
Higher-order Transformations
with Nested Concrete Syntax

Rob Economopoulos
ECS, University of Southampton
Southampton, SO17 1BJ, UK
gre@ecs.soton.ac.uk

Bernd Fischer
ECS, University of Southampton
Southampton, SO17 1BJ, UK
b.fischer@ecs.soton.ac.uk

ABSTRACT
Transformations play an important role in grammar-based applica-
tions such as program generation. In this domain, the use of the
concrete syntax technology is particularly beneficial as it substan-
tially simplifies the development and maintenance of the transfor-
mations. Further benefits could be achieved by the use of higher-
order transformations to generate program transformations. How-
ever, both technologies cannot be combined easily because of the
difficulties in merging the different object, meta, and meta-meta
languages. Here we propose an approach to higher-order transfor-
mations with nested concrete syntax. We use Stratego as meta-meta
language and allow the embedding of arbitrary object languages
into arbitrary meta languages. We describe the implementation of
the approach and give two examples for its application, the embed-
ding of Stratego in itself to generate WebDSL program transfor-
mations, and the use of Stratego to generate Prolog-clauses with
embedded object syntax.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal definitions and the-
ory—Syntax; D.3.4 [Programming Languages]: Processors—Code
generation, Translator writing systems and compiler generators

General Terms
Languages

Keywords
Code generation, Program transformation

1. INTRODUCTION
Transformations are everywhere in grammar-based applications

and tools: for example, program transformations are often used
to implement program generators. However, the development of
transformation systems remains difficult [7]. Such systems are of-
ten specified as a set of rewrite rules [6, 2, 5], where the rules
are formulated over the terms of an abstract syntax such as pre-
fix constructor terms or XML. For “small” languages, this notation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LDTA 2011 Saarbrücken, Germany
Copyright 2011 ACM 978-1-4503-0665-2 ...$10.00.

is concise and adequate, but for languages with a large grammar
this becomes cumbersome very quickly [11]. The concrete syntax
technology [11, 3] mitigates these problems. It allows developers
to use the syntax of the target language (or object language) to for-
mulate the object structures in the rewrite rules, i.e., in the meta
language. Meta variables designate positions where dynamically
constructed object-level terms are injected at run-time. The com-
bined language can be parsed with a parser generated from both
language definitions that also handles the quotation and unquota-
tion operators. The resulting abstract syntax trees (ASTs) contain a
mixture of meta and object language syntax; the embedded object
language fragments are assimilated or exploded [4] into pure meta
language representation that can then be processed by the tools of
the meta language.
Independently, transformation development can also be simpli-

fied by higher-order transformations (HOTs), i.e., transformations
with another transformation as input or output. These are becom-
ing common in model-driven engineering (cf. [9]), but less so in
grammar-based applications. One reason might be that it is now
even more difficult to express object program fragments; in partic-
ular, they need to be expressed in the meta-meta language’s abstract
syntax representation of the meta language’s abstract syntax.
Unfortunately, both technologies (i.e., concrete syntax and higher-

order transformations) cannot be combined easily, because of the
difficulties in merging the object, meta, and meta-meta languages,
which can all be different. The main problem is that we can now
escape from the embedded object language into two different lan-
guage levels, and can thus inject object-level terms constructed at
two different stages, the run-time of the higher-order transforma-
tion, and the run-time of the generated transformation, respectively.
The explosion mechanism needs to be aware of both the level on
which the escape occurs and the level to which it refers, in order to
build the right ASTs. At the same time, we can also escape from
the meta language to the meta-meta language. This situation makes
it difficult to combine explosion mechanisms that have been devel-
oped independently.
Here we thus propose a general approach to higher-order trans-

formations with nested concrete syntax. We use the Stratego [5]
transformation language as meta-meta language and allow the em-
bedding of arbitrary object languages into arbitrary meta languages.
We describe the implementation of the approach and give two ex-
amples for its application, the embedding of Stratego in itself to
generate transformations of WebDSL programs, and the embed-
ding of Prolog-clauses with embedded object syntax into Strat-
ego rules. We use the Stratego-Stratego-WebDSL combination to
extend the WebDSL code generator indirectly, by systematically
changing the generated code.

generate-java-servlet-page :
def |[define mod* x_page(farg*) req* { elem* }]| ->
<emit-java-code-local> |[

package pkgname;
import java.util.*;
import javax.servlet.*;
public class x_page extends PageServlet {
public String getPageName() {
return "~x_page";

} }
]|

Figure 1: Stratego rewrite rule using concrete syntax to gener-
ate a Java servlet page for a WebDSL page definition.

2. BACKGROUND

2.1 Stratego
Stratego is a general transformation language that is centered

around four different themes: (i) rewrite rules to express basic
transformations, (ii) programmable strategies to guide the appli-
cation of these rules, (iii) concrete syntax to express the patterns of
rules in the syntax of the object language, and (iv) dynamic rewrite
rules to express context-sensitive transformations [5]. It is com-
plemented by the XT framework, a collection of tools that provide
grammar engineering and parsing support [5].
In Stratego, rewrites rule have the form R : p1 → p2 where s,

where R is the rule name, p1 resp. p2 are patterns, or terms with
variables, and the optional trailing where-clause specifies a con-
dition s that restricts the applicability of the rule. s is evaluated
after p1 is matched but before p2 is rebuilt. Terms are built from
constructors defined by means of a signature giving the respective
argument types and the result type for each constructor. Stratego is
built on top of SDF [10], which is used to define an external syntax
for the terms and to derive the signature from the parse rules.
Stratego uses programmable strategies to determine how a term

is traversed, and how and where rules are applied. The application
of a single rewrite rule is a simple strategy that transforms a term at
the root. This strategy fails (similar to the notion of failure in Pro-
log) when the left-hand side does not match or the condition fails.
More complex strategies are built up using strategy combinators
and definitions. The fundamental combinators are sequential com-
position s1 ;s2, and deterministic choice s1 <+s2, which first tries
to apply strategy s1 and if that fails, applies s2. One-level traversal
combinators such as all apply a strategy to the direct subterm(s)
of a term; more complex traversals are then defined recursively.

2.2 Concrete Syntax in Stratego
Since rewrite rules over abstract syntax are large and difficult

to read [11], Stratego allows an object program’s concrete syntax
to be used instead. Figure 1 shows the rule generate-java-servlet-
page that matches the concrete syntax of a WebDSL [13] page def-
inition and transforms it into a (partial) Java servlet page. The con-
crete syntax appears between the |[and]| quotation brackets and
meta-variables (e.g., x_page) are typeset in italics. Identifiers in
front of the quotation brackets denote the syntactic category of the
embedded fragment, which is sometimes required for disambigua-
tion.
In order to embed an object language’s concrete syntax into Strat-

ego it is necessary to combine its SDF syntax definition with that of
Stratego, and to define the actual embedding, i.e., the syntax of the
quotation and unquotation operators as well as the meta-variables.
The EmbeddedWebDsl module shown in Figure 2 extends the
imported object language (i.e., WebDSL) by the quotation and un-

module EmbeddedWebDsl[M]
imports
WebDSL // object language syntax
exports
context-free syntax
"webdsl" "|[" Application "]|" -> M{cons("ToTerm")}
"webdsl" "|[" TemplateElement "]|" -> M{cons("ToTerm")}
"webdsl*" "|[" TemplateElement* "]|" -> M{cons("ToTerm")}
"def" "|[" Definition "]|" -> M{cons("ToTerm")}
"def*" "|[" Definition* "]|" -> M{cons("ToTerm")}

context-free syntax
"~app:" M -> Application {cons("FromTerm")}
"~templElem:" M -> TemplateElement {cons("FromTerm")}
"~templElem*:" M -> TemplateElement* {cons("FromTerm")}
"~def:" M -> Definition {cons("FromTerm")}
"~def*:" M -> Definition* {cons("FromTerm")}
variables
"x_"[A-Za-z0-9]* -> Id {prefer}

Figure 2: SDF for embedding of WebDSL in meta-language at
non-terminal M.

module EmbeddedWebDSLMix[Ctx M]
imports EmbeddedWebDSL[M]

[Application => Application[[Ctx]]
TemplateElement => TemplateElement[[Ctx]]
Definition => Definition[[Ctx]]]

module Stratego-WebDSL-Java
imports
StrategoMix[Host]
EmbeddedWebDslMix[WebDSL Term[[Host]]]
languages/java/EmbeddedJavaMix[Java Term[[Host]]]
hiddens
context-free start-symbols Module[[Host]]

Figure 3: SDF for embedding ofWebDSL and Java in Stratego.

quotation operators; by convention, their abstract syntax uses the
constructors ToTerm and FromTerm. The module parameter M
specifies the non-terminal symbol of the—yet unspecified—meta
language at which the embedding happens. Such embedding mod-
ules must be defined manually for each embedded language; how-
ever, these modules are very regular, and we omit the definition of
the corresponding EmbeddedJava.
The syntax definitions of language embeddings are re-usable for

multiple host languages, provided unintentional embeddings are
prevented. This is achieved via grammar mixins [4], which rename
all non-terminals of a language embedding with the context of the
host language in which the embedding is used. The renaming ex-
ploits SDF’s parameterized sorts (e.g., Definition[[Ctx]]).
The mixins can be generated automatically by the gen-sdf-mix
tool, and the first module in Figure 3 shows the mixin correspond-
ing to the EmbeddedWebDSL fragment in Figure 2. The final
module in Figure 3 imports the syntax for Stratego, WebDSL and
Java via the grammar mixins and defines a new start-symbol for the
language combination. From this combination, a parser can be au-
tomatically generated that recognises and builds ASTs of Stratego
programs with concrete syntax patterns.
Before the combined ASTs can be processed by the Stratego

compiler, the embedded object language fragments (i.e., WebDSL
and Java) must be transformed into pure Stratego. This assimi-
lation, or explosion, to Stratego can be done generically for any
object language as long as the embeddings to and from Stratego
are labeled consistently. The combined AST is traversed top-down,
and any ToTerm-node (which indicates that its argument is in the
WebDSL or Java abstract syntax), is exploded into Stratego abstract
syntax. Conversely, any FromTerm-node in this subtree indicates

application Simple
imports initializeDB
entity User {
uname :: String (name)
pword :: Secret

}
section pages
define page root() {
header{"Welcome"}
table {

for (u:User) {
row {column{output(u.name)}

column{navigate(editUser(u)){"edit"} }
} } }
define page editUser(u:User){
form{
input(u.name)
input(u.pword)
submit action{u.save();} {"save"}

} }

Figure 4: Simple WebDSL application.

a fragment of (escaped) Stratego abstract syntax, so no transforma-
tion is required. Implicit meta-variables are used directly as Strat-
ego variables.
The combined language parser and assimilator are actually part

of the Stratego compiler, so all that is required to use concrete syn-
tax patterns in Stratego programs is the combined language syntax
definition that uses the ToTerm and FromTerm constructors to
mark the transition to and from Stratego.

2.3 WebDSL
WebDSL is a high-level, domain-specific language for dynamic

web applications with rich data models [13]. Figure 4 shows a
small WebDSL application that stores a group of users and displays
them in a page. At its core is the data model, here just comprising
the User entity definition with properties uname and pword that
have the types String and Secret, respectively. The structure
and layout of the web pages is defined through WebDSL’s presen-
tation sub-language but the actual formatting is handled by existing
tools such as CSS. Here, the root page contains the header out-
put construct followed by a table with all users. Control flow
statements such as if and for loops can be used to dynamically
define the structure of a page. WebDSL also provides abstraction
mechanisms such as templates to avoid code duplication.
The WebDSL implementation uses code generation by model

transformation [12]. The generator normalizes the WebDSL ASTs
(via several transformation steps defined in Stratego) to a core rep-
resentation that is close to the target platform, but which still con-
tains domain-specific concepts. The architecture of the WebDSL
code generator follows the classical four-layer architecture [1] of
OMG.

3. EMBEDDING STRATEGORULESWITH
CONCRETE SYNTAX IN STRATEGO

In Section 2.2, we sketched the embedding of WebDSL in Strat-
ego; however, the Stratego compiler can only handle the embedding
of one level of concrete syntax in a meta-language. This makes it
impossible to write higher-order transformations with concrete syn-
tax. In the following, we thus describe an extension of the approach
that allows the embedding of Stratego’s concrete syntax in itself,
i.e., we use Stratego as both the meta and meta-meta language of
the higher-order transformation. We focus in particular on extend-
ing the existing (single-level) embedding ofWebDSL into Stratego.
The purpose of the nested embedding is to simplify the formulation

of Stratego transformations that can modify WebDSL applications.
We use this Stratego-Stratego-WebDSL combination to add an ac-
cess control sublanguage to the WebDSL core language. We show
in Section 4 how the approach can be applied to other language
combinations, where the meta-meta and meta languages are differ-
ent.

3.1 Access control in WebDSL
Access control (AC) is essential for web applications as it re-

stricts which data users can see and which operations they can ex-
ecute. WebDSL uses an integrated AC sublanguage to declare AC
policies on pages, templates and actions directly. The language
is policy neutral so that any AC policy can be defined and im-
plemented, including discretionary, mandatory, and role-based AC
policies [14].

principal is User with credentials uname, pword
access control rules {

rule page root(*) { true }
rule page editUser(u:User) { principal == u }
rule action *(*) { true }

}

Above is a simple WebDSL AC definition for the web application
shown in Figure 4. It places no restrictions on access to the root
page, or any of the actions in the application, but limits the access to
the editUser page—only users logged in can edit their own data.
The WebDSL code generator desugars these AC specifications into
conditionals and weaves them into the code for controlled pages,
templates, or actions before the normalization stage.

3.2 Language Embeddings
As an experiment in language and generator extension, we dupli-

cated the existing AC functionality in WebDSL and then extended
it with a simple fine-grained AC, although the latter will not be
detailed here. We extracted the AC syntax definition from the im-
plementation of WebDSL and turned it into a standalone language
(with SDF definition Ac). The same policies that can be defined
in WebDSL can now be defined separately from WebDSL appli-
cations. We then implemented higher-order transformations (de-
scribed in detail in Sect. 3.3) that in effect realize a separate gener-
ator for the AC language that uses coreWebDSL as target language.
Sect. 3.4 describes how the extension can be integrated with the ex-
isting core generator.
The nested embedding in Figure 5 follows the same general ap-

proach as the simple embedding outlined in Sect. 2.2. Stratego-
StrategoWebDslAc imports the host (Stratego) and guest lan-
guages (Stratego, AC, WebDSL), again via grammar-mixins so that
no name space conflicts occur between the combined syntax defi-
nitions. The Stratego grammar is imported twice, but in two differ-
ent versions, reflecting Stratego’s dual role: StrategoMix pro-
vides access to Stratego as meta-meta language while Embedded-
StrategoMix provides access to Stratego as meta language, so
that Stratego concrete syntax fragments can be used in the pat-
terns of the transformation system. EmbeddedStratego there-
fore extends Stratego with the quotation and unquotation opera-
tors, as well as the syntax of Stratego meta-variables, similar to the
EmbeddedWebDsl module shown in Figure 2.
The major difference is in the handling of the object language,

i.e., WebDSL. Since we need to be able to escape from WebDSL
into two different levels of surrounding Stratego (i.e., into the meta-
meta and meta levels, resp.), we need to define two different em-
beddings. The first embedding handles the interaction between
object level and meta level. It defines the quotation operators as
in Figure 2,injecting them into the non-terminal symbol M of the

module EmbeddedWebDsl2[M MM]
imports
WebDSL // object language syntax
exports
context-free syntax
"webdsl" "|[" Application "]|" -> M{cons("ToTerm")}
"webdsl" "|[" TemplateElement "]|" -> M{cons("ToTerm")}
"webdsl*" "|[" TemplateElement* "]|" -> M{cons("ToTerm")}
"def" "|[" Definition "]|" -> M{cons("ToTerm")}
"def*" "|[" Definition* "]|" -> M{cons("ToTerm")}
context-free syntax
"~app:" Emb -> Application {cons("FromTerm")}
"~templElem:" Emb -> TemplateElement {cons("FromTerm")}
"~templElem*:" Emb -> TemplateElement* {cons("FromTerm")}
"~def:" Emb -> Definition {cons("FromTerm")}
"~def*:" Emb -> Definition* {cons("FromTerm")}
M -> Emb {cons("FromTerm")}
variables
"x_"[A-Za-z0-9]+ -> Id {prefer}
context-free syntax
"~~app:" MM -> Application {cons("FromTerm")}
"~~templElem:" MM -> TemplateElement {cons("FromTerm")}
"~~templElem*:" MM -> TemplateElement* {cons("FromTerm")}
"~~def:" MM -> Definition {cons("FromTerm")}
"~~def*:" MM -> Definition* {cons("FromTerm")}

module StrategoStrategoWebDslAc
imports
StrategoMix[Host]
EmbeddedAcMix[AcOjb Term[[Host]]]
EmbeddedStrategoMix[StratObj PreTerm[[Host]] Term[[Host]]]
EmbeddedWebDsl2Mix[WebDslObj Term[[StratObj]] Term[[Host]]]
hiddens
context-free start-symbols Module[[Host]]

Figure 5: SDF for nested embedding of WebDSL and Stratego
in Stratego.

host language (i.e., Stratego as meta language) given as module
parameter. We also use a chain rule that enforces the use of two
FromTerm constructors to represent the doubly-nested origin of
the unquotations and thus to ensure the right representation on the
meta-meta level. The second embedding handles the interaction be-
tween object level and meta-meta level using the second parameter
of the module. Since we do not allow WebDSL fragments on the
meta-meta level, it only defines the unquotation operators; we use a
different operator (˜˜) than in the single nested case to distinguish
them syntactically.
Although both EmbeddedStrategoMix and EmbeddedWeb-

DSL2Mix are parameterized with three non-terminal symbols, only
the first parameter of each module (i.e., the context of the host lan-
guage in which the embedding is used) perform the same function.
The second and third parameters of the EmbeddedStrategoMix
module are an artifact of the way the Stratego syntax is defined.

3.3 Higher-Order Transformations with
Embedded WebDSL

Using the nested concrete syntax as described above, it is straight-
forward to define a HOT that implements a compiler for the AC
sub-language by rewriting the generated core WebDSL code. Fig-
ure 6 shows the Stratego implementation. The Hook module con-
tains the strategies and rewrite rules required to generate an exe-
cutable Stratego program and a collection of auxiliary transforma-
tions for WebDSL. It provides a framework needed to generate the
HOT and can be re-used to implement any HOT for WebDSL. The
generate-ac-rules module contains the WebDSL transfor-
mations proper.
Recall that WebDSL applications are defined using high level

abstractions that are normalized down to a core representation by

the generator. Since restrictions may need to be applied to core
constructs that are automatically generated during this process, our
transformations must be defined on the core representation. Hence,
the concrete syntax patterns used to match WebDSL code frag-
ments that we want to transform must also be written in the core
representation. However, this requires a detailed knowledge of
the WebDSL generator and the way it normalizes high level con-
structs, which is not straightforward. Ideally, an extensible gen-
erator should expose the normalizations it applies, or better yet,
supply the functionality to perform such normalizations; however,
the WebDSL generator does not do this. We have instead extracted
and reverse-engineered the required normalization strategies for the
constructs used in our transformation from the generator’s source
code. The transformation of a navigate element to it’s core rep-
resentation is shown at the bottom of Figure 6. More normalizing
transformations can be added by redefining the desugar rewrite
rule, which is applied to the generated Stratego program by the
do-boilerplate strategy.
Another consequence of basing our transformations on the core

representation is that we also need to deal with the renaming of
identifiers done by the generator. Ideally, an extensible generator
should supply a renaming mapping, but again the WebDSL gen-
erator does not do this. However, the core representation includes
annotations containing the original identifiers, and we have used
this to re-construct the required mapping in form of a dynamic
rule. This dynamic rule is used by the rewrite rule generated by
RestrictTemplate.
The main idea of the HOT is to generate a Stratego module called

RewriteAc (cf. rule createModule) for each AC specifica-
tion as shown in Section 3.1. This contains a number of strategies
for each specified access control rule. Each strategy simply wraps
an access control test around the code corresponding to the con-
trolled WebDSL element. This module is then compiled (using
the standard Stratego compiler) and spliced into the transformation
pipeline of the WebDSL compiler.

3.4 Extending the WebDSL Code Generator
The RewriteAcmodule generated by applying the HOT shown

in Figure 6 to an AC specification as shown in Section 3.1 contains
a customization patch, i.e., strategies that rewrite core WebDSL.
Such patches must be applied to the independently generated core
WebDSL programs in order to weave in the AC functionality. For-
tunately, we can apply the patches and integrate the AC without
modifying (or even re-compiling) the WebDSL code generator at
all. WebDSL provides an option to output the intermediate repre-
sentation at every stage of the generation process, including the fi-
nal core representation. Because this is syntactically validWebDSL,
we can modify and feed it back into the WebDSL code generator
and generate the Java for the application, re-using the existing back-
end. We use this technique to extract the core representation and
implement a separate transformation tool in Stratego to apply cus-
tomization patches. The diagram in Figure 7 describes this process.
Note that we can rely almost entirely on components provided or
generated by the XT framework; however, we need a small sed
script to fix minor syntactic inconsistencies in the pretty-printed
text.

3.5 Evaluation
Extending Stratego to allow the embedding of concrete syntax

in itself was relatively straightforward. The major difficulty was to
get the assimilation to handle nested FromTerms correctly. The
HOTs that implement the AC language are (in our opinion) con-
cise and clear and can be seen as an operational semantics of the

module generate-rules
imports libstratego-lib Hook Ac Stratego
strategies
generate-ac-rules = ?AcDef(<alltd(RestrictTemplate <+ RestrictPage)>)

; <do-boilerplate(|"RewriteAc")>
rules
RestrictTemplate :
newacrule|[rule template x_id(margs) {e_check acrule*}]| ->
Def|[
Modify : elem|[define template ~id:X_ID2(~farg*:FARG*) {~elem*:ELEM*}]| ->

elem|[define template ~id:X_ID2(~farg*:FARG*) {
if (~~exp:e_check) {"Access denied"} else {~elem*:ELEM*}}]|

where namesMatch(|~NoAnnoList(Str(<double-quote> x_id)), X_ID2)
]|

RestrictPage :
newacrule|[rule page x_id(margs) {e_check acrule*}]| ->
Def |[
Modify : elem|[define page ~~id:x_id(~farg*:FARG*) {~elem*:ELEM*}]| ->

elem|[define page ~~id:x_id(~farg*:FARG*) {
if (~~exp:e_check) {"Access denied"} else {~elem*:ELEM*}}]|

Modify : elem|[navigate(~~id:x_id(~exp*:EXP*)){~elem*:ELEM*}]| ->
elem|[if (!checkAccess(~exp*:EXP*)) {"Access Denied"}

else {navigate(~~id:x_id(~exp*:EXPS)){~elem*:ELEM*}}]|
]|

module Hook
imports libstratego-lib Stratego
strategies
do-boilerplate(|MODULENAME) =
?RULES

; !Module|[module MODULENAME
imports libstratego-lib libwebdsl-front strategies
strategies
main = io-wrap(alltd(GetNameMap);alltd(Modify))
GetNameMap = ?TemplDef@Define([Template()]

, NAME{OriginalNameAnno(ORIGNAME{ANNO*})}
, ARGS
, None()
, BODY*

)
; origName := <strip-annos>ORIGNAME
; newName := <strip-annos>NAME
; rules(OrigNameMap : origName -> newName)
; !TemplDef
namesMatch(|origName, matchedName) =
<OrigNameMap> origName => x_id

; x_id := <strip-annos> matchedName
rules

~*RULES
]|

; top-down(try(desugar))
rules
desugar : NavigateCall(PageCall(x,arg*),y*,z*) ->
TemplateCall("navigate",[ThisCall(x,arg*)],y*,TemplateBody(z*))

Figure 6: HOT to generate Stratego program that will transform WebDSL to include specified customized access control rules.

AC language. In principle, they were easy to formulate; in prac-
tice, however, it took some effort to formulate them in such a way
that they were applied uniformly, due to the renaming and desug-
aring issues described above. We have reverse engineered these
steps from the WebDSL compiler and factored out our implemen-
tation into a boilerplate “hook” module, but we believe that such
hook modules should (and indeed easily could) be provided by the
generator developers, in order to facilitate extensions and external
modifications. Moreover, hook modules are only required if the
HOTs are applied to some internal representation but formulated
in terms of the original representation. In our case, we chose this
approach to ensure that the generated AC rules also apply to tem-
plates and pages automatically generated by WebDSL, without the
need to write a large number of special cases.
As an alternative to HOTs with Stratego as meta language we

could also use Stratego’s dynamic rules, which phase-shift the con-

struction of the rules to the runtime, and thus do not need the meta-
meta level and its quotations. However, dynamic rules are difficult
to inspect, while the result of the HOT can easily be inspected at the
source level. Moreover, dynamic rules require the same hooks as
HOTs (or even worse, a tight integration with the object language
compiler), and, of course, must be supported by the meta language.

4. GENERALIZING THE APPROACH
Our approach can also be applied in situations in which the meta-

meta and meta languages are different, and the use of dynamic rules
is not an option. Here, we present the implementation of a HOT
that uses Stratego to generate Prolog clauses with embedded con-
crete syntax, in this case propositional infix operators, such as /\
and \/. This scenario is deliberately simple, and only intended to
demonstrate the generality of the approach; however, we have al-
ready used the integration of a more complex concrete syntax into

Simple.ac

webdslcast2textwebdslc sed

Simple.app Simple.war

generate−ac−rules

pp−stratego

generated−ac−rules.str

generated−ac−rules

strc

AST

ASTAST

Figure 7: Pipeline of customization patch generation and application to generated code.

imports Prolog
exports
context-free syntax

"|[" Program "]|" -> M {cons("ToTerm")}
"prog" "|[" Program "]|" -> M {cons("ToTerm")}
"clause" "|[" Clause "]|" -> M {cons("ToTerm")}
"clause*" "|[" Clause* "]|" -> M {cons("ToTerm")}
context-free syntax
"$var:" M -> Variable {cons("FromTerm")}
"$name:" M -> Name {cons("FromTerm")}
"$word:" M -> Word {cons("FromTerm")}
"$qname:" M -> QuotedName {cons("FromTerm")}
"$t:" M -> Term {cons("FromTerm")}
"$t*:" M -> {Term ","}+ {cons("FromTerm")}
"$c:" M -> Clause {cons("FromTerm")}
"$c*:" M -> Clause* {cons("FromTerm")}

module EmbeddedProp2[MM M]
imports Prop
exports
context-free syntax

"|[" Prop "]|" -> M {cons("ToTerm")}
"prop" "|[" Prop "]|" -> M {cons("ToTerm")}
context-free syntax
"$prop:" Emb -> Prop {cons("FromTerm")}
"$id:" Emb -> Id {cons("FromTerm")}
"$id*:" Emb -> Id* {cons("FromTerm")}
M -> Emb {cons("FromTerm")}
context-free syntax
"$$prop:" MM -> Prop {cons("FromTerm")}
"$$id:" MM -> Id {cons("FromTerm")}
"$$id*:" MM -> Id* {cons("FromTerm")}

module StrategoPrologProp
imports
StrategoMix[Host]
EmbeddedPropMix[PropObj Term[[Host]]]
EmbeddedPrologMix[PrologObj Term[[Host]]]
EmbeddedProp2Mix[PropObj2 Term[[Host]] Term[[PrologObj]]]
exports
context-free start-symbols Module[[Host]]

Figure 8: SDF for nested embedding of Prop and Prolog in
Stratego.

Prolog in previous work [8], so the scenario is not overly simplistic.

4.1 Using Stratego to Generate Prolog with
Concrete Syntax

The SDF in Figure 8 shows the embedding of Prop into Pro-
log that is then in turn embedded in Stratego. Its structure is very
similar to that shown in Section 3.4. StrategoMix adds the syn-
tax of Stratego to the language combination, while the grammar

mixins of Prolog and Prop enable the use of their concrete syn-
tax in Stratego. The first parameter of all three modules is used as
the language context of the combination to avoid any name space
conflicts between the combined languages. The second (param-
eterized) non-terminals used in the above imports are the meta-
language non-terminals that the concrete syntax fragments should
be injected into, and escaped to. EmbeddedPropMix has a struc-
ture similar to EmbeddedPrologMix, so we have not included
it here. It is added to the language combination to so that Stratego
strategies can be used to manipulate Prop expressions that are not
embedded in Prolog.
The EmbeddedProp2Mixmixin defines the embedding of Prop

in Prolog and adds the ability to escape into both the surrounding
Prolog concrete syntax and the outer Stratego. The mixin is again
generated by the gen-sdf-mix tool, using the two-level embed-
ding EmbeddedProp2. The mixin is again parameterized with
three non-terminals, where the first defines the context it is used
in, and the other two are the original embedding parameters, i.e.,
the meta-meta (Stratego) non-terminal and meta-language (Prolog)
non-terminals that can be escaped to, and into which the Prop con-
crete syntax fragments should be injected, resp. The $ and $$ sym-
bols are defined as the unquotation operators to indicate an escape
to Prolog and Stratego, respectively. Since the syntax rules defining
the injections of concrete syntax fragments to and from the meta-
language require the ToTerm and FromTerm abstract syntax con-
structors, the syntax rules defining the escape to Prolog again use a
chain rule to enforce that the abstract syntax constructed for the es-
cape sequence is surrounded by two FromTerm constructors. This
ensures that the assimilation works correctly and is explained in de-
tail in the next section. The (artificial) example in Figure 9 demon-
strates how the embedding of Prolog with nested concrete syntax
into Stratego can be used. The Stratego rule hot1 rewrites Prolog
clauses which use propositional expressions in their body. Note
that A is a propositional variable, not a Prolog variable. The gener-
ated transformation replaces this by the result of the strategy hot2
(here simply a term representing true), which is evaluated when
HOTtest is compiled. Also note that the escaped meta variable X
is not bound anywhere, which means that it remains a free Prolog
variable, whereas P can have a value when the predicate a is called.

4.2 Exploding Nested Embedded Concrete
Syntax Generically

The combined syntax definition of meta and embedded languages
plays a key role in Stratego transformation systems that use con-
crete syntax patterns. The parser, automatically generated from

module HOTtest
imports Prolog Prop metaSig libstrategolib
rules
hot1 :
clause |[b(P,Prop) :-

Prop = |[(A /\ $prop:X) \/ $prop:P]|.
]| ->

clause |[a(P,Prop) :-
Prop = |[($$prop:<hot2> /\ $prop:X) \/ $prop:P]|.

]|
strategies
hot2 = !prop |[true]|

Figure 9: HOT for the Prolog-Prop language.

this definition, constructs ASTs that contain a mixture of the dif-
ferent abstract syntaxes. These ASTs need to be assimilated or
exploded into pure Stratego abstract syntax that can be processed
by the Stratego compiler. Stratego’s existing assimilator can unfor-
tunately not handle language embeddings that have more than one
level of nested concrete syntax, such as the embedding described in
the previous section. We have thus extended it to deal with arbitrar-
ily deeply nested concrete syntax fragments. The core of the new
assimilator is shown in Figure 10, with the extensions highlighted.
The main strategy of Stratego’s assimilator is MetaExplode,

which traverses the term until it finds a ToTerm subterm. This in-
dicates the beginning of an embedded language subterm that needs
to be exploded into pure Stratego abstract syntax. The strategy
trm-explode recognizes and handles escaped subterms (i.e., meta
variables and unquoted fragments), and recursively deconstructs
the terms of the embedded language (cf. TrmOp). However, it
only handles a single level of embedded code: to extend to multiple
embedding levels, we extended it with the ToTermPatchFrom-
Term strategy that matches embedded ToTerm constructors, indi-
cating the beginning of another embedded language fragment.
The subterms of the embedded ToTerm are exploded by the

new trm-explode2 strategy, which is similar to the original
trm-explode strategy, but which handles escaping into different lan-
guage levels. Code to be spliced from a different language level is
marked by FromTerm constructors. A single FromTerm refers
to the outer (i.e., meta-meta) language level, in this case Strat-
ego. Two nested FromTerm constructors refer to the second (i.e.,
meta) language level, in this case Prolog. When a FromTerm is
matched by TrmFromTerm2, it is removed and its subterms are
translated into Stratego abstract syntax. Any nested FromTerms
that remain must refer to an embedded meta-language, and need
to appear in the generated Stratego code, so they get translated to
the form Op("FromTerm",an), where an are the exploded sub-
terms. Note that our new assimilator does not depend on any of
the embedded languages. All that is required is that any embed-
ded code is marked with (nested) FromTerm constructors that are
defined in the SDF language embedding.
Figure 11 shows as example a combined Stratego-Prolog-Prop

AST corresponding to the rules-section of the HOT in Figure 9.
The terms in normal font are Stratego abstract syntax, the terms in
bold font Prolog abstract syntax, and the terms in the light-coloured
font are Prop abstract syntax. The first ToTerm indicates the be-
ginning of an embedded Prolog fragment

|[b(P,Prop):-Prop=|[(A /\ $prop:X) \/ $prop:P]|.]|.

The second ToTerm marks the beginning of a Prop fragment

|[(A /\ $prop:X) \/ $prop:P]|

and the nested FromTerms mark Prolog that must be spliced in.

Rules(
[RDefNoArgs(

"hot1"
, RuleNoCond(

ToTerm(
NonUnitClause(
Func(
Functor(Word("b"))

, [Var("P"), Var("Prop")]
)

, BodyGoal(
Infix(
Var("Prop")

, Op(Symbol("="))
, ToTerm(or(and(

var("A")
, FromTerm(FromTerm(Var("X"))))

, FromTerm(FromTerm(Var("P"))))
))))

)
, ToTerm(

NonUnitClause(
Func(
Functor(Word("a"))

, [Var("P"), Var("Prop")]
)

, BodyGoal(
Infix(
Var("Prop")

, Op(Symbol("="))
, ToTerm(or(and(

FromTerm(RootApp(CallNoArgs(SVar("hot2"))))
, FromTerm(FromTerm(Var("X"))))

, FromTerm(FromTerm(Var("P"))))
))))

)))])

Figure 11: StrategoPrologProp combined abstract syntax.

5. CONCLUSIONS AND FUTUREWORK
Concrete syntax and higher-order transformations are two com-

plementary technologies to develop grammar-based software trans-
formation tools. Their combination simplifies the construction of
such tools, but this requires some care in merging the different
meta-meta, meta, and object languages involved. Surprisingly, once
the mixed ASTs are built properly, the implementation of the ap-
proach in Stratego required only little and very localized changes
to the existing assimilation algorithm.
The approach currently requires us to manually define the nested

embeddings (cf. Figures 5 and 8); however, the nested embeddings
are very similar to the simple top-level embeddings, and the nec-
essary SDF definitions, including the two-level quotation operators
could in principle be derived automatically.
So far, we have used our approach primarily with the Stratego-

Stratego-WebDSL combination, in order to extend the WebDSL
code generator indirectly, by systematically changing the gener-
ated code. We believe that the approach we presented in this pa-
per can be used to implement a wide range of generator extensions
and changes. Similar problems can be solved by attribute gram-
mar forwarding [15], and while our approach works with any code
generator that provides external access to the internal representa-
tion, independently of the technology used to implement it, both
approaches should be compared in more detail.
Acknowledgments. This research was supported by EPSRC grant number
EP/F052669/1.

6. REFERENCES
[1] J. Bézivin. On the unification power of models. Software and

System Modeling, 4(2):171–188, 2005.
[2] M. van den Brand, J. Heering, P. Klint, and P. A. Olivier.

MetaExplode =
alltd(?ToTerm(<trm-explode>))

trm-explode =
TrmMetaVar
<+ TrmFromTerm
<+ !NoAnnoList(<

ToTermPatchFromTrm
<+ TrmOp

>)

MetaExplode2 =
alltd(

?ToTerm(<trm-explode2>)
+ NestedFromTerm

)

trm-explode2 =
TrmFromTerm2
<+ TrmMetaVar2
<+ !NoAnnoList(<TrmOp2>)

NestedFromTerm =
?FromTerm(fs) ; !Op("FromTerm", <map(NestedFromTerm)>fs)
<+ TrmOp2

ToTermPatchFromTrm : ToTerm(ts) -> Op("ToTerm", <map(trm-explode2)> [ts])

TrmOp : op#(ts) -> Op(op, <map(trm-explode)> ts)

TrmOp2 : op#(ts) -> Op(op, <map(trm-explode2)> ts)

TrmMetaVar : meta-var(x) -> Var(x)

TrmMetaVar2 : meta-var(x) -> NoAnnoList(Op("meta-var", [<trm-explode2> x]))

TrmFromTerm = ?FromTerm(<MetaExplode>)

TrmFromTerm2 = ?FromTerm(<MetaExplode2>)

Figure 10: Generic assimilation of nested concrete syntax.

Compiling language definitions: the ASF+SDF compiler.
TOPLAS, 24(4): 334-368, 2002.

[3] M. Bravenboer and E. Visser. Concrete Syntax for Objects:
Domain-Specific Language Embedding and Assimilation
without Restrictions. OOPSLA-19, pp. 365–383, 2004.

[4] M. Bravenboer and E. Visser. Designing Syntax Embeddings
and Assimilations for Language Libraries. Models in Software
Engineering: Workshops and Symposia at MoDELS 2007, pp.
34–46. Springer-Verlag.

[5] M. Bravenboer, K. T. Kalleberg, R. Vermaas and E. Visser,
Stratego/XT 0.17. A Language and Toolset for Program
Transformation, Science Comp. Prog., 72(1-2):52–70, 2008.

[6] J. R. Cordy. The TXL source transformation language.
Science Comp. Prog., 61(3):190–210, 2006.

[7] J. R. Cordy. Eating our own dog food: DSLs for generative
and transformational engineering. GPCE’09, SIGPLAN Not.,
45(2):3–4. ACM, 2009.

[8] B. Fischer and E. Visser. Retrofitting the AutoBayes Program
Synthesis System with Concrete Syntax. Domain-specific
program generation, LNCS 3016, pp. 239–253. Springer,
2004.

[9] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On
the Use of Higher-Order Model Transformations.
ECMDA-FA, LNCS 5562, pp. 18–33. Springer, 2009.

[10] E. Visser. Syntax definition for language prototyping. PhD
Thesis, University of Amsterdam, 1997.

[11] E. Visser. Meta-Programming with Concrete Object Syntax.
GPCE’02, LNCS 2487, pp. 299–315. Springer, 2002.

[12] Z. Hemel, L. C. L. Kats, and E. Visser. Code Generation by
Model Transformation. A Case Study in Transformation

Modularity. ICMT’08, LNCS 5063, pp. 183–198. Springer,
2008.

[13] E. Visser. WebDSL: A Case Study in Domain-Specific
Language Engineering. GTTSE’07, LNCS 5235, pp. 291–373.
Springer, 2008.

[14] D. Groenewegen, Declarative access control for WebDSL.
MSc Thesis, Delft University of Technology, 2008.

[15] E. Van Wyk, O. de Moor, K. Backhouse, P. Kwiatkowski.
Forwarding in Attribute Grammars for Modular Language
Design. CC’02, LNCS 2304, pp. 128–142. Springer, 2002.

