
VLex: Visualizing a Lexical Analyzer Generator
– Tool Demonstration –

Alisdair Jorgensen
DSSE Group, ECS

University of Southampton
Southampton, SO17 1BJ, UK
alisdair@vlex-tool.net

Rob Economopoulos
DSSE Group, ECS

University of Southampton
Southampton, SO17 1BJ, UK
gre@ecs.soton.ac.uk

Bernd Fischer
DSSE Group, ECS

University of Southampton
Southampton, SO17 1BJ, UK
b.fischer@ecs.soton.ac.uk

ABSTRACT
Lexical analyzer generators such as lex and its many succes-
sors are based on well-understood concepts. Yet, students
often have problems to intuitively grasp and visualize these
concepts, especially in compiler engineering courses that em-
phasize the use of tools over fundamental algorithms. VLex
is designed to close the gap left by existing visualization
tools, and to help students to understand the approach taken
and the algorithms used in lexical analyzer generators. It
has the “look and feel” of a lexical analyzer generator, rather
than that of a theory animation tool. It can handle multiple
lexical states and accepting states can return different to-
kens. VLex visualizes the algorithms typically implemented
in a lexical analyzer generator in the lex tradition, i.e., con-
verting regular expressions via non-deterministic into a de-
terministic finite automata and then minimizing these au-
tomata. The visualization works incrementally, and the user
can choose any location to control how the algorithms con-
tinue. VLex can also animate the different automata during
the scanning phase.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—user interfaces; D.3.4 [Programming Languages]:
Processors—compilers; H.5.2 [User Interfaces]: Graphical
User Interfaces

General Terms
Algorithms, Human Factors, Theory

Keywords
lexical analysis, visualization

1. INTRODUCTION
Lexical analyzer generators such as lex [7] and its many

successors are based on the well-understood concepts of reg-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LDTA 2011 Saarbrücken, Germany
Copyright 2011 ACM 978-1-4503-0665-2 ...$10.00.

ular expressions (RE), non-deterministic (NFA) and deter-
ministic finite automata (DFA). Yet, students often have
problems to intuitively grasp and visualize these concepts,
especially in compiler engineering courses that emphasize
the use of tools over the fundamental algorithms. Hence,
they often find it hard to successfully specify the lexical
analysis phase of “real” languages. VLex is a new visual-
ization tool that helps students to understand the approach
taken and the algorithms used in lexical analyzer generators.

Design Philosophy. VLex is based on the idea of complete

user control, i.e., the user can at each step determine where
the algorithms proceed. For example, the user can choose
which regular (sub-) expression to expand during the NFA
construction, or which equivalence class to split during the
DFA minimization. This requires the presentation to be
fine-grained and incremental, to allow the presentation of
step-by-step results. Moreover, this requires the visualiza-
tion itself to be inert, to minimize the visible step-by-step
changes. This style allows students to easily make and test
predictions about individual steps of the algorithms.

Graph Visualization. VLex uses a custom graph drawing
algorithm to achieve a compact layout that is reminiscent of
that used in many standard compiler textbooks, e.g., [2],
and that is suitable for the incremental visualization style.

Related Work. A number tools have been implemented to
visualize different aspects of the lexical analysis phase, but
none of them retain the “look and feel” of a lexical analyzer
generator. jFAST [10] allows the interactive construction
and simulation of different types of finite state machines
(including NFAs and DFAs) but does not support lexical
specifications via REs and does not visualize any of the
transformations between the different representations. The
FSA Simulator [6] has similar restrictions. Braune et al.
[3] describe a learning software that visualizes the different
transformations; however, it uses a fixed example and thus
amounts to a “canned demo” only. The GaniFA applet [5]
lifts this restriction but remains aimed at automata theory
rather than at compiler construction. JFLAP [4] is another
interactive learning software aimed at automata theory. It
visualizes the major algorithms but only partially automates
the construction and instead guides the students through the
algorithms, warning them about any errors. The HaLeX li-
brary [8] provides several Haskell datatypes and functions to
represent and manipulate REs and FAs. However, its focus
is on a concise formalization of the algorithms, rather than
on visualization, and it only provides a built-in dot graph
output that is not suitable for interactive visualization.

Figure 1: Editing a language within VLex

2. VLEX
VLex is designed to close the gap left by the existing tools.

It can handle multiple lexical states and accepting states can
return different tokens. VLex visualizes the algorithms typi-
cally implemented in a lexical analyzer generator in the lex
tradition, i.e., converting an RE via an NFA into a DFA
and then minimizing this DFA. The visualization works in-
crementally, and the user can choose any location to con-
tinue the algorithms; for example, the user can pick a regu-
lar (sub-) expression to drive the RE-to-NFA conversion, or
a DFA-state and input character to drive the NFA-to-DFA
conversion. VLex can also animate the different automata
during the scanning phase.

2.1 Lexical Specification
The lexical syntax of a language is defined in VLex via

lexical rules. Each rule associates an RE with a token, a
priority, and lexical states. The token is returned when a
string is matched against an RE, and the priorities are used
to determine which token should be returned if a string can
be matched by different REs. Lexical states are used to
restrict which REs are active during the scanning process.
The lexical state can be changed after the accepting state
of an RE has been reached. VLex supports the usual RE
operators, including character classes but excluding comple-
mentation. Fig. 1 shows VLex’s interactive editing window.
Specifications can be saved into and imported from an XML
file format. VLex can also import lexical specifications in
JFlex [1] format, but it ignores any semantic actions associ-
ated with the REs. The import thus requires some manual

post-processing, in particular the definition of the tokens to
be returned.

2.2 NFA Construction
VLex uses and animates the syntax-based McNaughton-

Yamada-Thomson algorithm [2] to convert an RE into an
NFA that accepts the same language. VLex can construct
an NFA for a lexical state, or for a single rule. The visual-
ization starts with an automaton where the transition(s) are
labelled with the original regular expression(s). VLex pro-
vides two different ways of animating the expansion of states:
(i) the user can step through the algorithm by double click-
ing on any transition that is labelled with an unexpanded
RE, or (ii) they can follow the animation in the sequence
determined by the tool. Fig. 2 shows the state of the anima-
tion after several REs have been expanded. The expansion
process can be completed automatically by clicking on the
run-to-completion button in the toolbar, which displays the
final NFA.

2.3 DFA Construction
VLex uses and animates the standard subset construction

algorithm to convert the constructed NFA into an equivalent
DFA. The complete NFA is displayed in one window pane
while the construction of the DFA is animated in a second
pane (see Fig. 3). A transition table is used to display and
track the algorithm’s progress. Its first two columns show
the mapping between a DFA state and the corresponding
set of NFA states. The remaining columns display the pos-
sible transitions (on mutually exclusive character classes) in
terms of both the NFA and DFA states. The first numbers

Figure 2: Partially expanded NFA during construction

Figure 3: NFA-to-DFA conversion

Figure 4: DFA minimization

Figure 5: Animation of scanning process

represent the epsilon closure of the NFA states that can be
reached via a given symbol, or character class, and the final
bracketed number is the corresponding DFA state. Click-
ing on an entry highlights the corresponding NFA and DFA
states in the automata. Transitions that have not been ex-
panded yet are marked by a table entry with a <todo> value.

The user can step through the algorithm by double click-
ing on any <todo> entry. VLex then adds, if necessary, the
new DFA state, labels the transition with the character class
that enables it, and replaces all <todo> entries from the se-
lected source state that transition into the same new tar-
get state. If the newly created state transitions differently
on different input characters, VLex also splits the charac-
ter classes and adds more columns to the transition table.
Finally, VLex updates the display of the DFA, minimizing
the part of the automaton that is redrawn. Note that differ-
ent expansion order can thus lead to different DFA layouts.
The expansion process can again be completed automat-
ically by clicking on the run-to-completion button in the
toolbar, which displays the final DFA.

2.4 DFA Minimization
VLex animates the standard DFA state minimization al-

gorithm described in [2, p181], which maintains and itera-
tively refines an equivalence relation on the DFA states (see
Fig. 4). The main problem here is to display these equiv-
alence classes comprehensively. VLex uses color: states in
the same equivalence class are filled in the same color; to
minimize the number of colors required, classes comprising
a single state remain white. An incremental color picking
algorithm based on recursively dividing the available hue
range by the Golden Ratio improves the contrast, without
requiring to know the maximal number of non-degenerate
classes up-front. Although this approach will eventually lead
to similar colors being used for different classes, we have
found that this only occurs for very large DFAs, and over-
all, the coloring scheme has proven to be an effective way
of representing the equivalence classes. VLex can also dis-
play information about each state which is essential when
trying to understand the minimization algorithm. By click-
ing on a state node, a table is displayed with all states in
the class and the classes that can be reached on transitions
from each state. The user can step through the algorithm
by double-clicking on any colored state node. If two or more
states transition on the same character into different equiv-
alence classes, these states become distinguishable, and the
equivalence class is split. VLex then updates the state col-
oring (picking a new color if required) and the transition
table. The minimization process can again be completed
automatically by clicking on the run-to-completion button
in the toolbar.

2.5 Scanning Process
Fig. 5 shows how VLex animates the scanning of a code

fragment. As characters are input and recognized the corre-
sponding tokens get generated and are output. If any of the
three automata (NFA, DFA and minimized DFA) are dis-
played then the transitions through them are animated by
highlighting the state reached during the recognition of the
current token. If a character is input that is not recognized,
then an ERROR token is output and the start state of each
automaton is highlighted. The error can then be corrected
by deleting characters from the input.

(b)

(b) (b)

(a)

Figure 6: Vertical adjustment of nodes

3. IMPLEMENTATIONANDAVAILABILITY
VLex is implemented in C# and uses MS Visual Studio

2008. It is freely available from www.vlex-tool.net. Its
central data structure is the automaton, which is shared be-
tween all three types (i.e., NFA, DFA, and minimized DFA).
Each of the major algorithms (NFA and DFA construction
as well as DFA minimization) is implemented as a separate
module. The implementations themselves are more compli-
cated than the textbook versions, or the HaLeX variants, be-
cause they need to produce incremental visualizations. They
are thus not exposed to the students.

VLex uses a customized layout algorithm so that the au-
tomata are drawn in a similar style to that used in textbooks.
The states are traversed breadth-first and the state nodes
are placed on a grid, starting at the top-left corner, with
minimal vertical spacing and the horizontal spacing deter-
mined by the breadth-first order and length of the transition
labels. If a state is placed to the right of the target of one
of its outgoing transitions, then the target state (and all its
successors) are shifted to the right, unless the transition rep-
resents a backwards edge in the graph. This way, all forward
edges in the graph are laid out in left-to-right direction. The
state nodes are then vertically adjusted to keep a compact
layout. Fig. 6 shows this process; here, the nodes are moved
to their new positions as indicated by the dashed arrows
and level lines. The vertical adjustment (a) aligns transi-
tions and states that can form a simple straight line, and (b)
moves each node with multiple outgoing transitions towards
the centre of its neighbors, similar to Sugiyama’s algorithm
[9]. The transitions are drawn as arcs after the adjustment.
They are composed from Bezier curves and straight lines to
achieve the usual appearance. Transition labels are placed
horizontally at the mid-point of the transition, and vertically
on the opposite side from the average vertical position of the
two end points. Finally, if the gradient of the transition is
very steep on one side, the label is shifted slightly in the
opposite direction. This reduces the problem of labels being
drawn on top of neighbouring transitions in cases where a
state has a large number of transitions in or out. The al-
gorithm is “incrementally stable” and minimizes redrawing,
e.g., after expanding an RE.

4. CONCLUSIONS
VLex is an incrementally visualizing lexical analyzer gen-

erator that allows user to determine at which locations (and
thus with which steps) the underlying generator algorithms
proceed. Early feedback on VLex was encouraging, and we
are now planning a class-room evaluation. A variety of ex-
tensions are possible, although not necessarily straightfor-
ward, due to the incremental nature of the tool. The lay-

out algorithm could be extended by a graph planarization
and by manual control over node placement, and the tran-
sitions could be animated, as in jFAST. We also plan to
add arbitrary user-defined semantic actions as in JFlex; the
automata animation could then be integrated with a tradi-
tional debugger to allow students to step through the actions
as well.

5. REFERENCES
[1] JFlex homepage. http://jflex.de.

[2] A. A. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley, second edition, 2007.

[3] B. Braune, S. Diehl, A. Kerren, and R. Wilhelm.
Animation of the generation and computation of finite
automata for learning software. In Proc. 4th Intl.

Workshop Implementing Automata, LNCS 2214, pp.
39–47. Springer, 2001.

[4] R. Cavalcante, T. Finley, and S. H. Rodger. A visual
and interactive automata theory course with JFLAP
4.0. In Proc. SIGCSE’04, pp. 140–144. ACM Press,
2004.

[5] S. Diehl, A. Kerren, and T. Weller. Visual exploration
of generation algorithms for finite automata on the web.
In Proc. 5th Intl. Conf. Implementation and Application

of Automata, LNCS 2088, pp. 327–328. Springer, 2000.

[6] M. T. Grinder. Animating automata: A cross-platform
program for teaching finite automata. In Proc.

SIGCSE’02, pp. 63–67. ACM Press, 2002.

[7] M. E. Lesk and E. Schmidt. Lex – a lexical analyzer
generator. Bell Labs, 1975.

[8] J. Saraiva. HaLeX: A Haskell Library to Model,
Manipulate and Animate Regular Languages. In Proc.

ACM Workshop on Functional and Declarative

Programming in Education, pp. 133–140. University of
Kiel Technical Report 0210, 2002.

[9] K. Sugiyama, S. Tagawa, S. and M. Toda. Methods for
Visual Understanding of Hierarchical System
Structures. IEEE Transactions on Systems, Man and
Cybernetics, SMC-11(2), pp. 109-125, 1981.

[10] T. M. White and T. P. Way. jFAST: A Java finite
automata simulator. In Proc. SIGCSE’06, pp. 384–388.
ACM Press, 2006.

