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Abstract. Lazy sequentialization has proven to be one of the most
effective techniques for concurrent program verification. The Lazy-CSeq
sequentialization tool performs a “lazy” code-to-code translation from
a concurrent program into an equivalent non-deterministic sequential
program, i.e., it preserves the valuations of the program variables along
its executions. The obtained program is then analyzed using sequential
bounded model checking tools. However, the sizes of the individual states
still pose problems for further scaling. We therefore use abstract inter-
pretation to minimize the representation of the concurrent program’s
(shared global and thread-local) state variables. More specifically, we
run the Frama-C abstract interpretation tool over the programs con-
structed by Lazy-CSeq to compute overapproximating intervals for all
(original) state variables and then exploit CBMC’s bitvector support to
reduce the number of bits required to represent these in the sequential-
ized program. We have implemented this approach in the last release of
Lazy-CSeq and demonstrate the effectiveness of this approach; in par-
ticular, we show that it leads to large performance gains for very hard
verification problems.

1 Introduction

Concurrent programming is becoming more important as concurrent computer
architectures such as multi-core processors are becoming more common. How-
ever, concurrent program verification remains a stubbornly hard problem, due to
the large number of interleavings that a verifier must analyze. Techniques such
as testing that analyze interleavings individually struggle to find “rare” concur-
rency bugs, i.e., bugs that manifest themselves only in a few of the interleavings.
Techniques that use symbolic representations to analyze all interleavings collec-
tively typically fare better, especially for rare concurrency bugs.

Sequentialization has proven to be one of the most effective symbolic tech-
niques for concurrent program verification, shown for example by the fact that
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most concurrency medals in the recent SV-COMP program verification competi-
tions were won by various sequentialization-based tools [17,31,32,35]. It is based
on the idea of translating concurrent programs into non-deterministic sequen-
tial programs that (under certain assumptions) behave equivalently, so that the
different interleavings do not need to be treated explicitly during verification
and, consequently, sequential program verification methods can be reused. Eager
sequentialization approaches [10,24,33] guess the different values of the shared
memory before the verification and then simulate (under this guess) each thread
in turn. They can thus explore infeasible computations that need to be pruned
away afterwards, which requires a second copy of the shared memory, and so
increases the state space. Lazy sequentialization approaches [20] instead guess
the context switch points and (re-) compute the memory contents, and thus
explore only feasible computations. They also preserve the sequential ordering
of the interleaved thread executions and thus the local invariants of the original
program. Lazy approaches, such as Lazy-CSeq, are thus typically more efficient
than eager approaches.

Lazy-CSeq [15,17] is implemented as a source-to-source transformation in the
CSeq framework [9]: it reads a multi-threaded C program that uses the Pthreads
API [18], applies the translation sketched in Sect. 2 and described in more detail
in [16], and outputs the resulting non-deterministic sequential C program. This
allows us to use any off-the-shelf sequential verification tool for C as backend,
although we have achieved the best results with CBMC [6].

Lazy-CSeq’s translation is carefully designed to introduce very small memory
overheads and very few sources of nondeterminism, so that it produces simple
formulas. It also aggressively exploits the structure of bounded programs and
works well with backends based on bounded model checking (BMC). It is very
effective in practice, and scales well to larger and harder problems. Currently,
Lazy-CSeq is the only tool able to find bugs in the two hardest known con-
currency benchmarks, safestack [37] and eliminationstack [12]. How-
ever, for such hard benchmarks the computational effort remains high, and
for eliminationstack Lazy-CSeq requires close to six hours on a standard
machine.

A detailed analysis of these benchmarks shows that a large fraction of the
overall effort is not spent on finding the right interleavings that expose the bugs,
but on finding the right values of the original (concurrent) programs’ shared
global and individual thread-local variables. We found that this is caused by the
unnecessarily large number of propositional variables (reflecting the default bit-
widths of the variables in C) that CBMC uses. In an experiment, we manually
reduced this to the minimum required to find the bug (three bits in the case of
safestack), which leads to a 20x speed-up. This clearly indicates the potential
benefits of such a reduction.

In this paper, we describe an automated method based on abstract interpre-
tation to reduce the size of the concurrent programs’ shared global and thread-
local state variables. More specifically, we run the Frama-C abstract interpretation
tool [2] over the sequentialized programs constructed by Lazy-CSeq to compute
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overapproximating intervals for these variables. We use the intervals to minimize
the representation of the (original) state variables, exploiting CBMC’s bitvector
support to reduce the number of bits required to represent these in the sequen-
tialized program, and, hence, ultimately in the formula fed into the SAT solver.
Note that this approach relies on two crucial aspects of Lazy-CSeq’s design. On
the theoretical side, we rely on the fact that lazy sequentializations only explore
feasibly computations to infer “useful” invariants that actually speed up the veri-
fication; our approach would not work with eager sequentializations because they
leave the original state variables unconstrained, leading to invariants that are too
weak. On the practical side, we rely on the source-to-source approach implemented
in Lazy-CSeq, in order to re-use an existing abstract interpretation tool.

We have implemented this approach in the last release of Lazy-CSeq and
demonstrate its effectiveness. We show that the effort for the abstract interpre-
tation phase is relatively small, and that the inferred intervals are tight enough to
be useful in practice and lead to large performance gains for very hard verification
problems. In particular, we demonstrate a 5x speed-up for eliminationstack.

2 Verification Approach

In this section we illustrate the verification approach we propose in this paper.
We recall multi-threaded programs and context-bounded analysis before we give
some details on the two pillars of our approach: the lazy sequentialization per-
formed by the tool Lazy-CSeq [16] and the value analysis performed by the tool
Frama-C [2].

2.1 The General Scheme

Verification by sequentialization is based on a translation of the input multi-
threaded program into a corresponding sequential program which is then
analysed by an off-the-shelf backend verification tool for sequential programs.
We improve on this by applying value analysis to the sequentialized program to
derive overapproximating intervals for the original program variables and using
these intervals to reduce the number of bits used to represent each variable in
the backend verification tool. In particular, our approach works in four steps:

1. We compute a sequential program that preserves the reachable states of the
input program up to a given number of thread context-switches (sequential-
ization).

2. We compute the bounds on the values that the variables can store along any
computation of the sequential program (value analysis).

3. We transform the sequentialized program by changing the program variables
of numerical type (i.e., integer and double) to bitvector types of sizes
determined by the results of the value analysis (model refinement).

4. We verify the resulting sequential program (verification).
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In sequentializations the control nondeterminism of the original program is
replaced by data nondeterminism and thread invocations are replaced by func-
tion calls. Lazy sequentialization methods also preserve the sequential ordering
of the interleaved thread executions, and thus also the local invariants of the
original program. This property ensures that the value analysis can produce
good overapproximations of the variable ranges (i.e., tight intervals). We instan-
tiate our approach with the lazy sequentialization implemented in Lazy-CSeq,
and the value analysis given by Frama-C.

2.2 Multithreaded Programs

We consider standard multi-threaded programs with shared variables, dynamic
thread creation, thread join, and mutex locking and unlocking operations for
thread synchronization. We omit the formal definition of the syntax and the
semantics of multi-threaded programs which is standard [16]. We adopt a C-like
syntax in our examples.

We assume that each multi-threaded program contains a function main, which
is the starting function of the only thread that exists in the beginning. We call
this the main thread. As usual, there are no calls to main and that no other
thread can be created that uses main as starting function.

We assume a sequentially consistent semantics by interleaving, thus only
one of the executable threads can be active (i.e., running) at any given time.
Initially, only the main thread is active; new threads can be spawned from any
thread by invoking create. Once created, a thread is added to the pool of the
executable threads. At a context switch the currently active thread is suspended
(but remains executable), and one of the executable threads is resumed and
becomes the active thread. When a thread becomes active it resumes from the
point where it was suspended (or from the beginning, if it becomes active for the
first time). For ease of presentation, we assume that each statement is executed
atomically.

Each thread configuration is a triple 〈locals, pc, stack〉, where locals is a valu-
ation of the local variables, pc is the program counter that tracks the currently
executing statement, and stack is a stack of function calls that works as usual.
A configuration of a multithreaded program is a tuple of thread configurations
along with valuation of the global variables that are shared by all threads.

A context is a possibly empty sequence of statements that consecutively exe-
cuted by a thread in a computation. We underapproximate the behavior of a
concurrent program by allowing computations up to a given round of a round-
robin schedule (bounded round-robin computations). In such computations, each
executable thread executes exactly one context for each round and in all con-
sidered rounds threads are always scheduled according to a same schedule (note
that this is not a real restriction since a thread can execute zero statements in
a round).

As an example consider the multithreaded program in Fig. 1. It encodes a
producer/consumer system. The program has two shared variables: a mutex m
and an integer c that stores the number of items that have been produced but
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not yet consumed. The main function initializes the mutex and spawns two
threads executing P (Producer) and two threads executing C (Consumer). Each
producer acquires m, increments c, and terminates by releasing m. Each consumer
first checks whether there are still elements not yet consumed; if so (i.e., the
assume-statement on c > 0 holds), it decrements c, checks the assertion c ≥ 0
and terminates. Otherwise it terminates immediately.

Note that the mutex ensures that at any point of the computation at most
one producer is operating. However, the assertion can still be violated since there
are two consumer threads, whose behaviors can be freely interleaved: with c = 1,
both consumers can pass the assumption, so that both decrement c and one of
them will write the value −1 back to c, and thus violate the assertion.

2.3 Lazy Sequentialization Schema

In this section, we briefly recall the lazy sequentialization encoding that we use
in our approach. This is implemented in our Lazy-CSeq tool [15,16]. We assume
that a concurrent program P consists of n + 1 functions f0, . . . , fn, where f0
denotes the main function, and that P creates at most n threads, with the
respective start functions f1, . . . , fn. Moreover, no function fi contains loops.
Note that these assumptions can easily be enforced by bounding the programs
in BMC fashion and cloning the start functions, if necessary (bounded multi-
threaded program). Since each start function is thus associated with at most one
thread, we can identify threads and (start) functions.

Consider a bounded multithreaded program P as described above. In our
analysis of bounded round-robin computations, we fix a number of rounds K
and an arbitrary schedule ρ by permuting the functions f0, . . . , fn that form
the starting program. Thus, the lazy sequentialization of P yields a sequential
program P ′ such that P fails an assertion in K rounds if and only if P ′ fails
the same assertion. P ′ is composed of a new function main and a thread sim-
ulation function Ti for each thread fi in P . The lazy sequentialization of the

Fig. 1. Producer/Consumer program.
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Fig. 2. Lazy-CSeq sequentialized code of the Consumer/Producer program modified
according to the value analysis by Frama-C.

Producer/Consumer program given in Fig. 1 generated by Lazy-CSeq (with two
loop unwindings) is the code shown in Fig. 2 with the bitvector type in bold
replaced by the integer type. In the figure, we emphasize the code injected by
Lazy-CSeq showing in black the original code and in gray the injected code.

Note that the sequential verification of P ′ relies on stubs provided by Lazy-
CSeq. P ′ thus uses a slightly modified version of the Pthreads API. For example,
the create stub takes an additional argument for the (statically known) id of
the calling thread; see [16] for details.

The new main of P ′ is a driver that calls, in the order given by ρ, the functions
Ti for K complete rounds. For each thread it maintains the label at which the
context switch was simulated in the previous round and where the computation
must thus resume in the current round. Moreover, before each call of Ti, the label
at which the control will context-switch out is nondeterministically guessed.

Each Ti is essentially fi with few lines of injected control code and
with labels to denote the relevant context-switch points in the original code.
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When executed, each Ti jumps (in multiple hops) to the saved position in the
code and then restarts its execution until the label of the next context switch
is reached. This is achieved by the J-macro. Context-switching at branching
statements requires some extra care; see [16] for details. We also make the local
variables persistent (i.e., static) such that we do not need to re-compute them
when resuming suspended executions.

We use some additional data structures and variables to control the context-
switching in and out of threads as described above. The data structures are
parameterized over T ≤ n which denotes the maximal number of threads acti-
vated in P ’s executions. We keep track of the active threads (active), the
arguments passed in each thread creation (we omitted it in our example since
the considered thread functions have no arguments), the largest label used in
each Ti (size), the current label of each Ti (pc), and for the currently executed
thread its index (ct) and the context-switch point guessed in the main driver
before calling the thread (cs).

Note that the control code that is injected in the translation is designed such
that each Ti reads but does not write any of the additional data structures. These
are updated only in the main driver and in the portions of code simulating the
API functions concerning thread creation and termination. This introduces fewer
dependencies between the injected code and the original code, which typically
leads to a better performance of the backend tool (e.g., for BMC backends this
results in smaller formulas).

2.4 Value Analysis

The value analysis of programs aims at computing supersets of possible values
for all the variables at each statement of the analyzed program. All executions
of the instruction that are possible starting from the function chosen as the
entry-point of the analysis are taken into account.

The value analysis of Frama-C [2] is a plug-in based on abstract interpre-
tation and is capable of handling C programs with pointers, arrays, structs,
and type casts. Abstract interpretation links the set of all possible executions
of a program (concrete semantics) to a more coarse-grained semantics (abstract
semantics). Frama-C explores symbolic execution of the program, translating
all operations into the abstract semantics. For the soundness of the approach,
any transformation in the concrete semantics must have an abstract counterpart
that captures all possible outcomes of the concrete operation. Thus, when several
execution paths are possible, e.g., when analyzing an if-statement, all branches
need to be explored and then at the point where the branches join together,
e.g., after the if statement, the lattice-theoretic join of the results along each
branch is taken. In Frama-C this is implemented as the smallest interval that
encloses all intervals computed along the individual branches. For-loops require
additional care, since value analysis is not guaranteed to terminate. However,
this aspect is not relevant to our approach as the output of Lazy-CSeq does not
contain loops but only bounded programs.
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As an example, consider the sequentialization of the Producer/Consumer
program generated by Lazy-CSeq. On this program, Frama-C computes for the
integer shared variable c and the integer local variable tmp of producer threads
the interval of values [−2, 5]. Thus, in the verification analysis we can safely
reduce the size of these integer variables to 4 bits (one bit is for the sign) instead
of the standard 32 bits used for the type int. Therefore, we can transform the
sequentialized program accordingly by replacing the type int in the declaration
of these variables with the bitvector type. The resulting sequentialized code is
shown in Fig. 2.

3 Implementation

We have implemented our approach in a relatively straightforward way within
the CSeq framework, as an extension (Lazy-CSeq+ABS) to the existing Lazy-
CSeq implementation. CSeq consists of a number of independent Python mod-
ules that provide different program transformations (e.g., function inlining, loop
unrolling) as well as parsing and unparsing [15]. These modules can be config-
ured and composed easily to implement different sequentializations as source-to-
source transformation tools.

Fig. 3. Lazy-CSeq+ABS Architecture (Color figure online)

The architecture of Lazy-CSeq+ABS is shown in Fig. 3. We now briefly illus-
trate the architecture of Lazy-CSeq (shown in Fig. 3 in blue), and then incre-
mentally describe how we have extended it. Lazy-CSeq consists of a chain of
modules:

– a module that preprocesses the source files merging them into a single file;
– a module that simplifies the syntax;
– a module for unrolling loops and inlining functions to produce a bounded

program;
– a module that implements the Lazy-CSeq sequentialization [16] which pro-

duces a backend-independent sequentialized file;
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– a module to instrument the sequentialized file for a specific backend (in our
case, CBMC);

– This module then replaces two wrappers, one for backend invocation
(FEEDER), and another one that generates counterexamples (CEX).

We reuse all these module as follows. The output of the LAZY-CSEQ module,
which produces a backend-independent sequentialized file, is now instrumented
for Frama-C by replacing the nondeterministic choice, assert, and assume state-
ments with the equivalent Frama-C primitives. The next module consists of a
wrapper that invokes Frama-C on the instrumented code. The result of this
analysis, which reports for each variable a lower and upper bound on the value
that the variable can take along any execution of the bounded program, is used by
the INSTRUM TYPES module to compute the minimal number of bits required
for each program variable. This module then replaces the original scalar type
of each variable, say x, in the sequentialized file produced by the LAZY-CSEQ
module with the CBMC type CPROVER bitvector[i] where i is the number of
bits computed for x. The resulting program is then passed to the INSTRUM
module and the remaining process is the same as Lazy-CSeq. The additional
modules of Lazy-CSeq+ABS are implemented in Python as well.

Lazy-CSeq+ABS is publicly available at: http://users.ecs.soton.ac.uk/gp4/
cseq/cseq.html.

4 Experimental Evaluation

In this section we report on a large number of experiments where we compare
Lazy-CSeq v1.0 and Lazy-CSeq+ABS with the aim of demonstrating the effec-
tiveness of the approach proposed in this paper. The results of this empirical
study show that Lazy-CSeq+ABS is substantially more efficient on complex
benchmarks, i.e., larger programs that contain rare bugs. Furthermore, for sim-
ple benchmarks, which Lazy-CSeq v1.0 already solves quickly, the overhead of
running Frama-C on is often negligible.

In our experiments we use CBMC1 v5.6 as sequential backend for both Lazy-
CSeq v1.0 and Lazy-CSeq+ABS. CBMC encodes symbolically the executions
of the bounded program into a CNF formula that is then checked by the SAT
solver MiniSat v2.2.1. Furthermore, we use Frama-C2 v13-Aluminium for Lazy-
CSeq+ABS. In the remainder of the paper we denote Lazy-CSeq v1.0 simply as
Lazy-CSeq.

We have performed the experiments on an otherwise idle machine with a
Xeon W3520 2.6 GHz processor and 12 GB of memory, running a Linux operating
system with 64-bit kernel 2.6.32.

Since we use a BMC tool as a backend, we individually set the parameters for
the analysis (i.e., loop unwinding, function inlining and rounds of computations)
for each unsafe benchmark (i.e., program with a reachable error location) to the
minimum values required to expose the corresponding error.
1 CBMC: http://www.cprover.org/cbmc/.
2 Frama-C: http://frama-c.com.

http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html
http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html
http://www.cprover.org/cbmc/
http://frama-c.com
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SV-COMP’16 Benchmarks

The first series of experiments is conducted on the benchmark set from the
Concurrency category of the Software Verification Competition (SV-COMP’16)
held at TACAS. This set consists of 1005 concurrent C files using the Pthread
library, with a total size of about 277,000 lines of code. 784 of the files contain
a reachable error location. We use this benchmark set because it is widely used
and many state-of-the-art analysis tools have been trained on it. Moreover, it
offers a good coverage of the core features of the C programming language as
well as of the basic concurrency mechanisms.

Table 1 reports on the experiments for the unsafe benchmarks and Table 2
on those for the safe ones. Each row of these two tables summarizes the exper-
iments by grouping them into sub-categories. For each sub-category, we report
the number of files and the total number of lines of code in that sub-category.
The tables also gather the results of the experiments performed using Lazy-
CSeq v1.0 and Lazy-CSeq+ABS on these benchmarks. For the CBMC backend
analysis, we indicate with time the average time in seconds, mem the average
memory peak usage expressed in MB, and with #vars and #clauses the average
number of variables and clauses of the CNF formula produced by CBMC. Fur-
thermore, only for Lazy-CSeq+ABS, the column Frama-C denotes the average
time in seconds taken by Frama-C for the value analysis.

Table 1. Experiments on SV-COMP unsafe benchmarks

Lazy-CSeq Lazy-CSeq+Abs

CBMC CBMC Frama-C Total

Subcategory #files LOC sec. GB #vars #clauses sec. GB #vars #clauses sec. sec.

pthread 17 4085 34.7 84.9 89317.7 336250.1 18.0 66.8 47961.4 184287.8 5.5 23.5

pthread-atomic 2 204 1.7 33.3 9131.0 29186.0 1.8 46.2 6259.5 17936.0 0.9 2.7

pthread-ext 8 780 6.5 358.4 647840.1 2654905.9 4.5 83.1 89718.9 423391.8 1.1 5.5

pthread-lit 3 123 1.9 38.3 9993.0 31206.7 1.9 49.3 5882.0 16421.0 1.2 3.1

pthread-wmm 754 236496 2.0 31.4 2427.1 5668.3 2.2 46.1 2402.2 5578.8 0.9 3.1

The two tables paint a relatively clear picture in terms of runtimes. For the
larger and more complex benchmark categories pthread (both safe and unsafe
instances) and pthread-ext (only safe instances), where Lazy-CSeq takes on aver-
age more than 30 s, the effort for the abstract interpretation is relatively small
(approx. 5%–20% of the original CBMC runtimes) and is easily recouped, so that
we see overall performance gains of approx. 25%–40%. For the simpler bench-
marks, Frama-C takes almost as much time as Lazy-CSeq on its own, without
substantially reducing the size or complexity of the problems. In most cases we
thus see some slow-downs, but in absolute terms these are small (approx. 2 s)
and outweighed by the larger gains on the more complex benchmarks.

A very similar picture emerges for peak memory consumption—reductions of
approx. 15%–75% for the larger benchmarks that outweigh the relatively large
but absolutely small increases for the smaller benchmarks.
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Table 2. Experiments on SV-COMP safe benchmarks

Lazy-CSeq Lazy-CSeq+Abs

CBMC CBMC Frama-C Total

Subcategory #files LOC sec. GB #vars #clauses sec. GB #vars #clauses sec. sec.

pthread 15 1285 172.4 1124.4 1732068.1 7270420.0 98.6 945.3 1424912.1 6004425.3 8.4 107.0

pthread-

atomic

9 1136 2.7 37.9 18947.4 67709.0 2.9 47.7 16611.9 58334.0 2.0 4.9

pthread-ext 45 3683 71.7 876.8 1660452.6 6949976.3 49.4 552.6 937205.0 4036919.5 2.2 51.6

pthread-lit 8 432 5.8 43.7 15207.3 57356.2 4.9 51.6 11094.2 42161.0 1.0 5.9

pthread-

wmm

144 29282 1.6 31.5 3154.7 9420.2 1.6 45.7 3065.4 9084.0 0.9 2.5

If we look at the number of variables and clauses, we can see how effective
our approach is in reducing the size of the induced SAT problems. In most case
we see a reduction of approx. 30% to 50%. These reductions are not necessarily
correlated to reductions in either the SAT solver’s runtime or peak memory
consumption, but this is expected, as the size of a SAT problem is generally not
a reliable predictor for its difficulty. However, there are two notable exceptions.
For the unsafe pthread-ext benchmarks we see a much larger reduction of approx.
85%, but this is skewed by two benchmarks that involve large arrays that allow
these large reductions. Conversely, for the pthread-wmm benchmarks we see
almost no reduction in size. This is a consequence of the very simple structure of
these benchmarks—they are typically loop-free, which means that the unwound
programs only contain a (relatively) small number of assignments. Hence, there
is little scope to optimize the representation of the program variables.

Complex Benchmarks

We now report on the experiments for three unsafe benchmarks that present
a non-trivial challenge for bug-finding tools. These benchmarks consist of non-
blocking algorithms for shared data-structures. It is hardly surprising that lock-
free programming is an important source of benchmarks whose complexity truly
stems from the system’s concurrent interactions, not its computations. In fact,
the focus there is to minimize the amount of synchronization for performance
optimization, thus generating a large amount of nondeterminism due to inter-
leaving. Here we demonstrate that Lazy-CSeq is very effective in spotting rare
bugs in these programs, and that Lazy-CSeq+Abs allows to amplify its effec-
tiveness both in terms of verification time and memory peak usage.
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Time Memory Variables Clauses

9038772

2230134

2181.14M
B

3628.5s
779.84s

Time Memory Variables Clauses

2801774

712197

1188.4M
B

783.86s
1850.66s

17.0s

safestack. This is a real world bench-
mark implementing a lock-free stack
designed for weak memory models. It
was posted to the CHESS forum by
Dmitry Vyukov.3 It is unique in the
sense that it contains a very rare bug
that requires at least three threads
and five context-switches to be exposed
when running under the SC seman-
tics. In the verification literature, it was
shown that real-world bugs require at
most three context-switches to mani-
fest themselves [30]. safestack, for
this reason, presents a non-trivial challenge for concurrency testing and sym-
bolic tools. Lazy-CSeq is the only tool we are aware of that can automati-
cally find such concurrency bugs in safestack. It requires about 1 h:13 m:28 s
(of which about one hour is spent in the SAT solver) to find a bug and
has a memory peak of 2.18 GB (by setting the minimal parameters to
expose the bug to 4 rounds of computation and 3 loop-unwinding). Lazy-
CSeq+ABS, with the same parameters, requires 44 m:11 s time, where the
same time is spend in the symbolic execution, and 17 s is the time required
for the value analysis by Frama-C, which leads to a 1.7x speed-up. Also, it
uses only 1.19 GB of memory, i.e., roughly half of the memory required by
Lazy-CSeq. All this is illustrated in the figure on the right where we also
report on the number of variables and clauses of the produced CNF formulas.

Time Memory Variables Clauses

7907404

1951352

2395.43M
B

20113.3s

42.32s

Time Memory Variables Clauses

6367042

1579939

1175.14M
B89.8s

4049.26s

4.91s

eliminationstack. This is a C
implementation of Hendler et al.’s Elim-
ination Stack [12] that follows the orig-
inal pseudocode presentation. It aug-
ments Treiber’s stack with a “collision
array”, used when an optimistic push or
pop detects a conflicting operation; the
collision array pairs together concurrent
push and pop operations to “eliminate”
them without affecting the underlying
data structure. This implementation is
incorrect if memory is freed in pop oper-
ations. In particular, if memory is freed
only during the “elimination” phase,
then exhibiting a violation (an instance of the infamous ABA problem) requires
a seven thread client where three push operations are concurrently executed
with four pops. To witness the violation, the implementation is annotated with
several assertions that manipulate counters as described in [4]. Lazy-CSeq is the
only tool we are aware of that can automatically find bugs in this benchmark
3 https://social.msdn.microsoft.com/Forums/.

https://social.msdn.microsoft.com/Forums/
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and requires 5 h:35 m:13 s time and 2.39 GB of memory to find a bug. Lazy-
CSeq+ABS, with the same parameters, requires 1 h:07 m:29 s time, where 4.9 s
is the time required for the value analysis by Frama-C, which leads to a 5x
speed-up. As for the memory usage, it uses only half of the memory required
by Lazy-CSeq, namely 1.17 GB. All this is illustrated in the figure on the right
where we also report on the number of variables and clauses of the produced
CNF formulas.

Time Memory Variables Clauses

19273695

4756586

3112.27M
B

104.1s

1972.69s

Time Memory Variables Clauses

19251710

4749364

3090.01M
B

5.25s

1234.01s

89.81s

DCAS. This is a non-blocking algorithm
for two-sided queues presented in [1].
This algorithm has a subtle bug that
was discovered in an attempt to prove
its correctness with the help of the
PVS theorem prover. The discovery of
the bug took several months of human
effort. Although the bug has been auto-
matically discovered using the model
checker SPIN (see [13] and http://
spinroot.com/dcas/), a generalized ver-
sion of the benchmark remains a chal-
lenge for explicit exploration approach.
In fact, after 138 h of CPU-time (using 1000 cores), and an exploration of 1011

states the error was still undetected [14]. Here, we have translated this bench-
mark from Promela to C99 with Pthread library considering a more complex
version that has 10 threads while the version of [14] only considers 8 threads.
Lazy-CSeq can detect the bug within 32 m:52 s and with a memory peak usage
of 3.11 GB. Instead, Lazy-CSeq+Abs takes only 20 m:34 s with a memory peak
of 3.09 GB. All this is illustrated in the figure on the right where we also report
on the number of variables and clauses of the produced CNF formulas.

5 Related Work

The idea of sequentialization was originally proposed by Qadeer and Wu [29]. The
first scheme for an arbitrary but bounded number of context switches was given
in [24]. Since then, several algorithms and implementations have been developed
(see [3,9,19,20,23,33]). Lazy sequentialization schemes have played an impor-
tant role in the development of efficient tools. The first such sequentialization
was given in [20] for bounded context switching and extended to unboundedly
many threads in [21,22]. These schemes require frequent recomputations and
are not suitable for use in combination with bounded model-checking (see [11]).
Lazy-CSeq [16] avoids such recomputations and achieves efficiency by handling
context-switches with a very lightweight and decentralized control code. Lazy-
CSeq has been recently extended to handle relaxed memory models [34] and to
prove correctness [25].

Abstract interpretation [7] is a widely used static analysis technique which
has been scaled up to large industrial systems [8]. However, since the abstraction

http://spinroot.com/dcas/
http://spinroot.com/dcas/
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functions typically overapproximate the values a program variable can take on,
abstract interpretation is prone to false alarms, and considerable effort went into
designing suitable abstractions (e.g., [27,36]).

An alternative approach combines abstract interpretation with a post-
processing phase based on a more precise analysis to either confirm or filter
out warnings. Post et al. [28] describe a semi-automatic process in which they
use CBMC repeatedly on larger and larger code slices around potential error
locations identified by Polyspace.4 They report a reduction of false alarms by
25% to 75%, depending on the amount of manual intervention. Chebaro et al.
[4,5] describe the SANTE tool, which uses dynamic symbolic execution or con-
colic testing to try and construct concrete test inputs that confirm the warnings.
The main difference to our work is that such approaches use abstract interpre-
tation only to “guide” the more precise post-processing phase towards possible
error locations but do not inject information from the abstractions into the post-
processing in the same way as in our work.

Wu et al. [38] also combine sequentialization and abstract interpretation, but
in a different context and with different goals. More specifically, they consider
interrupt-driven programs (IPDs) for which they devise a specific lazy sequential-
ization schema; they then run a specialized abstract interpretation, which takes
into account some properties of the IPDs such as schedulability, in order to prove
the absence of some numerical run-time errors. In contrast, we consider general
C programs over the more general Pthreads API, and use a generic sequentializa-
tion schema but a simpler abstract interpretation. However, the main difference
is that we use the abstract interpretation only to produce hints for a more precise
analysis (i.e., BMC), and not to produce the ultimate analysis result.

6 Conclusions and Future Work

Concurrent program verification remains a stubbornly hard problem, but lazy
sequentialization has proven to be one of the most effective techniques, and has,
in combination with a SAT-based BMC tool as sequential verification backend,
been used successfully to find errors in hard benchmarks on which all other tools
failed. However, the sizes of the individual states (which are determined by con-
current program’s shared global and thread-local variables) still pose problems for
further scaling. We have therefore proposed an approach where we use abstract
interpretation to minimize the representation of these variables. More specifically,
we run the Frama-C abstract interpretation tool over the programs constructed
by Lazy-CSeq to compute overapproximating intervals for all (original) program
variables and then exploit CBMC’s bitvector support to reduce the number of bits
required to represent these in the sequentialized program. We have implemented
this approach on top of Lazy-CSeq and have demonstrated the effectiveness of this
approach; it has performed very well in SV-COMP’17 competition, where it solved
all tasks [26]. In this paper, in particular, we have further shown that it leads to
large performance gains for very hard verification problems.
4 https://www.mathworks.com/products/polyspace.html.
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Our approach is easy to implement and effective because of the confluence
of four different strands. First, we use a source-to-source transformation tool
for the sequentialization. This makes it easy to re-use an off-the-shelf tool (i.e.,
Frama-C) for the interval analysis. Second, we use a backend verification tool
(i.e., CBMC) that can effectively exploit the information provided by Frama-C,
by means of a specialized bitvector type. Third, we are using a lazy sequential-
ization, which ensures that the interval analysis can compute tight intervals; our
approach would not work with an eager sequentialization where the state vari-
ables remain unconstrained. Fourth, the interval analysis strikes the right balance
between analysis efforts and results—that is, it runs fast enough, and the com-
puted intervals are tight enough, so that the overheads are easily recouped, and
we actually improve the overall performance. Other, more elaborate, abstract
interpretations have in fact proven to be counter-productive.

In this paper, we have demonstrated our approach for sequentially consistent
concurrent programs that use the Pthreads API. However, all specific aspects of
the concurrency model are actually encapsulated in the sequentialization. Our
approach is therefore also applicable to other concurrency models, as long as
we have (or can design) a corresponding lazy sequentialization, and we plan to
extend our work to weak memory models, based on our previous work [34].

Another avenue for future work is to investigate other “cheap” analyses that
can be run over sequentialized program; specifically, we plan to use a points-to
analysis to reduce the amount of possible sharing that the BMC backend needs
to encode into the SAT formula.
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Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 402–404. Springer, Heidel-
berg (2014). doi:10.1007/978-3-642-54862-8 30

32. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-CSeq 0.3:
sequentialization by read-implicit and coarse-grained memory unwindings. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 436–438. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0 38

33. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Verifying con-
current programs by memory unwinding. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 551–565. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 52

34. Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Lazy
sequentialization for TSO and PSO via shared memory abstractions. In: FMCAD,
pp. 193–200 (2016)

35. Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-
CSeq 0.4: individual memory location unwindings. In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 938–941. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49674-9 65

36. Venet, A.J.: The gauge domain: scalable analysis of linear inequality invariants.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 139–154.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 15

37. Vyukov, D.: Bug with a context switch bound 5 (2010)
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