retrieves all components which do “the right thing” at least on the domain restricted by
prec ∧ preq. By varying preq, clients can control recall and granularity of reuse. The
weaker it is, the more components are retrieved but the smaller is their respective benefit.
However, in the absence of a formal process, manual checks or code modifications are
required in order to match the components precondition.

2.3 Deduction-Based Retrieval and Formal Software Development

Deduction-based retrieval works best in connection with formal software development
processes. Here, the contracts arise naturally and do not impose extra work on the devel-
opers. Since retrieving components is an alternative to any single refinement step, reuse
should be built into the process from the very beginning. This does not only increase
productivity as the development steps become larger but also enables vertical prototyping
and thus increases the confidence into the validity of the system being built.

3 The System NORA/HAMMR

3.1 Requirements

The goal of the project NORA/HAMMR is to build a practical deduction-based retrieval
tool for the working software engineer. Since “practical” has no precise definition we
will discuss some of its facets in the following. For practical purposes, retrieval can be
measured in terms of response times, recall (“do we get all matching components?”) and
precision (“do we get the right components?”).5 In the case of reuse by contract, however,
their relative importance depends on the applied software development process. The speed
of the tool is of course also important due to the Fourth Reuse Truism: “You must find it
faster than you can rebuild it!” [Kru92]. It is, however, dominated by the time required
to discard non-matches.

In a formal process, the first proven match already saves significant time which is
otherwise spent in refinement steps and their justifications. Hence, users are not very
much interested in the actual recall as long as it is not zero.

In a non-formal process the picture is quite different. Here, most time is spent in
analyzing and modifying the retrieved components manually, in particular when partial
compatibility is used. Hence, sets of promising candidates should be available for inspec-
tion immediately and at any time. Furthermore, a high recall is more important than high
precision.

For a practical tool , “look and feel” is extremely important. Here, the most obvious
aspect is the presentation. The bare theorem provers are unsuitable for non-experts and
must thus be hidden by a dedicated tool interface. It must also offer facilities to control
the retrieval process and to monitor its progress.

5Cf. Section 7.2 for exact definitions of recall and precision.
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The number and structure of proof tasks pose severe problems. In contrast to other
applications, e.g., in mathematics, where only a few tasks over small signatures and with
few axioms have to be solved, we face an “inverse economics of scale.” Each single query
already induces a number of complex proof tasks which is in the order of the size of the
component library. Consequently, their construction is itself a major task which must
run fully automatically. It also involves steps which are usually done by “experienced
experimentators”, e.g., addition of key lemmas or setting of prover control parameters.
Moreover, since reasonable libraries contain only few matches for any query, most of
the tasks describe non-theorems. This renders the näıve generate-and-proof approach
impossible. Instead, it becomes vital to rule out non-theorems using dedicated disproving
tools to prevent the actual prover from drowning. For the remaining tasks, aggressive
simplification is required before the proof can actually be attempted. But even then it
may remain necessary to use different provers, axiomatizations, or tactics in competition
to solve enough tasks.

3.2 System Architecture

NORA/HAMMR’s system architecture reflects these diverse and sometimes even conflicting
requirements. NORA/HAMMR is built as a pipeline of independent filters through which
the candidates are fed. This design supports an incremental retrieval approach. Each
component which passes a filter can immediately be inspected by the user. This early
feedback is essential for an effective control of the retrieval process as queries which are
too weak (i.e., in-discriminative) or too strong (i.e., over-specified) become obvious before
the entire library is checked by the first filter.

Typically, a filter pipeline starts with a signature matching filter which checks for
compatible calling conventions. Then, rejection filters try to efficiently discard as many
non-matches as possible. Finally, confirmation filters are invoked to guarantee a high
precision of the retrieval results. The next sections of this chapter are devoted to these
filters. The pipeline itself can be freely customized although any configuration should
maintain a fair balance between initial fast responses and a final high precision. However,
it still allows the integration of arbitrary non-deductive methods, e.g., full text retrieval
(see e.g., [MS89, MBK91, FN87]). This is especially important in a non-formal process
where the established methods need to be augmented and not to be replaced in order to
gain acceptance.

The prototypical graphical user interface (cf. Figure 2) reflects the system architecture.
The filter pipeline may be pre-selected via a pull-down menu and may easily be customized
through the central icon pad. Each icon also hides a specialized control window which
allows some fine-tuning of the filter. Additional inspectors display the intermediate results
and grant easy access to the components. They also allow to save retrieved components
into new library files which may be used for subsequent retrieval runs. A simple, VCR-
like control panel provides single-button control of the entire system. The objective of
the GUI is to hide evidence of automated deduction techniques as far as possible but to
grant control over these techniques as far as necessary. Hence, using NORA/HAMMR as a
retrieval tool requires only knowledge of the contract and target languages.
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Figure 2: Graphical user interface

3.3 Reuse Administration

Any reuse scheme requires an initial library (“seed”) and some continuous maintenance
but this demands more detailed knowledge of the contract language and the applied de-
duction methods than the average re-user has. We thus assume that a dedicated reuse
administrator is responsible for these tasks.

Construction of an initial library is straightforward but tedious. The components
(e.g., functions, procedures, or methods) need to be extracted and indexed: the contracts
must be written or checked and completed by all necessary context information (e.g., type
definitions or auxiliary functions). Since we use VDM-SL as contract language, we represent
a component as a VDM-SL module which contains the implicitly specified function and all
referred constructs.

The components may be organized hierarchically using plug-in compatibility to reduce
the number of proof tasks [MMM94, JC94] but for simplicity we currently work with a
flat library. We also assume without a formal justification that the contract is a faithful
representation of the component and that it contains all information of interest to the
clients. Hence, the actual source code is not required for retrieval purposes.

The reuse administrator must also support the deductive infrastructure. This in par-
ticular includes the construction and maintenance of a lemma library which contains the
axiomatization of the contract language. In NORA-HAMMR, the library is structured hi-
erarchically and also contains meta-information as for example operator rules, data type
generators, and minimal axiomatizations. This supports simplification and axiom selection
using similar techniques as described in Chapter III.2.11.
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3.4 Translation of Proof Tasks

Regardless of the chosen compatibility criterion, NORA/HAMMR first generates the proof
tasks in form of VDM-SL-expressions which are then translated in two phases into FOL.
The first phase transforms the expressions into formulas of the underlying LPF-calculus.
Following [Mid93], it eliminates all extra-logical custom constructs. E.g., custom-bindings
as let-bindings or pattern matching are replaced by appropriately scoped quantifiers, and
local definitions of auxiliary predicates and functions are transformed into equivalence and
equality clauses, respectively. But it also adds axioms to represent properties of locally
defined data types, e.g., constructor properties for tagged unions. Finally, it simplifies
the imposed sort structure and replaces all type invariants by explicit predicates using
standard relativation techniques [Obe62].

The second phase takes the resulting LPF-formula ϕ and translates it into FOL in
such a way that provability is preserved, i.e., essentially that `LPF ϕ ⇐⇒ `FOL ϕ′ holds.
Following [JM94], we use signed translation functions to map any LPF-formula which
contains an undefined subterm to an unprovable FOL-formula. E.g., the LPF-formula ∀l :
List ·hd l = hd l which has the truth value undefined becomes ∀l : List ·l 6= []∧hd l = hd l.
Since the quantifiers in LPF range only over proper (i.e., defined) values, we can optimize
the handling of formulas and terms which contain no occurrences of partial functions. Of
course, the translation into pure FOL is provability-preserving for the non-inductive part
of LPF only. For the proper handling of recursive data types an inductive ATP would
be required but in practice our induction approximation described in Section 6.2 works
sufficiently well.

The necessity or even usefulness of a three-valued logic for software specification pur-
poses has often been questioned and we refer to Jones [CJ91, Jon95] for its defense.
However, in our experience, the application of LPF proved ultimatively to be a matter
of taste and not an insurmountable problem. The optimized translation avoids much of
the usual overhead and after application of simplifications described in Section 5.1, the
translated formulas are very similar in size and structure to respective formulas originally
written in classical two-valued logics.

4 Signature Matching Filters

The main purpose of signature matching is to identify components which have compatible
calling conventions in the target language. It thus has to abstract from possible imple-
mentation choices, e.g., order of parameters or currying. It can even work across language
boundaries to increase interoperability. Signature matching filters do not use full contracts
for retrieval but only type information. They can thus be implemented using simpler de-
duction techniques than full first-order theorem proving which makes them also suitable
as fast pre-filters.

Signature matching is a disguised type inference problem: basically, a component
can be retrieved if the desired type can be derived for it, i.e., for a library L the set
{c ∈ L | T̀ c : τq} formally defines the answer for a query τq using the type system T .
Generally, this type-theoretic interpretation of signature matching gives us sound semantic
foundations which are also applicable if the semantics of the target language itself offers
no suitable interpretation of types.

In order to abstract from the implementation choices, the type system T used for
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retrieval must of course contain additional rules beyond those used for typing the language.
E.g., to take care of currying, the inference rule

Γ ` c : (α × β) → γ

Γ ` c : α → (β → γ)

which allows c to have the curried type as well is required.
The type derived for a component, however, does not need to be its principle type

[DM82]. Any query for components of type list(int) → int should also retrieve the poly-
morphic hd -function, whose principle type is usually ∀α · list(α) → α. Hence, retrieving
components with more general types is the equivalent to plug-in compatibility. Similarly,
to support partial compatibility, the query does not need to be completely specific. It may
contain free (i.e., not polymorphically bound) type variables which may be instantiated
by the derivation process.

For efficient implementations, an actual type inference (which is in fact a syntax-
directed proof search) is still much too expensive. Fortunately, this it not necessary
because it suffices in most cases to work on the type terms only. The key idea is to
replace type inference by E-unification . Here, the equational theory E captures the
intended abstractions of T , matching from the library type to the query cares for more
general types and matching from the query to the library handles the free variables. To
maintain the semantic integrity, it is crucial to show that E is an adequate representation
of T , i.e., that τc

.
=E τq for the most general type τc of any retrieved component c.

Signature matching has two important side effects. It identifies the respective formal
parameters of the two components and it maps the respective domains (i.e., types) onto
each other. Both effects are required to “join” the different scopes of two contracts to-
gether. This makes signature matching also a necessary prerequisite for the subsequent
filters.

5 Rejection Filters

Detecting and rejecting non-theorems is an essential step in deduction-based retrieval
because most of the tasks result from non-matching candidates. Unfortunately, most
ATPs for full first-order logic are not suited for this. They exhaustively search for a proof
(or refutation) of a conjecture (or its negation) but they usually fail to conclude that it
is not valid (or contradictory). The basic idea of rejection filters is to use efficient and
terminating proof procedures for logics which are decidable but weaker than FOL, e.g.,
quantifier-free or monadic fragments. In order to apply these procedures, the filter must
either identify suitable subtasks or translate (i.e., abstract) the entire task into the weaker
fragment.

Such filters are necessarily incomplete in a sense that non-theorems may still pass
through. However, from a practical point of view, this is not too severe as it only reduces
the effectiveness of the filters. Unfortunately, some rejection filters may also be unsound
and valid tasks may be rejected improperly, e.g., because the applied abstraction is not
not sufficiently precise. Candidates belonging to such tasks cannot be recovered again
which reduces the recall of the entire pipeline. The engineering problem is to balance this
loss against the achieved reduction.
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Rejection filters can be based on different principles. In the sequel we will focus on
two approaches: using logic simplification to detect non-matches and applying model
generators to find counter-examples.

5.1 Simplification

Aggressive simplification of automatically generated proof tasks is always necessary be-
cause they contain much redundancy, e.g., too large quantifier scopes or redundant equa-
tions. But simplification can also be used as a rejection filter. If a task can be simplified
to false, the candidate may obviously be rejected.

In NORA/HAMMR, we have experimented with different levels of simplification proce-
dures. The lowest level works with the FOL connectives and quantifiers. Here we eliminate
the propositional constants true and false which typically stem from the preconditions of
the components, and transform the proof tasks into a (conjunctive or disjunctive) normal
form and then further into anti-prenex form to minimize the quantifier scopes. The next
level handles equalities. For simplicity, we do not rewrite with all equations but restrict
ourselves to equations where at least one side is a single variable. Due to the structure of
the proof tasks it is necessary to use inequalities for conditional rewriting, too. Both levels
involve only the usual symbols of FOL and are thus hard-wired into our system. Because
the preceding translation of the proof tasks already handled the LPF-interpretation of the
symbols, we can apply the usual rewrite rules for simplification.

However, to achieve a significant filtering effect more semantic information must be
utilized. In NORA/HAMMR, we extract this information automatically from the lemma
library maintained by the reuse administrator. The lowest semantic level just identifies all
axioms and lemmas suitable as rewrite rules, extracts a terminating subset and rewrites
the task into the respective normal form. For operators which are identified as associative
and commutative, we also use AC-rewriting. In contrast to rewrite-based theorem proving,
rejection filters need no confluent rewrite system and hence no expensive Knuth-Bendix
completion. On this level, we also consider quantifiers as “ordinary” operators and rewrite
them modulo α-conversion. We can thus use the axiom ∃x : T · p(x) to simplify Q ∧ ∃y :
T · p(y) to Q.

The next semantic level is concerned with properties of sorts. If a sort is marked
as freely generated by some set of constructor functions, we can use this information to
simplify equations between constructor terms. E.g., for lists we simplify nil = cons(x, xs)
to false and cons(x, xs) = cons(y,nil) to x = y ∧ xs = nil . But we use the generator
information even more aggressively. From the type information of the generators we can
determine whether the domain of a sort contains at least two different elements or not. If
this is the case, we rewrite universally quantified equations as for example ∀x : T ·x = t to
false provided that x does not occur free in t. Similarly, existentially quantified equations
are rewritten to true. Both simplifications are in general unsound when partial functions
are involved but the preceding LPF-translation guarantees that they do not change the
provability of the original formulas.

The final semantic level again uses the generator information to unfold sorted quan-
tifiers by a single step. This is similar to the induction approximation described in Sec-
tion 6.2. The difference is that we do not generate a proper step case. For example, we
rewrite ∀l : List · F(l) only to ∀i : Item, l′ : List · F(nil) ∧ F(cons(i, l′)).

10



5.2 Counterexample Generation

A component c can always be rejected, if we find a “counter-example” for its associated
proof task because it then cannot be valid. Model generators for FOL like Finder [Sla94]
or MACE [McC94] try to find such counter-examples (which are just interpretations under
which the task evaluates to false) by systematically checking all possible interpretations.
Their highly efficient implementation (usually using BDD-based Davis-Putnam decision
procedures) would make them ideal candidates for fast rejection filters.

However, the exhaustive search terminates only if all involved domains are finite. But
most domains in our application are unbounded, e.g., numbers or lists. If we want to use
model generation techniques for our purpose, we must map these infinite domains onto
finite representations, either by abstraction or by approximation.

Domain abstraction uses techniques from abstract interpretation [CC77] where the
infinite domain is partitioned into a small finite number of sets which are called abstract
domains. Abstract model checking [Jac94] then represents the abstract domains by single
model elements and tries to find an abstract counter model, using an axiomatization of the
abstract functions and predicates with a standard FOL model generator. The drawback
of abstract model checking is that some domains in combination with certain predicates
(e.g., equality) cannot be abstracted properly.

The experiments we describe in Section 7.4 are based on a second approach which uses
domain approximations. From the infinite domain, we select a number of values which
seem to be “crucial” for the component’s behavior. E.g., for lists, we pick the empty
list nil and some small lists with one or two elements. Then, we search for models or a
counter-example. This approach mimics the manual checking for matches: if one looks for
matching component, one first makes checks with the empty list and one or two small lists.
If this does not succeed, the component cannot be selected. Otherwise, additional checks
have to be applied. This approach, however, is neither sound nor complete. For some
invalid formulas, a counter-example can be found in the finitely approximated domain,
e.g., ∃l : List · ∃i : Item · l = [i]∧l. Vice versa, for some valid formulas the approximation
may be no longer a model, e.g., ∃x, y, z : List ·x 6= y∧y 6= z∧z 6= x which has a model only
in domains with at least three distinct elements. While the first case is not too harmful
for our application—the performance of the filter just decreases (i.e., more proof tasks can
pass), the second one is dangerous: proof tasks describing valid matches might be lost.

6 Confirmation Filters

Confirmation filters are in charge of rejecting any task for which they cannot find a proof.
If a proof is found, the retrieved component actually matches the query with respect to
the selected compatibility criterion (see Section 2.2). Thus, the last filter in any pipeline
should be such a confirmation filter.

In contrast to rejection filters, the applied deduction must be sound. Otherwise, the
guaranty becomes void and the precision may become imperfect. In NORA/HAMMR,
we use first-order automated theorem provers as confirmation filters. The experiments
described in this chapter have been carried out with PROTEIN, (p-)SETHEO, and SPASS.
These systems are sound, i.e., they always guarantee full precision of the retrieval process.
However, the challenge in this application is to retain a high recall with short answer times
in the range of up to a few seconds.
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The proof tasks must be pre-processed by a variety of steps to generate suitable input
for the different provers. While some of these steps are specially tailored for each prover
(e.g., handling of sorts and equations, control of the prover), others address common
problems: logic simplification of the formulas (using techniques described in Section 5.1),
selection of axioms, and handling of inductive problems.

6.1 Selection of Axioms

Each proof task must contain—besides the theorem and the hypotheses—the properties
of each data type (e.g., List, Nat) as a set of axioms. Further lemmata can be added
to the formula to facilitate and abbreviate complex proofs. Automated theorem provers,
however, are extremely sensitive with respect to the number and structure of the axioms
added to the formula. Adding a single (unnecessary) axiom can increase the run-time
of the prover by orders of magnitude, thus decreasing recall in an unacceptable way. In
general, selecting the optimal subset of axioms is a very hard problem and has not been
solved in a satisfactory way yet. Our strong time-constraints furthermore do not allow us
to use time-consuming selection techniques. In our prototype, we therefore use a simple
strategy similar to the one described in Chapter III.2.11 in this volume. The lemma library
contains hierarchically structured sub-theories for all involved data types. By selecting all
sub-theories which share function symbols with the theorem and the hypotheses and the
sub-theories they rely on, we essentially obtain all axioms sufficient to find a proof of the
given obligation.

6.2 Inductive Problems

Whenever recursive specifications are given or recursively defined data structures are used
(e.g., lists) many of the proof tasks can be solved by induction only. The provers under
consideration cannot handle induction by themselves and our strong time-constraints do
not allow us to use an inductive theorem prover (e.g., [BvH+90]). Therefore, we approx-
imate induction by splitting up the problem into several cases. For example, for a query
and a candidate with the signature l : List, and the corresponding proof task of the form
∀l : List · F(l) we obtain the following cases:6

∀l : List · l = [] ⇒ F(l)
∀l : List · ∀i : Item · l = [i] ⇒ F(l)
∀l : List · ∀i : Item, l0 : List · F(l0) ∧ l = [i]∧l0 ⇒ F(l)

After rewriting the formula accordingly, we obtain three independent first order proof tasks
which then must be processed by the prover. Only if all three proof tasks can be proven
the entire proof task is considered to be solved. However, we cannot solve every inductive
problem. Nevertheless, in combination with the simplification filter (Section 5.1, unfold-
ing), this approximation is highly effective. For first experiments with this approximation
see [SF97].

6Although it would be sufficient to have cases 1 and 3 only, we also generate case 2, since many
specifications are valid for non-empty lists only. For those specifications, case 1 would be a trivial proof
task which does not contribute to filtering.
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6.3 The Provers

All provers which are being used for the experiments (Protein, SETHEO, Spass) have been
developed or enhanced within the Schwerpunkt Deduktion. They all accept formulas in
first order logic and try to find a refutation for it. They receive proof obligations in sorted
first order logic. Each prover has its own modules to convert the formulas into clausal
normal form. The sorts of the proof tasks are imposed from the VDM-SL contracts and are
structured hierarchically. VDM-SL allows only very limited overloading and polymorphism
such that it can actually be resolved by the signature matching filter (cf. Section 4). It also
allows, however, dynamic sorts with arbitrary invariants but these have been eliminated
during the translation into FOL.

Details of the proof procedures of the provers are largely irrelevant for NORA/HAMMR.
We can consider the provers as black boxes which return “proof found” or “failed to find
a proof” after the given time-limit. Therefore, we will not give an extended description of
each prover.

PROTEIN (PROver with a Theory Extension IN terface, [BF94]) is a PTTP-based
first order theorem prover over built-in theories for theory reasoning (e.g., handling of
equations) using a linearizing completion technique. PROTEIN is based on the Model
Elimination Calculus [Lov78] and refinements thereof.

SETHEO [LS+92, GL+94] is also based on the Model Elimination Calculus. However,
the proof procedure is implemented as an extension of the Warren Abstract Machine.
Equations are handled by the näıve approach of adding the corresponding equality ax-
ioms, or by the compilation approach used within E-SETHEO [MI+97]. SETHEO provides
a variety of parameters to control its search. In order to optimize SETHEO’s answer times,
parallel competition over parameters is used. The parallel prover p-SETHEO (see Chap-
ter II.2.7 for details) allows us to obtain optimal efficiency combined with short answer
times.

SPASS [WGR96, GMW97] is based on the superposition calculus developed by Bach-
mair and Ganzinger [BG94]. This calculus which is able to handle equality is extended
by specific sort constraints (cf. Chapter I.2.9). This means that sort-information about
the variables is represented as monadic predicates which are handled specifically within
SPASS.

7 Experiments

7.1 The Experimental Data Base

All experiments were carried out over a database of 119 list specifications which were
modified to have the type list → list because the integration of the signature matching
filter is not yet completed. Approximately 75 of these specifications describe actual list
processing functions (e.g., tail, rotate, or delete minimal) while the rest simulates queries.
We thus included under-determined specifications (e.g., the result is an arbitrary front
segment of the argument list) as well as specifications which don’t refer to the arguments
(e.g., the result is not empty). For simplicity, we formulated the specifications such that
the postconditions only use VDM-SL’s built-in sequences and comparisons.

In order to simulate a realistic number of queries we then cross-matched each specifica-
tion against the entire library, using plug-in compatibility as match relation. This yielded
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a total of 14161 proof tasks where 1860 or 13.1% were valid. Although the domain of our
experimental library is rather limited, it serves as a good test-bed, because it allows to
generate a realistically large number of proof tasks with many non-trivial matches.

7.2 Evaluation of Filters

Information retrieval methods are evaluated by the two criteria precision and recall [SM83].
Both are calculated from the set REL of relevant components which satisfy the given match
relation with respect to the query and RET, the set of retrieved components which actually
pass the filter. The precision p is defined as the relative number of hits in the response
while the recall r measures the system’s relative ability to retrieve relevant components:

p = |REL∩RET |

|RET |
r = |REL∩RET |

|REL|

Ideally, both numbers would be 1 (i.e., the system retrieves all and only matching com-
ponents) but in practice they are antagonistic: a higher precision is usually paid for with
a lower recall. We also need some metrics to evaluate the filtering effect. To this end we
define the fallout

f =
| RET\REL |

| L\REL |

(where L is the entire library) as the fraction of non-matching components which pass the
filter as well as the reduction which is just the relative number of rejected components.
Finally, we define the relative defect ratio by

d =
| REL\RET |

| L\REL |
·

| L |

| REL |

as the relative number of rejected matching components in relation to the precision of the
filter’s input. Thus, a relative defect ratio greater than 1 indicates that the filter’s ability
to reject only irrelevant components is even worse than a purely random choice.

7.3 Rejecting Tasks with Simplification

Table 1 summarizes the results of the simplification filter. The columns labeled with
FOL and Equality represent the respective syntactic levels, Sorts the full set of semantic
simplifications except quantifier unfolding which is included in the last column. Run-
times (measured on a Sun SparcStation20) are well below 2 seconds. The results justify
the application of simplification as first rejection filter. All four levels are sound and thus
yield a total recall and a zero defect ratio. It is, however, somewhat disappointing that
even aggressive syntactic simplification has absolutely no filtering effect and hence dumps
the full fallout on the next filter. But both syntactic variants are already able to reduce
a significant fraction (FOL: 21.0%, Equality: 26.7%) of the valid tasks to true. These can
be added to the original rejections which gives the small total reductive effect shown in
the reduction+ entry.

Adding semantic information improves the situation slightly but only with unfolding
we are able to reject more than 40% of the tasks because they are rewritten to false.
The set of surviving candidates still contains more than 50% of the original non-matches
(fallout) but its precision already increased by a factor of 1.7.
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Level FOL Equality Sorts Unfolding

recall r 100.0% 100.0% 100.0% 100.0%

precision p 13.1% 13.1% 13.8% 22.1%
σp 0.19 0.19 0.2 0.25
increase 1.0 1.0 1.1 1.7

fallout 100.0% 100.0% 94.4% 53.2%
reduction 0.0% 0.0% 4.8% 40.7%
reduction+ 2.8% 3.5% 9.3% 45.2%
defect ratio d 0.0 0.0 0.0 0.0

Table 1: Results of simplification

Model Size: |List | + |Item| 2+1 3+1 3+2

recall r 74.7% 76.5% 81.3%
σr 0.25 0.26 0.25

precision p 18.5% 19.6% 16.5%
σp 0.21 0.19 0.16
increase 1.4 1.5 1.3

fallout 42.8% 41.0% 55.5%
reduction 50.1% 51.7% 39.0%
defect ratio d 0.51 0.45 0.48

Table 2: Results of model checking

7.4 Rejecting Tasks with Model Generation

For the experiments with counter-example generation, we used different approximations
of the domains List and Item. Due to the large number of variables in the proof tasks,
however, we are confined to small approximations with at most three elements. Table 2
shows the results obtained with the model generator MACE (with a run-time limit of 20
seconds). Regardless of the domain approximation, this filter is able to recover at least
75% of the relevant matches. This figure is at the lower end of our expectations, since
almost 25% of the valuable matches are lost in this filter. Furthermore, the large standard
deviation indicates that the filter’s behavior is far from uniform and that it will perform
poor for some queries.

On the other hand, between 41% and 55% of the non-matches (fallout) can pass this
filter. Together with an increase of precision of approximately 1.5, the filtering effectiveness
of the counter-example generation filter is in the range of the simplification filters. Due to
the comparatively low recall, however, the defect ratios are quite high. Although this filter
acts at least twice as good as blind guessing, the results are not satisfactory. The main
reasons for this poor behavior are the large number of variables in the proof tasks which
cause many timeouts and the deeply nested terms which would require larger domain
approximations.
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7.5 Using ATPs as Confirmation Filters

For the evaluation of the performance of the filters we only used the 1860 valid proof tasks
of our library. Since the provers are not able to detect most non-matches, this selection is
justified. Table 3 shows an overview of the results of all experiments. Proof tasks are most
simple if one tries to retrieve identical components. In these cases, they are of the structure
A∧F → F . The first row in Table 3 shows that the provers (PROTEIN, p-SETHEO with
2 processors, and SPASS) were able to detect most of these matches. However, in these
cases the unnecessary axioms A decreased the recall substantially. E.g., p-SETHEO was
able to prove 86% of these cases when the axioms were dropped. The next series of
experiment considered the general case, retrieval of arbitrary matching components. For
unsimplified proof tasks, the recall which was obtained with a run-time limit of 60 seconds
was relatively low. No prover was able to find significantly more than 60% of the matches.
Table 3 shows the detailed results for each prover in the columns labeled with basic. There
are two major reasons for this result. First, these experiments were not carried out with
the approximation of induction as described in Section 6.2. Previous experiments with
SETHEO [SF97] and a smaller library showed that the overall recall could be increased by
about 19% even for unsimplified tasks. Second, the pre-selection of axioms and lemmas
is still too coarse. In particular, it is not independent of the other preprocessing and
simplification steps. Table 4 shows results obtained by SPASS on four variants of the proof
tasks. Two versions only contain a minimal set of axioms; for the others useful lemmas
have been added. Furthermore, the variants differ in the way the predicates have been
pre-processed: in the “expanded” case, all occurrences of the predicates not equal and
<, >,≥ have been replaced by appropriate definitions which use = and ≤ only. Table 4
reveals that the recall can be increased when the definitions are expanded, i.e., the number
of different predicate symbols is reduced. In this case, however, the additional lemmas
are counter-productive, i.e., they increase the search space without improving the overall
recall.

PROTEIN p-SETHEO SPASS competition

Task type Basic Best Basic Best Basic Best Best

rid 50 % 65 % 71 % 66 % 89 % 82 % 94%

recall r 42.2% 56.6% 47,1% 55.9% 61.1% 71.2% 80.1%
σr 0.35 0.36 0.37 0.38 0.36 0.41 0.30

precision p 100 % 100 % 100 % 100 % 100 % 100 % 100 %

Table 3: Results of ATP-based confirmation filters

Both tables show that different variants of proof tasks and different provers exhibit
quite a different behavior. Since our main interest is to obtain a high recall while keeping
the answer-times low, parallel competition is of interest. When all provers are running
different variants in a parallel competitive mode (similar to p-SETHEO), significantly
better results can be obtained, as the simulated results in the last columns of both tables
show. With such a technique, we were able to get an overall recall r of 80% which is high
enough for practical purposes.
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minimal axioms axioms + lemmas competition

expansion yes no yes no yes no

rid 91% 89% 76% 76% 91% 89%

recall r 66.4% 61.1% 64.8% 61.7% 71.1% 66.5%
σr 0.35 0.36 0.41 0.40 0.35 0.36

precision p 100 % 100 % 100 % 100 % 100 % 100 %

Table 4: Detailed results of the SPASS-based filter

8 Related Work

Reuse by contract is an attempt to lift the axiomatic programming style of Hoare [Hoa69]
into the large. It is thus a combination and extension of the “Systematic Software Devel-
opment” [Jon90] and the “Design by contract” [Mey92] approaches. Similar work [LW94]
is done in component-oriented programming which has recently emerged as a new subfield
in software engineering [WBS97, LS97].

Signature matching has originally been developed as a library retrieval method for
functional programming languages. Runciman and Toyn [RT91] define a partial order
on polymorphic types and then use unification to retrieve components with equivalent or
more general types. Rittri [Rit91, Rit90, Rit93] explored the strong connections between
typed polymorphic lambda calculi and Cartesion closed categories (CCC). His system uses
equational matching with respect to the theory CCC and is thus semantically stronger
motivated than the one of Runciman and Toyn. However, since CCC -unification is un-
decidable [NPS93] he has to resort to the decidable sub-theory of linear isomorphisms,
thus losing some of his foundations. Matthews [Mat92] extended Rittri’s work by sorts to
handle Haskell’s type classes. DiCosmo [DiC95] introduced the notion of definable isomor-
phisms which can be used to reconstruct the necessary mapping between the identified
types. Moorman and Wing [ZW95a] work with match predicates which are essentially
Prolog-implementations of simple inference rules used in theory unification. The predi-
cates can be combined to obtain different filters but Moorman and Wing do not discuss
any decidability questions which may result from this combination (cf. [SS90] for the com-
bination of unification algorithms). Their work also lacks any semantic foundations but
is pragmatically motivated. Stringer-Calvert [SC94] has applied this framework to Ada.

Most early publications on deduction-based retrieval ignored the usability and scaling
problems. We will thus discuss only more recent work; for a more general overview see
[MMM98]. Moorman and Wing [ZW95b] have investigated specification matching in a
slightly more general framework than ours but their main application area is also software
reuse. They use the Larch/ML specification language for component description and the
associated interactive Larch prover for retrieval. Mili et al. [MMM94] describe a system in
which specifications are given as binary relations of legal (input, output)-pairs. They then
define a subsumption relation on such relations and use this for retrieval, relying on Otter
as the deductive component. However, their system is still in a prototypical stage, so no
relevant statistical evaluation is presented. The work of Jeng and Cheng [JC94] also uses
a subsumption test but to construct a hierarchical library. Scaling problems have been
addressed by various authors. The Inscape/Inquire-system [PP93] limits the specification
language to make retrieval more efficient. Similarly, AMPHION [LP+94] uses a GUI to

17



foster a more uniform specification style which in turn allows an appropriate fine-tuning
of the prover. Additional speed-up is achieved by automatically “compiling” axioms into
decision theories [LV95]. These techniques have successfully been applied to assemble over
100 FORTRAN programs from a scientific component library for solar system kinematics.
Penix et al. [PBA95] use “semantic features” (i.e., user-defined abstract predicates which
follow from the components’ specifications) to classify the components and perform case-
based reasoning along this classification to identify the most promising candidates. This
classification process uses forward reasoning with an ATP. However, the authors give no
evidence of how successful their approach is.

9 Lessons Learnt

In this chapter, we have presented the deduction-based software component retrieval tool
NORA/HAMMR. From the very beginning we have considered it as an application project
with strong practical emphasis. Our goal was to show that such a tool is not only theo-
retically possible but practical with state-of-the-art theorem provers. We can summarize
our experience as follows:

1. Deduction-based software component retrieval is accepted only if any ATP evidence
is hidden behind a user-friendly interface with a problem-oriented specification lan-
guage; and if strong run-time constraints (“results while-u-wait”) are met.

2. Only a pipeline of different signature, rejection and confirmation filters prevents the
theorem prover from drowning.

3. Parallel competition between different provers and prover parameters is essential.

4. The application side (user interface, transformation of tasks into first order formulas)
is at least as hard and as important as the deduction side; automated theorem
proving alone is no silver bullet.

5. ATP researchers must pay more attention to the customers’ point of view and provide
convenient input formalisms as well as preprocessors for simplification.

6. We need fast methods to discover that a formula is not valid. Model checking is of
limited value for infinite domains.

7. Experiments show that today’s ATP technology makes deduction-based software
component retrieval an almost realistic option in a formal development process.

In developing NORA/HAMMR, we had to deal with much low-level details. Much time
was spent to transform syntactical representations of the formulas between the systems. A
major problem was to generate the proof tasks from the VDM-SL specifications, due to the
enormous syntactic variety. Much to our surprise, the translation from LPF to FOL was
no major impediment after the optimizations. The näıve translation, however, increased
the formula sizes considerably and brought retrieval to a grinding halt.

The integration of the model generators and theorem provers was easy. They can be
considered as black boxes which receive a proof task in sorted first-order logic together
with a run-time limit, after which they they return either valid, not valid, or time-out.
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The implementation of necessary simplifications took more effort than one can usually
afford in an application. Similarly, the administration of lemma libraries is an expensive
task. Unfortunately, we were not able to reuse the implementation of Reif and Schellhorn
(cf. Chapter III.2.11) because it is tailored towards equational logics.

A practical system must be evaluated in depth. Most other approaches in this area
(cf. Section 8) are tried out with a handful of toy examples only. For the evaluation of
NORA/HAMMR we spent much effort to develop libraries of reasonable size and complexity,
resulting in a statistically significant body of experimental data. The evaluation of the
system and its fine-tuning consumed large amounts of computation resources.

10 Future Work

Although the results of the experiments carried out so far are very encouraging, many
improvements are required before NORA/HAMMR can really be used in industry. We
are currently preparing experiments with a library of commercial date and time handling
functions as used e.g. in stock trading software.7

Due to the hard time-constraints, the reduction of proof tasks, both in complexity
and number, is of central importance. Powerful rejection filters must ensure that only a
few proof tasks remain to be processed by the automated theorem prover. However, our
current model-checking filter rejects too much valid matches due to the necessary approx-
imate abstractions. Future work will thus include experiments with even more aggressive
simplification techniques than those described in Section 5.1. We will also develop rejec-
tion filters based on decision procedures. Additionally, heuristics and knowledge-based
filters similar to [PA97] can help to reduce the number of proof tasks.

As our experiments showed, current high-performance ATPs are certainly usable as
confirmation filters. Much work, however, is still necessary to adapt them for such kinds
of proof tasks. In particular, the requirement of full automatization and the strong time-
limits must be obeyed carefully. Further important issues are the handling of inductive
proofs, and the selection of appropriate axioms. Here, more powerful heuristics must be
developed. A further reduction of the search space could be achieved by axiom compilation
techniques similar to those of Meta-AMPHION [LV95]. However, the integration of decision
procedures into the provers at hand is still an open research topic.
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Component-Oriented Programming, Jyväskylä, June 1997. Turku Centre for Computer
Science. TUCS General Publication No 5.

23



[WGR96] C. Weidenbach, B. Gaede, and G. Rock. ”Spass and Flotter version 0.42”. In
M. A. McRobbie and J. K. Slaney, (eds.), Proc. 13th Intl. Conf. Automated Deduction,
Lecture Notes in Artifical Intelligence 1104, pp. 141–145. Springer, July/August 1996.

[ZW95a] A. M. Zaremski and J. M. Wing. ”Signature Matching: A Tool for Using Software
Libraries”. ACM Transactions on Software Engineering and Methodology, pp. 146–170,
1995.

[ZW95b] A. M. Zaremski and J. M. Wing. ”Specification Matching of Software Compo-
nents”. In G. E. Kaiser, (ed.), Proc. 3rd ACM SIGSOFT Symp. Foundations of Software
Engineering, pp. 6–17, Washington, DC, October 1995. ACM Press.

24


