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Abstract

Identifying appropriate software components in a library—or software compo-
nent retrieval—is an important task in software reuse: after all, components
must be found before they can be reused. Deduction-based retrieval uses formal
specifications as component descriptors and as search keys and an automated
theorem prover to check whether a component matches a query. It is thus the
only component retrieval approach which delivers proven matches only; however,
its computational effort is very high. This thesis contains a detailed theoretical
investigation and the first substantial experimental evaluation of deduction-based
software component retrieval.

The theoretical investigation develops an abstract view of component retrieval
based only on the concept of sets of relevant, matching, and found components,
respectively. It is shown how properties of abstract match predicates are reflected
by these sets and vice versa and how this duality can be used to build library
indexes. The concepts of closure under iterated retrieval and query stability are
introduced and used to characterize retrieval algorithms. The notions of precision
leverage and relative defect ratio are introduced and used for the evaluation and
further characterization of retrieval algorithms. Relevance conditions and reuse
effects for three different retrieval modes (i.e., exact, proper, and approximate
retrieval) are identified and a variety of concrete match predicates for these modes
are defined. Relations between these predicates are shown and the appropriate
side conditions on component specifications and queries are identified.

The experimental evaluation is facilitated by an advanced prototype retrieval
system called NORA/HAMMR which has been designed and implemented for
this thesis. The experimental set-up (i.e., test library, proof task generation,
and applied theorem provers) is described in detail. The main technical and
non-technical requirements for a realistic retrieval system are discussed and the
resulting design is outlined. NORA/HAMMR’s novel architecture is based on a
pipeline of filters of increasing deductive strength. Dedicated rejection filters are
used “upstream” to rule out non-matches as early as possible and thus to prevent
the “downstream” confirmation filters from overflowing. This pipeline architec-
ture guarantees that intermediate results of acceptable precision are available for
inspection almost any time. It is amenable to parallelization which decreases the
response times and increases the recall of the system.

The experiments have shown that relatively simple techniques are sufficient
to identify large number of non-matches quickly and cheaply. Rejection filters
based on term rewriting are used to simplify the proof tasks and to reduce them
eventually to false, thus exposing trivial non-matches. Rewrite-based quantifier
elimination techniques increase their efficiency further and reduce the fallout of
the answer set to almost 25%. Non-trivial non-matches can be identified via
the application of specific counterexamples. In combination with the quantifier
elimination, rewrite-based implementations of counterexamples prove to be very
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effective, reducing the fallout of the answer set even further to less than 15%.
This fallout level makes possible the application of fully automatic, off-the-

shelf theorem provers for first-order logic. However, the experiments revealed that
the applied provers (GANDALF, OTTER, SETHEO, and SPASS) were not yet ma-
ture enough to work directly on the automatically generated proof tasks. Even
with a timeout of Tmax = 90.0 secs. per individual proof task, the provers achieve
overall recall levels of only 45%–70%. The recall can be improved significantly by
proof task preprocessing. This thesis describes the effects of a pre-simplification
of the conjectures and of a simple signature-based heuristic to simplify the back-
ground theory by identifying a suitable subset of axioms and lemmas. Both tech-
niques improve the prover performances; moreover, they are to a certain extent
complementary and their combination yields additional improvements, resulting
in overall recall levels of 65%–85%.

NORA/HAMMR’s pipeline architecture allows the users to realize different
recall level/response time trade-offs via a “plug’n’play”-style combination of the
filters into different pipelines. The alternatives span the range from a single-
processor pipeline which achieves an overall recall of almost 74% within a guar-
anteed response time of less than one second per library component to a multi-
processor pipeline with average response times more than 25 times as high but
an overall recall level of more than 91%. This demonstrates that deduction-based
retrieval has become technologically feasible.
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Chapter 1

Introduction

1.1 Software Engineering, Reuse,

and Retrieval

Software engineering as a discipline of computer science emerged some twenty
years after the invention of the digital computer (cf. [NR68, BR69]) as a reaction
to some truly spectacular failures in the development of large software systems (cf.
[Bro75] for a prime example.) In analogy to the already established, “classical”
engineering disciplines it had initially been defined as

“[t]he establishment and use of sound engineering principles in order
to obtain economically software that is reliable and works efficiently
on real machines.“

F. L. Bauer, in [NR68]

One of these “sound engineering principles” is to build new artifacts—prototypes,
products, or systems—on top of other, existing artifacts. And although most of
the early research had been geared towards the development of software “from
scratch,” the importance of this principle for software engineering had been real-
ized from the very beginnings of the discipline (cf. M. D. McIlroy’s contribution
“Mass Produced Software Components” [McI68] to the seminal NATO confer-
ence.)

However, in the following it became clear that the implementation of this
principle in software engineering, which gradually became to be known as software
reuse [Kru92], was a hard long-term task that is not yet solved satisfactorily: even
today, software reuse can by no means be considered an established practice.

To make software reuse happen, a wide variety of aspects and issues has to be
addressed, ranging from purely organizational (e.g., the so-called “not-invented-
here syndrome”) to purely technical. In this thesis I will address technical issues
only.

1



2 Chapter 1. Introduction

The most basic technical issue addresses the nature of the artifacts: what can
really be reused? Almost anything, as C. W. Krueger’s survey [Kru92] shows,
source code ranging from small snippets to entire subsystems but also test plans,
design decisions, or documentation. By slightly stretching their meanings, this
can be fitted into the following two categories:

• domain knowledge or

• source code fragments.

Reusing domain knowledge promises the higher returns but also requires the
higher up-front investments, for two reasons. First, the knowledge to be reused
must be collected and compiled. This process is called domain analysis [PA89].
Its importance has long been recognized (“It all comes back to domain analysis”,
I. D. Baxter, in [Tra88a]) but it is a difficult process because it requires a deep
understanding of the analyzed domain, as the 3-System Rule points out:

“If you have not built three real systems in a particular domain, you
are unlikely to be able to derive the necessary details of the domain
required for successful reuse in that domain. In other words, the
expertise needed for reuse arises out of ’doing’ and the ’doing’ must
come first.”

T. Biggerstaff, in [Tra88a]

Second, this “raw” domain knowledge is not ready for reuse—it is not an artifact.
It is not tangible, not even by software engineering standards, and it exists only
as a conceptual model within the brains of the domain analysts.

The most basic and archetypical technique to make domain knowledge explicit
and thus reusable is to write it down as a glossary of terms but more advanced
methods have also been developed. Domain-specific software architectures cast
the gained understanding into a typical system design [GS92, SG95]. Application
frameworks may be considered as partially implemented architectures where only
the critical parts are provided by the framework developer while all application-
specific parts are implemented and filled in by an application developer. Software
generators [Cle86] also embody domain-specific architectures but in contrast to
frameworks, the application-specific parts are specified in a high-level language.
The generator system then translates the specification and blends it with a pre-
implemented core. This extra level of abstraction accounts for high reuse leverage
factors.

All these domain-specific reuse approaches operate on the system level, i.e.,
complete systems or subsystems, and thus aim at large-grain reuse. Code reuse
operates on lower abstraction levels, trading large reuse leverage factors for a
much wider range of applicability. Its most basic and archetypical technique
is called code scavenging [Kru92], i.e., copying arbitrary code fragments out of
their former contexts. Although this is always possible and has virtually no
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up-front costs, more systematic techniques offer more reliability and better lever-
ages. These techniques depend on a central, well-maintained artifact repository
or software component library. The exact nature of the components is immaterial
(and still subject to discussions, cf. e.g., [WBS97, LS97]) and also depends on
the applied programming language. Possible components are, e.g.,

• functions, procedures, and modules for procedural languages,

• functions, abstract datatypes, and modules for functional languages,

• methods, objects, and classes for object-oriented languages.

However, the mere existence of a component library does not automatically en-
tail its re-use—the passive library needs active promotion. The most important
aspect of this promotion is to provide prospective re-users with support to help
them identifying components which suit their needs and the canonical way to pro-
vide this support is to develop tools which mechanize the identification process.
This task is the topic of software component retrieval.

1.1.1 Information Retrieval Approaches

Software component retrieval can informally be characterized as “information
retrieval meets software reuse.” Historically, it evolved from attempts to ap-
ply general information retrieval methods (cf. Section 2.1 or [Fra92] for short
overviews and [vR79, SM83] for general introductions) to software component
libraries. Here, the basic assumption is that software components are, after all,
nothing else but a certain variant of text documents and, hence, the text-based
methods are applicable.

Information retrieval has developed a variety of methods which form a kind
of continuum bounded by the two predominant schools “controlled vocabulary”
and “free vocabulary.” Figure 1.1 which is adapted from [FG89] shows the most
common methods in this continuum.

Controlled vocabulary methods place limits on the legal terms for the classi-
fication of the objects and formulation of queries. Often a thesaurus is used to
structure the vocabulary along a variety of hierarchical, equivalence, and associ-
ation relations, e.g., the Booch-taxonomy [Boo87]. These relations directly lead
to classification schemes. In an enumerated classification schema, e.g., Dewey
Decimal Classification, the domain is broken into disjoint, hierarchically ordered
classes. The components are then associated to the leafs of the class tree. But
due to its hierarchical structure enumerated classification requires a full under-
standing and a complete and rigid coverage of the domain. Evolving domains
as for example component libraries are thus better handled by a faceted classi-
fication schema [Pri87, Pri91, MR87, MR90]. It does not superimpose a single
tree-shaped hierarchy on the domain but allows a classification along different
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controlled vocabulary

6

?

enumerated classification

faceted classification

subject headings

descriptors

keywords in context (KWIC)

keywords out of context (KWOC)

text derived terms

free vocabulary

Figure 1.1: Classification of information retrieval methods

dimensions or facets and is thus easier to modify. Here, the components are or-
ganized in a fashion similar to a relational database where the facets correspond
to the database schema. More elaborated variants refine the facets hierarchically
[Bör95] or even use a formal description logic to represent the components and
rely on automated classifiers to organize the library, e.g., the LaSSIE-project
[DB+91, DJ94].

All classification methods help the user to understand and to navigate within
the domain—they provide natural search methods which are amenable to automa-
tion. But their major drawback are the high up-front costs which are associated
with the development of a classification scheme and indexing the components.
Controlled keyword methods reduce these costs by more liberal indexing. In
their barest form, each component is associated with an unstructured collec-
tion of descriptors which are drawn from a thesaurus. An intermediate form
uses hierarchically ordered subject headings, e.g., the Computing Reviews Subject
Headings, to structure the keywords.

Obviously, all controlled vocabulary methods require an established and well-
defined collection of technical terms. But such vocabularies need not to exist for
different reasons:

• There is no consensus about the terms.

• Evolving domains generate new terms which are not yet represented in the
vocabulary.

• Local or technical sub-vocabularies convey meaningful information about
some components but are unimportant from a global point of view.

Free vocabulary methods circumvent this problem by using an unlimited vocab-
ulary; however, to prune the size of the vocabulary, a variety of linguistic al-
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gorithms must be applied, e.g., stemming (i.e., reduction to lexical roots) or
phonetic matching (i.e., taking phonetic similarities into account.) The most
basic approach uses a natural language parser to extract a set of single key-
words from the program text or its accompanying documentation [FN87]. Bet-
ter results can be achieved if more sophisticated indexing techniques, e.g., lex-
ical clustering [MS89, MBK91], or matching algorithms, e.g., spreading activa-
tion [Hen94, Hen96], are used. It is also possible to combine these techniques
with structural information extracted from the library, e.g., inheritance relations
[HM91].

1.1.2 Dedicated Component Retrieval Approaches

Dedicated component retrieval approaches deny the basic assumption of the gen-
eral information retrieval approaches that software components are “ordinary”
texts. More precisely, they assume that software components are highly formal-
ized artifacts and thus have intrinsic properties which are not obvious from the
textual representation but are more characteristic than the textual representation
itself. Consequently, to achieve good retrieval results, these intrinsic properties
must be exploited which in turn requires specialized software component retrieval
algorithms.

Such algorithms were developed in different areas, depending on the prop-
erty which was to be exploited. In automatic program understanding, e.g., in
the Programmer’s Apprentice project [RW88], structural representations of the
components which abstract from their lexical appearance are used, e.g., program
dependency graphs. A specialized match procedure called graph parsing [RW90a]
handles irrelevant syntactic differences. The major drawback of such structural
approaches is that the representation mechanisms are necessarily much too de-
tailed and concrete. Hence, queries are difficult to formulate and internal repre-
sentation aspects which are hidden in the library components may escape their
scope.

These problems can be alleviated if more abstract representations are ex-
ploited. In signature matching, the types of the applied programming language
are used: a component is retrieved if its type is “compatible” under the applied
type discipline to the query. This approach originated with the work of M. Rittri
[Rit89, Rit91] in the domain of functional programming. A. Moorman Zaremski
and J. Wing were probably the first to investigate signature matching under a
software engineering perspective [MW93, MW95a]. Its basic assumption is that
types reflect the functionality of a component at the right level of abstraction,
without exposing its internal representation.

The main conceptual difficulty in signature matching is an adequate definition
of “compatible” types which abstracts away “irrelevant” implementation details.
A component should be retrieved even though its type does not match exactly but
is “similar enough”. For example, in functional languages the difference between
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a tupled and a curried function is considered to be minor. Obviously, the choice
of the type compatibility is crucial for the behavior of a retrieval tool: if too
many types are identified, its precision suffers, if too few types are identified, its
recall suffers.

For functional languages, the equational theory Γ which describes the axioms
of Cartesian closed categories (cf. [Rit89, Rit91, DiC95]) proved to be adequate:
a component is retrieved iff its type is Γ-equal to the query. For imperative lan-
guages, no such semantically justified theory has been found and more ad-hoc
solutions are pursued [SC94]. This basic approach does not exploit polymor-
phism to the fullest possible extent. Since a polymorphic function (e.g., of type
∀α, β · (α → β) → list(α) → list(β)) also works on more specific types (e.g.,
(int → int) → list(int) → list(int)) it should also be retrieved for more spe-
cific queries. This effect can be achieved if Γ-equality is replaced by Γ-matching
[Rit90]: a component is retrieved iff its type can be Γ-instantiated to the query.
C. Runciman and I. Toyn [RT89, RT91] proposed an approach in which the query
variables can also be instantiated, making them don’t care-nondeterministic or
“wild cards”. Rittri also applied this idea to his own context [Rit93] but since Γ-
unification is—in contrast to Γ-matching—undecidable [NPS93], he had to drop
the distributive axioms.

While signature matching is still based on the syntax of the components, spec-
ification matching or deduction-based software component retrieval exploits their
formal semantics : a component is retrieved if its behavior is provably “compat-
ible” to the query. Here, formal specifications are used to characterize compo-
nents and as queries such that this approach amounts to proving the equivalence
of specifications (or some other well-defined relation between two specifications)
formally.

Deduction-based software component retrieval is based on an obvious idea
but it is very difficult to implement practically. It has thus been (re-) invented
periodically, in different contexts and under various aspects. It has been intro-
duced as a retrieval mechanism in the context of integrated software development
environments, e.g., in the Inscape/Inquire [Per89, PP93a] or PARIS [KRT87] sys-
tems. Later, the focus shifted to the more technical aspects, especially to the
proof process. G. Rollins and J. Wing [RW91] presented a prototype system
which used the (higher-order) inference machine of λ-Prolog. S. Manhart and
S. Meggendorfer [MM91] appear to be the first who built a system on top of a
high-performance, automated theorem prover for first-order logic (i.e., SETHEO
[LS+92]).

Subsequently, it was realized that raw deductive power is not sufficient; con-
sequently, the focus of the more recent work shifted back to the organizational
aspects. A. Moorman Zaremski and J. Wing [Moo96, MW95b, MW97b] in-
vestigated different match relations. R. Mili et al. [MMM94, MMM97] as well
as B. H. C. Cheng and J. Jeng [JC93] proposed hierarchical library organiza-
tions based on orderings of the components which speed up the retrieval pro-
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cess. J. Penix et al. [PBA95, Pen98] discuss a slightly different scheme based on
formally specified features. A different line of research linked deduction-based
retrieval to refinement of algebraic specifications [SL91, Ste91, Gog85, GN+96].

Deduction-based software component retrieval has a unique conceptual advan-
tage over all other component retrieval methods—it is the only method which can
(in principle) guarantee that all components retrieved in response to a particular
query actually do what they are required to do. In short, it is the only method
which retrieves proven matches only. This makes deduction-based software com-
ponent retrieval particularly suitable for the development of high-reliability or
safety-critical applications, e.g., automatic stock option trading systems or space
craft control systems. Moreover, this property allows a combination with other
formally justified software development approaches (e.g., deductive program syn-
thesis) without compromising the integrity of the resulting combined approach.

Finally, behavior sampling makes use of the most striking difference between
ordinary text documents and software components, the executability of the com-
ponents. Here, the basic assumption is that already a sample of a few (input,
output)-pairs characterizes a component sufficiently. Hence, a component is run
on a given set of inputs, the outputs are collected and compared to the ex-
pected results. If the correspondence is high enough, the component is retrieved.
A. Podgurski and L. Pierce [PP92, PP93b] proposed this idea first. Their system
uses a randomly selected inputs which are derived from a probabilistic input dis-
tribution. Park and Bais [PB97] use the inductive structure of the input domain
to generate the sample. R. Hall [Hal93] describes a system tailored towards the
Ada programming language; there, inputs are specified by the user. However,
in practice all behavior sampling methods involve non-trivial up-front costs be-
cause the sampling process requires a controlled environment which deals with
side effects, program crashes, timeouts, etc.

1.1.3 Code Reuse and Component Retrieval

In analogy to the software testing terminology, code reuse is traditionally labeled
as either black box or white box, depending on whether the code needs to be
inspected and modified or not. Code scavenging for example is the paradigmatic
white box method. In principle, software component retrieval can support both
styles. However, here I use a slightly finer classification.

• In black box reuse, a client may reuse the retrieved components “as is”,
without any further inspection, proviso, or modification.

• In client-adaptive grey box reuse, a client may still reuse the retrieved com-
ponents “as is” and without any modification but only after having met
additional conditions.
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• In component-adaptive grey box reuse, a client may reuse the retrieved com-
ponents without meeting any additional conditions but only after interface-
level modifications of the components.

• In traditional white box reuse, arbitrary additions and modifications either
on the client side or on the component side are required.

In practice, however, these different styles are not always as sharply distinguished
as the definitions suggest. For example, if the retrieval algorithm can automati-
cally provide the necessary interface-level modifications (e.g., rearranging formal
parameters), component-adaptive grey box reuse may also qualify as black box
style.

1.2 Scope and Assumptions

Although this thesis is set in the context of software reuse, I discuss reuse aspects
almost only from the retrieval perspective, e.g., how different retrieval configu-
rations affect the reusability of the retrieved components. Moreover, I am not
concerned with any activities which happen before or after retrieval. Thus, I
do not consider any of the steps necessary to set-up deduction-based retrieval,
e.g., library construction (i.e., collection, selection, and homogenization of com-
ponents) and component indexing (i.e., attaching specifications to the compo-
nents); similarly, I do not consider any post-processing steps, e.g., adaptation
and composition of retrieved components. Finally, I am not concerned with the
source of the queries; the experimental setup, however, takes the possibly differ-
ent characteristics of different query sources (e.g., direct query input by a user
or automatic query generation by an integrated system) into account and uses a
query set which covers a wide range of different specification styles.

For the purpose of this thesis, I consider the defining property of a component
to be a self-contained entity which provides at an atomic “point-of-service” (e.g.,
function call) a single, sharply defined, and independent functionality. This point
of view essentially confines components to functions, procedures, and methods
and excludes what has been termed module matching in [Moo96, MW97b] from
the scope of the thesis. But this is no real omission for two reasons:

• If a module is just considered a collection of independent points-of-service,
as in [Moo96, MW97b], module matching can be reduced to component
retrieval in a straightforward manner, provided that proper attention is
paid to cardinality questions.

• If a module has some relevant internal structure in addition to its points-of-
service, e.g., software schemes [VK85, KST97] or design patterns [GH+96],
then retrieval is no longer sufficient for reuse and adaptation and composi-
tion aspects begin to dominate.
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In general, a retrieval method can be considered to be deduction-based if it
satisfies the following three criteria:

1. Component indexes and queries are expressed in a formal language.

2. Matching is a formally defined relation between indexes and queries.

3. Retrieval employs formal reasoning to establish the validity of the match
relation.

Obviously, the essential aspect here is formality. However, to prevent that the in-
formal information retrieval approaches are also subsumed under this description,
the criteria are usually understood with the side condition that the index/query
language is sufficiently expressive, e.g., to formulate the match relation. In prac-
tice, the designation deduction-based retrieval has thus been restricted to ap-
proaches which apply algebraic or, more often, axiomatic specifications. I am a
proponent of the second approach because I believe that it offers for the purpose
of component retrieval three important advantages:

• (pre, post)-pairs conform better to the single point-of-service view of compo-
nents—in algebraic specifications the relevant information can be scattered
over arbitrarily many equations.

• (pre, post)-pairs can naturally be considered component contracts which
allows for more a intuitive interpretation of the match relations.

• (pre, post)-pairs make it easier to assign multiple indexes to a single compo-
nent—again, in algebraic specifications the relevant information can be scat-
tered over arbitrarily many equations.

In the following, I use a functional subset of VDM-SL [A+93, Daw91, PL92] as
contract language. The restriction to a functional subset is justified by the as-
sumption that indexes are essentially functional : side effects are not in agreement
with the single point-of-service view and must be made explicit, e.g., through ad-
ditional parameters. Similarly, parameters must be either of type in or out, but
not both, and inout-parameters must be split appropriately. Some additional
assumptions on the component specifications are made explicit in Section 2.2.4.

1.3 Goals

It should be clear from the brief survey given in Section 1.1.2 that deduction-
based component retrieval is not a new idea. However, it should also be clear
that it is not yet a practical and established technique. This raises the question
of whether deduction-based component retrieval can be made practical at all or
whether it is just an interesting failure. Prior research has ignored this important
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question almost completely; it is even unknown whether (much less how) current
theorem provers can handle the deductive load of component retrieval at all. In
this thesis, I will argue that (and show how) this is the case, and, hence, that
deduction-based component retrieval can in fact be made practical. This gives
rise to a first concrete research goal:

Goal #1: Evaluate under which circumstances and to which extent current fully
automatic, off-the-shelf theorem provers for first-order logic are capable of
solving the emerging proof tasks.
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Figure 1.2: Response times over recall

Figure 1.2 helps to explain why practicability becomes a concern and how it
can be addressed. It shows for three different scenarios the average response times
per query over the average recall level (i.e., the percentage of retrieved matches),
achieved using SPASS as the best available off-the-shelf theorem prover. The first
scenario (labeled total) corresponds to the simple generate-and-test approach
often applied in previous research, i.e., for each component in the library the
proof task is generated from query and component and its validity is tested using
the prover. It clearly demonstrates that practicability really is a concern. Even
for moderate recall levels, e.g., 50%, response times are already up to 10 minutes
per query; better recall levels induce exponentially growing response times. Worse
yet, the maximal recall level achieved on average is only approximately 70% which
means that in many cases no matching components are found at all. The second
scenario (labeled proofs only) shows how little time the prover actually spends on
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the tasks where it is successful (i.e., can find a proof). Hence, if we could restrict
the application of the prover a priori to the cases where it will be successful, we
would have succeeded in making deduction-based retrieval practical. However,
due to the undecidability of first-order logic, this scenario is unrealistic. The third
scenario (labeled valid only) is an approximation of the optimal second scenario
where all invalid proof tasks (which are associated with non-matches) have been
removed. While it is still unrealistic—again due to the undecidability of first-
order logic—we have a much better chance of approximating it by filtering out as
many invalid tasks as fast as possible. This scenario (or any good approximation
thereof) still exhibits the exponential growth in response times but to a much
lesser—and now tolerable—extent. However, the maximally achieved recall level
is obviously the same as in the simplistic scenario because the tasks ultimately
fed into the prover are the same. This observation gives rise to the next research
goal:

Goal #2: Develop and evaluate methods to increase the performance of off-the-
shelf theorem provers for first-order logic when applied to the emerging
proof tasks.

These individual methods to increase prover performance, however, are only
some of the building blocks for a complete retrieval system. The overarching
practical goal of this thesis is to build such a system, more precisely:

Goal #3: Build a prototype retrieval system which demonstrates the feasibility
of the approach.

In addition to pursuing these more practical goals, I also try to address in
this thesis some of the theoretical issues of deduction-based software component
retrieval which remain open despite the mostly theoretical nature of previous
research, in particular:

Goal #4: Understand the nature of the software component retrieval process in
general and the additional problems of the deduction-based approach in
particular.

Goal #5: Understand the interdependencies between formal specifications, re-
trieval and reusability.

To the best of my knowledge, none of these goals has been achieved with previ-
ous research. I will discuss related work throughout the thesis and again in Sec-
tion 10.2; any serious experimental evaluation is (with the exception of J. Penix’s
work [Pen98, PA99] which is based on the experiments presented here) notori-
ously absent from the literature.
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1.4 Outline

The remainder of this thesis is conceptually organized into three main parts:
Reuse by Contract (chapters 2 to 4), Rejection Techniques (chapters 5 and 6),
and Specification Matching (chapters 7 to 9). The first part is essentially of
theoretical nature and addresses mostly goals #4 and #5; Chapter 4, however,
discusses the decisions which led to the design NORA/HAMMR and thus addresses
goal #3. The second and third parts contain the experimental results of this
thesis and address goals #1 and #2. Chapter 10 contains a summary of the
main contributions and results of this thesis, a discussion of and comparison with
related work, and a short sketch of some future work.

Reuse by Contract

The first part discusses the concept of reuse by contract and its realization within
the NORA/HAMMR1 retrieval system. Reuse by contract is an attempt to apply
the design by contract software development principle [Mey92] to software reuse.

”For reuse to be effective, Design by Contract is a requirement. With-
out a precise specification attached to each reusable component—
precondition, postcondition, invariant—no one can trust a supposedly
reusable component.”

J.-M. Jézéquel and B. Meyer, in [JM97]

Chapter 2 re-investigates the software component retrieval process in gen-
eral and the additional problems introduced by the deduction-based approach
in particular. Conceptually, the main problem is that the retrieval process is
now based on an undecidable operation—specification matching—which in turn
makes it more difficult to apply the “traditional” information retrieval notions
of relevant and retrieved components to understand and assess systems. The
approach followed here is to refine the usual notion of “retrieved components”
into two separate concepts, matching components and found components, which
allows to deal with the problems introduced by the undecidability of specification
matching without compromising the notion of relevance.

Chapter 3 contains a detailed discussion of the structure and interpretation
of match predicates, i.e., formally defined relations between component indexes
and queries which determine which components should be retrieved in response
to a given query. Match predicates play a central role in the concept of reuse
by contract because they also determine the circumstances under and limits to
which retrieved components can be reused—in effect, the match predicates are
the most important part of the reuse contract. To quote again from Jézéquel and
Meyer:

1NORA is no real acronym but an inference-based software engineering environment,
HAMMR is the highly adaptive multi-method retrieval system within NORA.
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“reuse without a contract is a sheer folly. . . . The Ariane 5 blunder
shows clearly that näıve hopes are doomed to produce results far
worse than a traditional, reuse-less software process. To attempt to
reuse software without assertions is to invite failures of potentially
disastrous consequences.”

J.-M. Jézéquel and B. Meyer, in [JM97]

Chapter 4 describes the experimental set-up in some more detail, in particular
the NORA/HAMMR-system and the test library. It explores the requirements for
a practical and usable deduction-based retrieval system and how they are reflected
within NORA/HAMMR’s architecture. It also contains a short description of the
applied theorem provers.

Rejection Techniques

The second part discusses some techniques to reduce the load deduction-based
software component retrieval puts on the ATPs. This is the cornerstone to make
the concept practical. While load reduction can be achieved with different ap-
proaches, NORA/HAMMR only applies number reduction techniques, i.e., it tries
to minimize the number of emerging proof tasks; due to the specific problem
profile, the greatest effects are achieved if tasks associated with non-matches are
ruled out. However, since subsequent confirmative steps cannot recover acciden-
tally dropped matches, their number must be minimized.

Chapter 5 describes recall-preserving rejection filters which are based on sim-
plification. The approach taken here is to use different term rewriting systems to
simplify the proof tasks and to reject all such components where the associated
proof task can be rewritten to false. This chapter contains a description of the
different rewrite systems applied for simplification, and, in particular, of the spe-
cialized rules which have been developed to handle (freely) generated datatypes
more efficiently.

If a proof task is not contradictory, however, the simplification-based tech-
niques described in Chapter 5 are not strong enough and fail to produce a defini-
tive result. Chapter 6 discusses rejection filters based on counterexamples. A
counterexample is simply a specific structure, interpretation, and variable assign-
ment under which the proof task evaluates to false. Counterexamples can in
general be used in two different ways. If the number of all structures is finite, the
proof task can be evaluated exhaustively over all potential counterexamples; if no
actual counterexample is found, the task is valid and the component can safely be
accepted (i.e., model checking). Unfortunately, this is not the case here—in the
test library, the list-datatype induces infiniteness. In NORA/HAMMR, the proof
task is thus checked against a small, fixed number of potential counterexamples;
if no actual counterexample is found, nothing can be concluded.

The counterexamples are specified by additional axioms which do not hold
in general, e.g., constraining the size of the item-domain. However, since these
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additional axioms are not necessarily model conservative theory enrichments, the
filters are no longer guaranteed to be recall-preserving. Moreover, the counterex-
ample structures are still infinite such that the proof tasks cannot be simply
evaluated; instead, the simplification-based techniques described in Chapter 5
and off-the-shelf ATPs are used to identify the actual counterexamples.

Specification Matching

The final third part contains a first substantial2 experimental evaluation of the
specification matching task. This evaluation is conceptually split into two parts.

Chapter 7 investigates the naive implementation of specification matching as
proposed in the existing literature [MW95b, MW97b, MMM94, MMM97, CJ92,
JC94, MM91], i.e., a simple generate-and-test approach. This chapter serves as
base case for the more elaborate variants provided by NORA/HAMMR. It can
also be used as a benchmark for the performance of off-the-shelf ATPs to a class
of proof tasks which is typical for software engineering applications.

Chapters 8 and 9 investigate the effects of some proof task preprocessing steps.
Such preprocessing steps become necessary because the proof tasks are generated
completely automatically and thus exhibit completely different characteristics
than the benchmarks the ATP community usually uses for testing and tuning of
the provers, e.g., the TPTP-library [SSY94].

Usually, the proof tasks in ATP benchmarks cannot be simplified in any ob-
vious way, e.g., by eliminating the propositional constants true and false. In
deduction-based retrieval, however, the proof tasks can usually be simplified sub-
stantially, depending on the match predicate and the query. In principle, such
redundancies should not make any difference because they can be eliminated
easily, e.g., during clausification. In practice, however, many simplifications—
even simple ones—do have effects on the performance of the ATPs. Chapter 8
investigates and quantifies some of these effects.

Similarly, the proof tasks in ATP benchmarks contain often a very finely tuned
set of axioms and lemmas; sometimes, this set is even obtained by a manual post-
mortem analysis of a successful proof. Obviously, this effort cannot be spent in
deduction-based retrieval. However, the supply of axioms and lemmas is crucial—
a single missed key lemma can make a proof much harder or even impossible.
Unfortunately, the naive solution to include all available lemmas does not work
because it induces too large search spaces. Chapter 9 describes a simple signature-
based heuristic which selects only such axioms and lemmas which are necessary

2This evaluation is by no means claimed to be exhaustive, despite the by far more than
100.000 proof tasks which have been generated and checked. A really exhaustive evaluation
would require more experimentation with different theorem provers, control strategies, and
parameter settings as well as with libraries over other domains. However, I am confident that
the numbers would not change dramatically and that the same conclusions could be drawn.
Besides, there is only so much work a single person can do in the course of one dissertation.
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to find a proof at all or are likely to shorten it and omits all those which only
increase the search space.
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Chapter 2

Software Component Retrieval

Software component retrieval is the application of information retrieval (IR) to
software reuse. IR has developed a large body of concepts and notions which are
useful not only for text-based approaches to component retrieval but also for the
development, description, and analysis of specialized algorithms.

In the following section, I informally introduce the main IR notions and dis-
cuss how software component retrieval can be considered as a special instance
of IR. I follow [vR79, SM83, Fuh95] for the general IR nomenclature and build
on [MMM98] for the aspects which are more specific to component retrieval. In
Section 2.2, I discuss the distinction between matching and retrieved components
which is particular to deduction-based retrieval and some of its ramifications. Fi-
nally, in Section 2.3, I introduce and define a variety of measures for the evaluation
of (component) retrieval systems.

2.1 Information Retrieval Terminology

Information retrieval is essentially the process of the content-based, goal-directed
extraction of relevant text documents, or more general, assets from large collec-
tions. Its overall goal is to deliver an exhaustive sub-collection of all single rele-
vant assets (i.e., independently and individually contributing to the user’s goal).
IR differs from the clearer defined data retrieval by mechanism, purpose, and
result.

• Assets are not extracted by precise asset identifiers (e.g., unique keys) or
attribute values but by (approximate) descriptions of their contents.

• Assets are in the first place not extracted for further (automatic) processing
but to solve a user’s goal.

• Retrieved assets do not necessarily solve the intended goal, even if their
content descriptions perfectly fit the goal description.

17
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In general, information retrieval is “fuzzier” than data retrieval. The main prob-
lem (“relevance problem”) is that assets are retrieved by descriptions of their
content and the goal but are judged as useful or relevant by different, more vague
and subjective criteria. Hence, an asset which completely solves the goal for one
user may be completely useless for another.

IR comprises three different tasks: navigation, matching, and grading. Nav-
igation determines which assets are visited at all and in what order they are
visited. Brute-force navigation (i.e., visiting all assets in the collection) is al-
ways possible. More elaborate navigation schemes require internally structured
asset collections or additional indexes; sometimes the term libraries is reserved
for such structured collections. Matching determines which assets possibly have
relevant contents, grading determines in what order these assets are presented.
Methods without the relevance check (i.e., navigation and presentation only) are
also called browsing.

Methods without grading are usually called binary retrieval ; there, the se-
lected documents are presented in an arbitrary order, e.g., the order in which
they have been visited. Methods with grading calculate a status value or re-
trieval weight for each document. The documents are ordered and presented
by decreasing weight. Documents with the same weight form a rank ; the or-
dering within a rank is arbitrary. Retrieval can then be defined via the ranks,
either by selecting all documents up to a certain rank, independent of their total
number (rank-oriented), or by selecting a certain number of the highest-ranking
documents, independent of the lowest actual rank (totaling).

Information retrieval methods do not work with the actual assets but only
with unique abstract representations called surrogates. The abstraction process
from the assets to the surrogates is also known as indexing or classification. Prop-
erly, a surrogate is confined to “organizational” information only, (e.g., location,
bytecode representation), but often the notion is stretched such that it may also
contain an abstract representation of the asset’s contents. This is called key even
though it does in general not satisfy the usual key property in the database sense
of the word, i.e., it does not necessarily identify the asset uniquely. Matching
only works with the keys. A library storage structure is an ordering on these
(key, surrogate)-pairs which may be used for navigation. It may also contain
additional index entries for existing component surrogates or redundant keys.
Usually, the actual surrogates are then only associated to the most specific keys
in the navigation ordering; keys without directly associated surrogates are called
blind keys.

Queries are similar to (blind) keys; they are abstract representations of the
assets to be retrieved. The query language need not to be exactly the same as
the key language but may be either a restriction or an extension. Binary retrieval
using a query language which supports the usual set operations on intermediate
results is also called boolean retrieval.
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Since IR involves a great deal of subjectivity, system evaluation is very impor-
tant. The most basic but still most common measures are recall and precision.
The precision p of a query result denotes the fraction of relevant assets in the
query result while the recall r measures the ratio between the number of retrieved
relevant assets and the total number of relevant assets contained in the library.
Sometimes, the fallout f is defined as a third measure. It is similar to the recall
but uses the irrelevant assets instead of the relevant assets and thus indicates the
ability of a system to reject irrelevant assets.

Of these three measures, only the precision is directly observable outside the
system (i.e., by its users) because the other two are defined relative to the num-
ber of relevant assets in the entire library. However, this number is difficult to
evaluate:

• Relevance need not be a binary property and some assets in a library may
be more relevant than others.

• Relevance need not be a binary function of the query and component only
but may depend on the particular library. Assets which must be considered
relevant for a poor library can be ignored in better collections.

• Assets need not be relevant in the first place but may become relevant only
after the inspection of other retrieval results (“reference chasing”).

• For large libraries a relevance judgment for every single asset is not feasible.

In practice, the first three aspects are ignored and to cope with large libraries, sta-
tistical methods (e.g., relevance judgment only on test sets, query generalization)
are applied.

In order to get reliable numbers for the quality of a system, the single ob-
servations must be averaged. The arithmetic means of the above measures can
be considered query-oriented averages because all queries are weighted the same,
regardless of their answer sets. Since query-oriented averages are corrupted by
queries with empty answer sets, the document-oriented averages are sometimes
used. They circumvent this problem as they sum up the respective numerators
and denominators before the quotient is calculated (cf. Def. 2.3.4).

Software component retrieval is a special instance of information retrieval
in that the assets are reusable software artifacts, or more specifically, in this
context, functions and procedures (cf. Section 1.2.) The specialization to reusable
components allows a specialization of the notion of relevance which is crucial for
a understanding of component retrieval.

The retrieval policy describes on a general and abstract level how components
must be related to the original user’s goal (i.e., task to be solved) to be considered
relevant. In exact retrieval, components are considered relevant only if the satisfy
the user’s goal exactly while proper retrieval also allows for more general com-
ponents. Both policies are usually implemented in a binary retrieval framework
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because they retrieve “perfect” matches which cannot be ordered by proximity
to the goal but only by arbitrary external criteria. In approximate retrieval, a
component is already relevant if it satisfies the user’s goal partially. A partial
solution can be defined semantically or syntactically:

• Semantically, a partial solution either provides the required result on a
subset of the required domain, or it provides a useful intermediate result
which requires further processing.

• Syntactically, a partial solution requires (a few) modifications.

Approximate retrieval corresponds more closely to the usual ranking case because
it comes with a built-in notion of proximity. In the semantic case, proximity is
the coincidence between required and provided domains, in the syntactic case it
is the modification distance. In general, approximate retrieval does not subsume
exact or proper retrieval, respectively, because perfect matches are not necessarily
ranked highest. However, if this is the case, the approximation is also called
normalized.

The retrieval policy is related to the reuse policy or reuse style. Clearly, exact
and proper retrieval aim at black box reuse: “perfect” matches can be reused “as
is”. Under the approximate retrieval policy, however, the possible reuse policy is
not determined so clearly. For a semantic view of partial solutions it is usually
grey box reuse; this can be “lifted” to black box reuse by a software development
process which tracks all open obligations stemming from partiality. However, for
a syntactic view only white box reuse remains possible.

The relevance condition is a formalization of the retrieval policy. It is a log-
ical expression parameterized over a component surrogate and the query whose
formal validity entails the relevance of a component. However, it is not uniquely
determined—for the same retrieval policy different relevance conditions are pos-
sible. The retrieval goal is a partial instantiation of the relevance condition with
the query.1

2.2 Relevant vs. Matching vs. Found

Classical, text-based information retrieval only distinguishes between relevant
(i.e., desirable) and retrieved assets. In software component retrieval, a more
detailed view is more appropriate, particularly in the deduction-based case where
retrieval is based on an undecidable operation. Here, a query and a component
(more precisely, their keys q and c) can be related in three different ways:

1In [MMM98], Mili et al. do not distinguish between retrieval policy and goal but denote
both as retrieval goal. Unfortunately, they also overload this notion with some aspects of the
retrieval mechanism (i.e., the match condition).
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• c is relevant for q , i.e., the relevance judgment or relevance condition ρ(q , c)
is satisfied.

• c matches q , i.e., c should be retrieved for q because a match predicate or
match condition µ(q , c) is satisfied.

• c is actually found for q , i.e., retrieved by an algorithm ϕ. The match
predicate µ can thus be considered an (abstract) specification for ϕ, or vice
versa, ϕ as implementation of µ.

For a library L, each of the predicates π induces a set [[ q ]]π = {c ∈ L | π(q , c)}
of components which is used to characterize and evaluate retrieval systems. If
the respective predicates ρ and ϕ are determined by the context, I also use the
“traditional” IR notations REL(q) = [[ q ]]ρ and RET(q) = [[ q ]]ϕ to denote the
sets of relevant and retrieved components, respectively.

Relevance judgments are “at will” (i.e., depend on arbitrary external criteria)
and are thus beyond any further investigation. Match and retrieve predicates,
however, possess some internal structure which warrants a closer look, especially
at the exact relationship between both.

2.2.1 Match Predicates

Different match predicates have already been investigated by A. Moorman Zarem-
ski [Moo96] who distinguished between partial order and equivalence matches,
depending on the kind of order the predicate induces on the keys. Although re-
flexivity, transitivity, and symmetry are in fact the most interesting properties of
match predicates, the restriction to the ordering on the keys does not adequately
capture the essentials of a match predicate—the induced ordering on the match
sets.

In the following, K denotes the universe of possible keys, i.e., all possible
component specifications. Obviously, this universe must include the library, i.e.,
L ⊂ K holds.

Reflexivity

Obviously, a match predicate cannot be completely arbitrary—it must at least
be reflexive: if the query and the key of the component are the same, the match
is obvious.

Transitivity

Both partial order and equivalence matches require transitivity of the match
predicate. Transitivity entails the pleasant property that more general queries
also have larger match sets.
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Lemma 2.2.1 If µ is transitive, then ∀k , k ′ ∈ K · µ(k , k ′)⇒ [[ k ′ ]]µ ⊆ [[ k ]]µ.
Proof: Assume c ∈ [[ k ′ ]]µ; hence, µ(k ′, c). With transitivity, µ(k , k ′) then
implies µ(k , c), thus also c ∈ [[ k ]]µ. 4

However, in practice, transitivity is a rather strict property which is not valid
for some quite common match predicates, e.g., keyword-based retrieval with a
disjunctive query interpretation—even if both q1 and q2 as well as q2 and q3

have a common keyword, q1 and q3 need not necessarily have one.2 But since
the monotonicity property of Lemma 2.2.1 is important in practice, a relaxed
definition would be helpful. Such a definition should reflect the fact that the
actual ordering on the keys is less important than the induced relation between
the match sets.

Definition 2.2.2 (quasi-transitive) A match predicate µ is quasi-transitive iff
∀k , k ′ ∈ K · µ(k , k ′)⇒ [[ k ′ ]]µ ⊆ [[ k ]]µ.

It is easy to see that any (reflexive and) transitive match predicate is also
quasi-transitive. However, any quasi-transitive match predicate induces a (tran-
sitive) subset relation and, moreover, match predicate and subset relation coin-
cide.

Lemma 2.2.3 If µ is quasi-transitive then ∀k , k ′ ∈ K ·µ(k , k ′)⇔ [[ k ′ ]]µ ⊆ [[ k ]]µ.
Proof: “⇒” is the definition of quasi-transitivity. For “⇐” , k ′ ∈ [[ k ′ ]]µ by
reflexivity of µ which implies k ′ ∈ [[ k ]]µ by [[ k ′ ]]µ ⊆ [[ k ]]µ and thus µ(k , k ′) by
definition of the match set [[ · ]]µ. 4

Hence, the only way to achieve the desirable monotonicity property over the
match sets is to have a transitive match predicate in the first place.

Symmetry

Partial order and equivalence matches differ only in symmetry properties: if
the match relation is a partial order, it must be anti-symmetric or identitive,
otherwise it must be symmetric. However, as with transitivity, anti-symmetry is
a rather strict property and it holds even less often. A match relation cannot
be a partial order match if it provides a certain degree of freedom and allows
equivalent but different formulations of a query because it then is no longer anti-
symmetric. Hence, a more relaxed definition based on the match sets is more
appropriate.

Definition 2.2.4 (quasi-identitive) A match predicate µ is quasi-identitive iff
∀k , k ′ ∈ K · µ(k , k ′) ∧ µ(k ′, k)⇒ [[ k ]]µ = [[ k ′ ]]µ.

2More generally, no match predicate which is based on any kind of distance measure d
between query and component (i.e., µ(q , c)↔ d(q , c) ≤ t , t ≥ 1) can be transitive. This is an
immediate consequence of the triangle inequality for distances.
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Since quasi-identitivity obviously follows from transitivity, reflexivity and
transitivity are the important properties of a match relation. Hence, in alge-
braic terms, match relations need be only pre-orders instead of partial orders as
claimed by A. Moorman Zaremski. However, for quasi-identitive match predi-
cates, a partial order can be recovered if the keys are factored through the match
sets. Similar observations also hold for the case of symmetry and equivalence
matches.

2.2.2 Library Indexes

Match predicates can also be used to build internal indexes over component
libraries, i.e., indexes which do not require an additional level of information but
use the components in the library. The canonical way [Moo96, MMM97] to build
such an internal library index comprises two steps:

1. Merge equivalent components into a single node.

2. Order the nodes by generality.

Both steps can be reduced to operations on the match sets: equivalent compo-
nents have equal match sets, more general components have larger match sets.
Hence, for an index the match set of each component in the library is calculated,
or under an algebraic point of view, the library is factored through the match
predicate.

Definition 2.2.5 (library index) For a library L, the library index induced by
a predicate π is

L/π = {[[ c ]]π | c ∈ L}

A library index is called normal if 〈L/π,⊇〉 is a homomorphic image of 〈L, π〉
and complete if 〈L/π,⊇〉 is a lattice.

Any library index is a partial order with respect to the superset relation;
however, even a match predicate which is not a partial order match may induce
a normal index. The following corollary is a direct consequence of the above
definition and Lemma 2.2.3.

Corollary 2.2.6 If a match predicate µ is transitive then its induced library index
is normal for any library L.

In fact, for transitive match predicates the algebraic relation between a library
and its induced index is quite strong. It can be shown that there always exists
a retraction-section pair between the library and its induced index. Recall that
a retraction-section pair between two partially ordered sets A = 〈A,≤〉 and
B = 〈B ,v〉 is a pair (r : A → B, s : B → A) of homomorphisms such that
r(s(b)) = b (or, equivalently, r ◦ s = idB) and s(r(a)) ≤ a holds ∀a ∈ A, b ∈ B .
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Theorem 2.2.7 If µ is reflexive and transitive then there exists a retraction-
section pair between 〈L, µ〉 and 〈L/µ,⊇〉.
Proof: Select an arbitrary representation function rep : L/µ → L such that
[[ rep(m) ]]µ = m, i.e., for each index class select an arbitrary “maximal” rep-
resentative. Since the index classes are always non-empty due to the reflexiv-
ity of µ, such a representative always exists. rep is a homomorphism because
m1 ⊇ m2 ⇒ µ(rep(m1), rep(m2)) follows with transitivity from Lemma 2.2.3, [[ · ]]µ
is also a homomorphism due to Lemma 2.2.3. Now, ([[ · ]]µ, rep) is the retraction-
section pair:

• ∀m ∈ L/µ : [[ rep(m) ]]µ = m holds by construction of rep,

• ∀c ∈ L :µ(rep([[ c ]]µ), c) holds because it is by definition of quasi-transitivity
equivalent to [[ rep([[ c ]]µ) ]]µ ⊇ [[ c ]]µ which reduces by construction of rep to
[[ c ]]µ ⊇ [[ c ]]µ.

4

Complete normal indexes are very useful for browsing because they already
contain any “interesting” subset of the library. However, they cannot be ob-
tained by mere restrictions on the match relation but require more elaborate
preprocessing [Fis98, Fis00]; hence, they will not be investigated here.

2.2.3 Match Predicates and Retrieval Algorithms

Since match predicate and retrieval algorithm can be considered specification and
implementation, the usual notions of soundness and completeness apply.

Definition 2.2.8 (soundness, completeness) A retrieval algorithm ϕ is called
sound (complete) with respect to a match predicate µ iff ∀k ∈ K · [[ k ]]ϕ ⊆ [[ k ]]µ
(∀k ∈ K · [[ k ]]µ ⊆ [[ k ]]ϕ).

Sound and complete algorithms are the common case in standard informa-
tion retrieval, but for (deduction-based) software component retrieval they are
the very exception; they are only possible for decidable match predicates. For-
tunately, soundness and completeness are mainly of theoretical interest. From a
practical point of view, a different property is more important.

Definition 2.2.9 (closure under iterated retrieval) ϕ is closed under iter-
ated retrieval iff

∀q , c ∈ K · c ∈ [[ q ]]ϕ ⇒ [[ c ]]ϕ ⊆ [[ q ]]ϕ

Closure under iterated retrieval is a “law of no surprise”: nothing new is
retrieved if the keys of retrieved components are re-used as follow-up queries.
As expected, it follows from soundness and completeness, at least for transitive
match relations.
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Lemma 2.2.10 If µ is transitive and ϕ is sound and complete w.r.t. µ, then ϕ
is also closed under iterated retrieval.
Proof: Soundness and completeness of ϕ give [[ q ]]ϕ = [[ q ]]µ for all q. Hence,
quasi-transitivity becomes ∀q , q ′ ∈ K · µ(q , q ′) ⇒ [[ q ′ ]]ϕ ⊆ [[ q ]]ϕ which is by the
definition of the match set and by the above equivalent to Definition 2.2.9. 4

Hence, signature matching (at least the original version defined by [Rit91])
is closed under iterated retrieval but soundness and completeness alone do not
suffice: keyword-based retrieval with disjunctive query interpretation is not quasi-
transitive and thus also not closed.

An important question is whether closed retrieval algorithms are at all possible
for deduction-based retrieval. Fortunately, this is in fact the case. The important
property of such algorithms is query stability. A retrieval algorithm is called
query-stable if its results reflect the ordering on the queries.

Definition 2.2.11 (query stability) ϕ is query-stable with respect to µ iff

∀k , k ′ ∈ K · µ(k , k ′)⇒ [[ k ′ ]]ϕ ⊆ [[ k ]]ϕ

ϕ is strictly query-stable with respect to µ iff

∀k , k ′ ∈ K · µ(k , k ′) ∧ µ(k ′, k)⇒ [[ k ′ ]]ϕ = [[ k ]]ϕ

Query stability is another “law of no surprise”. It assures that a more gen-
eral query actually retrieves—and not only matches—a larger set of components
(cf. Lemma 2.2.1). Similarly, strict query stability assures that equivalent keys
actually retrieve identical sets of components. Query stability and strict query
stability are thus the equivalent of quasi-transitivity and quasi-identivity, respec-
tively, for retrieval algorithms.

Corollary 2.2.12 If µ is transitive and ϕ is query-stable w.r.t. µ, then ϕ is also
closed under iterated retrieval.

This leads to the question of how query-stable algorithms look like. Obviously,
query stability again follows from soundness and completeness, but this does not
help very much. For an antisymmetric match predicate, soundness is already
sufficient because then [[ q ]]ϕ ⊆ [[ q ]]µ but | [[ q ]]µ | ≤ 1, i.e., there are no other
retrieved components whose keys can be reused for a follow-up query.

Corollary 2.2.13

1. If µ is transitive and ϕ is sound and complete w.r.t. µ, then ϕ is query-stable
and also strictly query-stable w.r.t. µ.

2. If µ is antisymmetric and ϕ is sound w.r.t. µ, then ϕ is also strictly query-
stable w.r.t. µ.
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Fortunately, completeness is in general not necessary because it can (in some
sense) be compiled into an approximation of a library index.

Algorithm 2.2.14 (closed retrieval algorithm) For any retrieval algorithm
ϕ a closed algorithm can be obtained by the following steps.

1. Calculate L/ϕ∗

2. RET := ∅
R := L

3. while R 6= ∅ do
Select c ∈ R
if ϕ(q , c)
then RET := RET ∪ [[ c ]]ϕ∗

R := R\ [[ c ]]ϕ∗
else R := R\ {c}
fi

od

The first step is an indexing step. As usual, ϕ∗ denotes the reflexive-transitive
closure of ϕ; hence L/ϕ∗ (i.e., the index of L with respect to ϕ∗, cf. Defini-
tion 2.2.5) is a partial order by construction. Moreover, L/ϕ∗ is a sound approx-
imation of L/µ.

Lemma 2.2.15 If µ is transitive and ϕ is sound w.r.t. µ then [[ c ]]ϕ ⊆ [[ c ]]µ holds
for all c ∈ K.
Proof: By soundness, [[ c ]]ϕ ⊆ [[ c ]]µ; this implies [[ c ]]ϕ∗ ⊆ [[ c ]]µ∗ by defini-
tion of reflexive-transitive closure. Due to transitivity [[ c ]]µ∗ = [[ c ]]µ which then
establishes the claim. 4

Step 2 and 3 comprise the actual retrieval algorithm. Initially, nothing is
retrieved and the entire library is unchecked (i.e., in R). The main loop of the
algorithm then just selects an arbitrary, still unchecked component c and tries
to establish the match using the base algorithm ϕ. If it succeeds, c’s entire
index class is retrieved from the indexed library and removed from the test set,
otherwise only c is discarded.

Theorem 2.2.16 If µ is transitive and ϕ is sound w.r.t. µ then the closed re-
trieval algorithm is sound w.r.t. µ and closed under iterated retrieval.
Proof: Soundness follows from Lemma 2.2.15, closure from using ϕ∗ for the
index and the fact that only c and not [[ c ]]µ is discarded if ϕ(q , c) fails. 4

2.2.4 Library Assumptions

In order to show more properties of match predicates and retrieval algorithms in
general or in order to show some properties of some specific match predicates,
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more assumptions about the components in the library (more precisely, their
specifications) have to be made.

Definition 2.2.17 (implementability, non-triviality, determinism) A spec-
ification s comprising the precondition pres and postcondition posts is called

• implementable iff ∀~x · pres(~x )⇒ ∃~y · posts(~x , ~y)

• non-trivial iff ∀~x · pres(~x )⇒ ∃~y · ¬posts(~x , ~y)

• deterministic iff ∀~x · pres(~x )⇒ ∃1~y · posts(~x , ~y) 3

• strictly deterministic iff ∀~x · ∃1~y · posts(~x , ~y)

Sometimes it is necessary to make additional assumptions on the behavior of
a component outside its proper domain. Minimality excludes accidentally valid
return values; it corresponds to a conservative view of components where nothing
is returned if the precondition is violated. Maximality reflects the interpretation
that any result is valid if the precondition is violated; a specification becomes
maximal if its original postcondition post s is replaced by pres ⇒ post s .

Definition 2.2.18 (minimality, maximality) A specification s is called

• minimal iff ∀~x · ¬ pres(~x )⇒ ∀~y · ¬posts(~x , ~y)

• maximal iff ∀~x · ¬ pres(~x )⇒ ∀~y · posts(~x , ~y)

However, these specific assumptions about specifications are not justified in
general. I call a library reasonable if all component indexes are implementable
and minimal.

Similarly, it is necessary to make assumptions on the set of sensible queries
which can be posed against a library; however, these assumptions also depend on
the chosen relevance predicate ρ.

Definition 2.2.19 (admissible query) A query q ∈ Q is called admissible
w.r.t. a library L and a relevance predicate ρ iff REL(q) ⊂ L. Q is called admis-
sible iff all q ∈ Q are admissible.

Unless stated explicitly otherwise, I assume libraries to be reasonable and
queries to be admissible for the remainder of this thesis.

3The unique existential quantifier ∃1 is defined as usual as an abbreviation: ∃1x · p(x ) ≡
∃x · (p(x ) ∧ ∀y · (p(y)⇒ x = y)).
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2.3 System Evaluation

In the following, I define the usual measures for the evaluation of binary retrieval
systems; some of the measures are tailored towards filtering. All measures assume
an objective, user-independent, and binary relevance predicate. For specification
matching, the relevance predicate is often identified with the match predicate.
I only define measures w.r.t. a single query; I denote the respective arithmetic
means (w.r.t. a set Q of queries) by overbars. If Q is “sufficiently large” and
immaterial, I usually drop it.

The first step towards a system evaluation is to identify the possible extreme
system behaviors, e.g., retrieving nothing or the entire library. This gives rise to
the following three—hypothetical—retrieval algorithms.

Definition 2.3.1 (ideal, incompetent, and indifferent algorithm) A retrie-
val algorithm is called

• ideal iff RET(q) = REL(q),

• incompetent iff RET(q) = ∅, and

• indifferent iff RET(q) = L

for every query q.

In practice, a retrieval system can only be evaluated over a test library but
the quality of the test library obviously influences the perceived quality of the
retrieval system. To account for this, and to judge the quality of a library, the
number of relevant components in relation to the size of the library or the expected
relevance of a component can be used.

Definition 2.3.2 (expected relevance) The expected relevance of an arbi-
trary component for a query q is

γ(q) =
|REL(q) |
|L|

The expected relevance is also the probability of picking a relevant component
at random, or, alternatively, the precision of the entire library. γ is also called
the general retrieval factor for a given library because γ · | RETϕ | denotes the
average number of relevant components which can be expected for a query.

Recall and precision of a query are defined independent of the expected rele-
vance as the number of retrieved relevant components in relation to the number
of total retrieved and relevant components, respectively.
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Definition 2.3.3 (recall, precision) For a query q ∈ K, the recall r(q) and
precision p(q) of the answer set RET(q) are defined as follows:

r(q) =
|RET(q) ∩ REL(q) |

|REL(q) |

p(q) =
|RET(q) ∩ REL(q) |

|RET(q) |

Recall and precision are not defined if no components are relevant and re-
trieved, respectively, but both definitions can be extended consistently:

• If REL(q) = ∅ then all relevant components can also be considered as
retrieved—hence, r(q) = 1. This is consistent with the assumption that
RET(q) ⊇ REL(q) should always imply r(q) = 1.

• If RET(q) = ∅ then all retrieved components can also be considered as
relevant—hence, p(q) = 1. This is consistent with the assumption that
RET(q) ⊆ REL(q) should always imply p(q) = 1.

Although the extended definition of precision is especially justified in the deduc-
tion-based case, both definition extensions can affect the query-oriented averages
r and p. Alternatively, the document-oriented averages can be defined.

Definition 2.3.4 (document-oriented averages) For a set of queries Q ⊂
K, the document-oriented averages of recall and precision are defined as follows:

r(Q) =

∑
q∈Q |RET(q) ∩ REL(q) |∑

q∈Q |REL(q) |

p(Q) =

∑
q∈Q |RET(q) ∩ REL(q) |∑

q∈Q |RET(q) |

However, query-oriented and document-oriented averages can differ quite sub-
stantially, even if the relevant and retrieved sets, respectively, are not completely
empty but only unevenly large. Consider for example | q |= 10, where 9 queries
have a single relevant component which is missed and the last query has 9 rel-
evant components which are all retrieved. Then r(Q) = 9×0.00+1×1.00

10
= 10%

but r(Q) = 9×0+1×9
18

= 50%. Hence, while the query-oriented average reflects
the user’s view of a retrieval system, the document-oriented average reflects the
system provider’s view: in total, 50% of the relevant components have been de-
livered.

In an indifferent system (i.e., RET(q) = L), the definitions of precision and
expected relevance coincide. If such a retrieval system is used as a filter, this
means that the precision of its output is the same as that of its input, or that it
did not increase the precision. This observation motivates the following definition.
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Definition 2.3.5 (precision leverage) The precision leverage of a retrieval al-
gorithm ϕ for a query q is

δp(q) =
p(q)

γ(q)

The precision leverage is a quality measure for retrieval algorithms and fil-
ters which takes the quality of the library properly into account; a filter can be
considered to be useful for q iff δp(q) > 1 because it performs better than just
picking the same number of components randomly. Obviously, δp(q) is close to 1
for large values of γ(q), even in the ideal case. This confirms the experience that
very focussed (or small) libraries do not really require automatic retrieval sup-
port. The maximal precision leverage is |L |; it occurs only for a single relevant
component and is achieved only by an ideal algorithm. In contrast to recall and
precision, the definition of the precision leverage cannot be extended consistently
for REL(q) = ∅.

Loss and junk (also called noise) are the complementary measures to recall
and precision: the loss denotes the relative number of missed matches (i.e., non-
retrieved relevant components) while the junk is the relative number of mis-
matches (i.e., retrieved irrelevant components.)

Definition 2.3.6 (loss, junk) For a query q ∈ K, the loss l(q) and junk j (q)
and of the answer set RET(q) are defined as follows:

l(q) =
|REL(q) \ RET(q) |

|REL(q) |
= 1 – r(q)

j (q) =
|RET(q) \ REL(q) |

|RET(q) |
= 1 – p(q)

Recall and precision (and thus also loss and junk) are user-oriented measures.
They make statements only about the quality of an answer set w.r.t. the query but
without respect to the entire library. Hence, they are not suitable for evaluating
the filtering effects of an algorithm. Here, the system-oriented measures fallout
and error quota can be used. The fallout is defined as the relative number of
non-rejected irrelevant components w.r.t. all irrelevant components, while the
error quota denotes the relative number of rejected relevant components w.r.t.
all rejected components.

Definition 2.3.7 (fallout, error quota) For a query q, the fallout f (q) and
error quota e(q) of the answer set RET(q) are defined as follows:

f (q) =
|RET(q) \ REL(q) |
|L \ REL(q) |

e(q) =
|REL(q) \ RET(q) |
|L \ RET(q) |
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Hence, the fallout measures the rejective power of an algorithm (i.e., its ability
to filter out irrelevant components) while the error quota denotes the precision
of this filtering process. Obviously, fallout and error quota are related to junk
and loss, respectively, as j (q) = 0 ⇔ f (q) = 0 and l(q) = 0 ⇔ e(q) = 0, but
they are not correlated and a small error quota does not necessarily entail a small
loss. In general, since the library usually contains mostly irrelevant documents
for any specific query and since usually only a small fraction of the documents is
retrieved (i.e., | L | � |RET(q) |, |REL(q) |), fallout and error quota are smaller
and much more evenly distributed than junk and loss.

The error quota can again be considered in relation to the precision of the
input. This yields the relative defect ratio.

Definition 2.3.8 (relative defect ratio) The relative defect ratio of a retrieval
algorithm ϕ for a query q is

δe(q) =
e(q)

γ(q)

ϕ is called a zero-defect algorithm iff δe(q) = 0 and defective iff δe(q) > 1
which implies that its ability to reject only irrelevant components is even worse
than a purely random choice. Precision leverage and relative defect ratio are flip
sides of the same coin. However, they are not correlated and a larger precision
leverage is consistent with a larger defect ratio.

The notions of precision leverage and relative defect ratio (and the derived
notions as useful or zero-defect algorithms) can be used nicely to characterize re-
trieval algorithms. For example, for any ideal algorithm ϕideal (cf. Definition 2.3.1)
the following theorem holds.

Theorem 2.3.9 ϕideal is a useful, zero-defect retrieval algorithm.
Proof: For ϕideal, RET(q) = REL(q) holds for each q ∈ Q which implies
p(q) = 1 and hence

δp(q) =
p(q)

γ(q)

=
1

|REL(q)|
|L|

=
|L|

|REL(q)|

which is strictly greater than 1 since REL(q) ⊂ L holds for all admissible queries
q. Hence, ϕideal is useful. Moreover, RET(q) = REL(q) also immediately implies
e(q) = 0 and thus δe(q) = 0. 4
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Similar results can be achieved for the other hypothetical algorithms. More-
over, it is possible to show that more general results hold, for example that a
useful algorithm is never defective (cf. Theorem 2.3.11).

Theorem 2.3.10 Every non-indifferent zero-defect retrieval algorithm ϕ is use-
ful.
Proof: Let q be an arbitrary query. Since ϕ is a zero-defect algorithm, δe(q) = 0
holds which implies e(q) = 0 and thus REL(q) ⊆ RET(q). Hence,

p(q) =
|REL(q)|
|RET(q)|

and thus

δe(q) =
|REL(q)|
|RET(q)|

· |L|
|REL(q)|

which is strictly greater than 1 iff RET(q) 6= L, i.e., ϕ is not indifferent. 4

Theorem 2.3.11 Every useful retrieval algorithm ϕ is non-indifferent and non-
defective.
Proof: Assume ϕ that is indifferent, i.e., RET(q) = L. Since ϕ is useful,

δp(q) > 1

⇔ |RET(q) ∩ REL(q)|
|RET(q)|

>
|REL(q)|
|L|

⇔ |REL(q)|
|L|

> 1

which is an immediate contradiction. Now assume ϕ that is defective, i.e., δe(q) >
1 for a q. Then

|REL(q) \ RET(q)|
|L \ RET(q)|

>
|REL(q)|
|L|

(*)

must hold. Since REL(q)\RET(q) = REL(q)\(RET(q)∩REL(q)) and RET(q) ⊂
L, (*) becomes

|REL(q) \ (RET(q) ∩ REL(q))|
|L \ RET(q)|

>
|REL(q)|
|L|

⇔ |REL(q)| - |RET(q) ∩ REL(q)|
|L| - |RET(q)|

>
|REL(q)|
|L|

⇔ |L| · |REL(q) | - |L| · |RET(q) ∩ REL(q) |
> |L| · |REL(q) | - |REL(q) | · |RET(q) |

⇔ |L| · |RET(q) ∩ REL(q) |< |REL(q) | · |RET(q) | (**)
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On the other hand, since ϕ is useful,

δp(q) > 1

⇔ |RET(q) ∩ REL(q)|
|RET(q)|

>
|REL(q)|
|L|

⇔ |L| · |RET(q) ∩ REL(q) |> |REL(q) | · |RET(q) |

which is a contradiction to (**). Hence, ϕ cannot be defective. 4

Limits of Recall/Precision-Based Evaluation

Although the evaluation of retrieval systems based on recall and precision is the
most common approach, it has been criticized in the literature quite often (cf.
[Fuh95]). The major drawbacks cited are:

• Recall and precision work on ordinal scales only, that is, two measures
cannot be compared quantitatively but only qualitatively.

• Recall and precision are no utility measures, that is, they are not suitable
for indicating the usefulness of a retrieval system directly.

• Recall and precision are unsuitable for ranking retrieval systems. Unfortu-
nately, this is to some extent also true for the derived measures precision
leverage and relative defect ratio.

The first two drawbacks can be mitigated partially by comparison to the three
hypothetical retrieval algorithms (cf. Def. 2.3.1). In an ideal retrieval system,
retrieved and relevant components coincide, and, hence, pideal = rideal = 1, and
fideal = 0. In practice, however, precision and recall are antagonistic. In an
indifferent system which always returns the entire library L, pindiff → 0 (for
| L |→ ∞), rindiff = 1 but also findiff = 1—that is, the system is not only unable
to narrow it’s response but in addition also dumps a great share of the irrelevant
assets contained in the library on the users. In an incompetent system, nothing
is ever retrieved and thus pincom = 1, fincom = 0 as the ideal system but rincom = 0.

The last drawback, however, is system-immanent because recall and precision
measure independent, or more precisely, antagonistic dimensions. As long as one
system has both better recall and precision values as another system, everything
is fine but if the values are skewed (e.g., better recall at the expense of precision),
nothing decisive can be concluded. Unfortunately, even the usual workaround
to consider both systems at a common recall (or precision) level does not work
completely in the deduction-based case, because it does not assign ranks and,
hence, does not allow to “trim” the responses to a common recall level.
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Chapter 3

Contracts, Retrieval, and Reuse

One of the characteristics of deduction-based retrieval is a formally defined rela-
tion between indexes and queries (cf. page 9). In fact, this formal definition or
match predicate is central to the entire concept of reuse by contract because it
determines which components can be retrieved and, ultimately, how they may be
reused. But as there are different possible ways to reuse components based on
their contracts, there are also different possible ways to define matching formally.

Early research [RW91, KRT87, MM91] did not realize this choice and worked
with a single match predicate, although the applied definitions are slightly dif-
ferent. A. Moorman Zaremski and J. Wing [MW95b, Moo96, MW97b] appear
to be the first who have systematically investigated different match predicates.
They defined two generic forms called generic pre/post match [Moo96, p. 41]
and generic specification match [Moo96, p. 42] and then derived several variants
by syntactic modifications of these generic forms. However, their investigation
is problematic in two respects. From the software engineering perspective, the
reuse effects of the different variants are not always presented clearly. Some of
the definitions, e.g., specialized match [Moo96, p. 49] look contrived while oth-
ers, e.g., plug-in match [Moo96, p. 44] or generalized match [Moo96, p. 48] are
slight modifications of a more intuitive but missing definition. From the logical
perspective, the handling of the formal parameters and their types is insufficient.
The parameters are without distinction all universally quantified and the types
are just identified but not properly matched onto each other.

Both problems are a direct consequence of the syntactic approach taken by
Moorman Zaremski and Wing. The generic forms offer only a limited degree
of freedom but this is exhausted systematically. Semantic approaches [PBA95,
Pen98, FSS98, MMM97] are not subject to such problems and generally derive
more intuitive match predicates.

Mistaking matching for relevance is another common fallacy in deduction-
based retrieval. Work of A. Mili, R. Mittermeir et al. [BMM92, MMM97, JD+97,
MMM98] shed some light on that issue but as the formal discussions in the
preceding chapter show, it is more complicated than it appears superficially. I

35
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follow the approach begun in our own earlier work [FKS95a, FKS95b, FKS95c]
and deliberately use match predicates also to capture relevance. However, this
does not imply that always the same predicate is used for both purposes.

In this chapter, I thus analyze how the different match predicates are built and
how their choice affects the reuse styles and vice versa, taking into account—and
avoiding—the aforementioned problems of the approach of Moorman Zaremski
and Wing.

3.1 General Structure of Match Predicates

For their investigations, Moorman Zaremski and Wing have reduced the match
predicates to their propositional structure, using, e.g., Qpost as abbreviation for
the postcondition predicate Qpost(~x , ~y) over parameters ~x and return variables
~y . Although this convention allows a concise notation which emphasizes the
structural similarities and differences between the different definitions, it is also
deceptive as the scope and kind of the quantifiers are left implicit.1

A detailed analysis requires a more explicit notation. In the following, I use

• q and c to denote the entire query and component or their contracts, re-
spectively, or to index parts of the contracts,

• pre and post to denote the respective pre- and postconditions,

• ~x to denote the formal arguments of a contract (i.e., parameters),

• ~y to denote the formal results of a contract (i.e., return variables),

• T to denote a type compatibility predicate,

• r and u as (secondary) indexes to denote the restricted and unrestricted or
universal formal arguments, respectively.

Most of these notational conventions are straightforward. The last two are re-
quired for a more general handling of the formal parameters and their types; their
precise nature will be made clear subsequently.

In general, all match predicates exhibit some structural similarities even if
they are not derived syntactically because they are built up from only a few
constituents. On a very abstract level,

Q ~x ◦ ~y · T [~x , ~y ] † F [preq , prec, postq , postc] (3.1)

can be considered as the general structure of match predicates. Here,

1Cf. also a similar remark by J. Penix: “it is helpful to keep in mind that the missing variable
arguments are all universally quantified” [Pen98, p. 22].
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• Q ~x ◦ ~y is the prefix of the predicate where Q is an arbitrary sequence of
universal and existential quantifiers and the formal parameters and results
~x ◦ ~y of q and c may be rearranged,

• T [. . . ] is the type compatibility predicate of the match predicate,

• † is the relativation connective which may be either conjunction or impli-
cation, depending on the prefix, and

• F [. . . ] is the body of the predicate.

Moorman Zaremski and Wing’s investigations fixed a certain prefix, type compat-
ibility predicate, and relativation connective and focussed on the different bodies
only.

3.1.1 Type Compatibility Predicates

The purpose of type compatibility predicates is to provide “glue” between the
possibly different domains of the query and the candidate component. In the
simplest case this is just a renaming of objects (i.e., isomorphism) but the general
case is more complicated and resembles the data reification process in model-
oriented specification (cf. [Jon90, Ch. 8]). In principle, all match definitions are
thus schemas which are parameterized by the type compatibility predicates.

However, gluing can be considered from two different points of view:

• Under the conceptual abstraction view (cf. Figure 3.1), the domain of the
query is not important in itself but only as an abstraction of relevant con-
cepts of the component’s domain because the client will adapt itself to the
component’s domain. Hence, the retrieved components will only be sup-
plied with appropriate arguments.

• Under the integration view (cf. Figure 3.2), the domain of the query is the
“real” domain of the client and not only a conceptual abstraction. Hence,
the glue is required to convert actual values between the two domains.

The canonical examples to show the difference between the views are enumer-
ation types, e.g., the colors of a traffic light. If the colors are only considered
as abstractions, only their number and ordering are relevant and not their ac-
tual names. Hence, any other type with at least three different values will do.
However, if the client already works on the actual type and only looks for addi-
tional functionality, then the type compatibility predicate must translate between
the colors and their representations in the component (e.g., integers) to allow a
smooth integration without the need for any manual modification.

These two different views can be visualized by two different commuting di-
agrams. For a conceptual abstraction, type compatibility can in principle be
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considered as a function T which “lifts” the component’s contract c into the
query q for the purpose of finding a proof. Hence, as Figure 3.1 shows the type
compatibility predicate as two arrows going from the component’s domain and
codomain to the query’s domain and codomain, respectively. After a proof has

~xc ~yc

~xq ~yq

-
c

-
q

6

T [~xc ◦ ~xq , ]

6

T [ , ~yc ◦ ~yq ]

Figure 3.1: Type compatibility as conceptual abstraction

been found, T is not actually required for reusing the retrieved components.
Hence, it is internal to the proof, or to put it into different words, need not be
constructed explicitly.

~xc ~yc

~xq ~yq

-
c

-
q

?

Tdom

def
= T [~xc ◦ ~xq , ]

6

Tcod

def
= T [ , ~yc ◦ ~yq ]

Figure 3.2: Type compatibility as integration

In contrast to this, for a proper integration the arrows must run in opposite
directions. The type compatibility predicate can thus conceptually be split into
two different parts Tdom and Tcod (cf. Figure 3.2.) Both parts are actually required
to integrate any retrieved components without manual modification into a client
program: Tdom translates the query domain into the component domain, Tcod

translates the results back.
However, this leaves the question of how the type compatibility predicates

can be obtained systematically. In data reification, the retrieve functions must
be specified explicitly for each reification step but this is obviously not feasible
in deduction-based retrieval. Hence, if the type compatibility is not trivial, then
it must be

• constructed by the prover at proof time, or

• approximated by signature matching.
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However, the first variant makes the match predicate a higher-order proof problem
which in practice leaves approximation by signature matching the only feasible
approach.

This approximation need neither be an isomorphism nor even a function be-
tween the respective domains and codomains, but must at least satisfy a weaker
adequacy condition.

Definition 3.1.1 (adequacy condition) A type compatibility predicate T ⊆
A × B is adequate if it can be represented by two relations Tdom and Tcod such
that

1. T = Tdom ∪ Tcod

2. Tdom it is left-total, i.e., ∀x : A · ∃y : B · Tdom(x , y)

3. Tcod it is right-total, i.e., ∀y : B · ∃x : A · Tcod(x , y)

4. Tcod ◦ Tdom = idA

T is strictly adequate if Tcod is also left-total. T is functional if both Tdom and
Tcod are functions.

In many cases, type compatibility predicates establish an isomorphism be-
tween the respective datatypes and are thus both strictly adequate and func-
tional, e.g., ∀(x1, x2) : A, (x2, x1) : B · T ((x1, x2), (x2, x1)) which switches the order
within tuples. However, even if T is only adequate, it can be used to translate
between two datatypes: by left totality each element can be embedded, by right
totality each embedded element can be translated back and by property 3.1.1.4
this process does not drop any information. If T is functional, Tdom is called the
canonical injection function and Tcod the retrieve function.

The probably best-known example for a non-functional (i.e., truly relational)
but still strictly adequate type compatibility predicate is the encoding of Boolean
values by integers as in the C programming language. There, zero uniquely rep-
resents the false-constant but any non-zero integer can represent true, although
it is customary to use a functional encoding true 7→ 1 for this purpose. Hence,
Tdom(true, x )⇔ x = 1 but ∀x ≥ 1 · Tcod(true, x ).

If a type compatibility predicate T is used to integrate retrieved components,
it can be split into the two relations (Tdom,Tcod) by projection to the domain
and codomain, respectively, as shown in Figure 3.2. Since Tdom is only used to
translate the arguments into the form expected by the component, it need not be
right-total. Similarly, since Tcod is only used to translate each result back into the
form expected by the query, it need not be left-total. However, if it is not even
right-total on the codomain, integration may still be possible, but it must then
additionally be shown that the actual return values are mapped correctly. The
codomain of Tdom need not cover all formal parameters of the component. Those
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which are covered are called restricted by T , the others are called universal or
unrestricted. Consider for example a query with a single parameter l : list and a
component with two parameters (i : item, l : list). Obviously, T should identify
the two lists and leave the item i unrestricted. For a complete covering of the
entire domain of the component, T could be extended by a relational join with
the type of the unrestricted variables but here I work only with the minimal
covering because this allows more control over the reuse effects.

More specific properties which relate the “static” domains with the actual
preconditions, e.g.,

∀~xq∀~xc,r∀~xc,u · Tdom(~xq , ~xc,r)⇒ (preq(~xq)⇔ prec(~xc,u ◦ ~xc,r))

cannot reasonably be expected to hold by a general approximation, because they
depend on the particular component and query.

The integrative view can also be used to define a pointwise “equality” of
(deterministic) specifications modulo a type compatibility predicate.

Definition 3.1.2 (implementation modulo type compatibility) A determi-
nistic component c implements a deterministic query q pointwise modulo the type
compatibility predicate T if

∀~xq∀~xc,r∀~xc,u ·
Tdom(~xq , ~xc,r) ∧ preq(~xq) ∧ prec(~xc,u ◦ ~xc,r)⇒ Tcod(q(~xq), c(~xc,u ◦ ~xc,r))

The relation to the usual pointwise equality of functions becomes clearer for total
specifications without unrestricted arguments and functional type compatibilities.
In that case, the condition simplifies to ∀~xq · q(~xq) = Tcod(c(Tdom(~xq))).

Type compatibility predicates can be considered as a generalization of monadic
sort predicates which are used to relativize restricted quantifiers. Following the
translation

ϕ(∀x : R · P [x ]) = ∀x · R(x )⇒ ϕ(P [x ])

ϕ(∃x : R · P [x ]) = ∃x · R(x ) ∧ ϕ(P [x ])

from a sorted logic into an unsorted logic by [Obe62], (3.1) could also be inter-
preted as

Q ~x ◦ ~y : T · F [preq , prec, postq , postc]

if ϕ is extended in the obvious way such that the relativation connective becomes
an implication only if Q is a purely universal string and a conjunction otherwise.
This reflects the intended interpretation that the “legal” instances of ~x ◦ ~y are
restricted to the set T which in turn has the characteristic predicate T [~x , ~y ].
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3.1.2 Multiple Type Compatibility Predicates

In order to increase the recall, it is sometimes advisable to use more than one type
compatibility predicate. For example, since the order of component parameters
is somewhat arbitrary, parameters of the same type can be identified using any
possible permutation; each of these permutations gives then rise to a type com-
patibility predicate. The intuitive interpretation of multiple type compatibility
predicates is obviously that the component should already be retrieved if a proof
is found for one of the predicates.

Unfortunately multiple type compatibility predicates cannot be represented
as a disjunction over the respective variants and, hence, cannot be nested inside
the proof task:

• For a universally quantified component parameter, a disjuncted predicate
would occur in the premise of an implication; however, then the task’s body
must hold for any instead of only an arbitrary variant which obviously
defeats the original purpose to increase the recall.

• For an existentially quantified component parameter, a disjuncted predicate
would occur in the conclusion of an implication; however, then the proof
may rely on actually using different variants of the type compatibility pred-
icate which defeats their original purpose as glue.

Consequently, multiple type compatibility predicates lead in general to multiple
proof tasks and may thus congest the retrieval system; hence, they should be
handled with caution.

3.1.3 Universal Prefixes

In the existing literature, all top-level variables (i.e., formal parameters and return
variables of the query and component, respectively) are universally quantified.
This need not necessarily be the case. Other prefix variants are also useful to
support different reuse styles, although at least the formal parameters of the
query must be universally quantified: systematic reuse is possible only if the
retrieved components satisfy the chosen match relation for any possible value in
the query domain.2 If existential quantifiers were used, accidental matches might
spoil the precision and thus the reuse effect.

Universal prefixes follow the standard practice and use universal quantifiers
for the query variables and for the restricted formal arguments and the results
of the candidate. Consequently, the relativation connective must always be an
implication. The variants differ, however, in the prefix position and quantifier of

2Remember that preconditions can be used to constrain that domain systematically.
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the unrestricted variables.3 In the following, I refer to the standard variant as
the fully universal form or fully universal prefix, respectively.

Definition 3.1.3 (fully universal form) The fully universal form of a match
predicate has the general structure

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc · Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒ F [preq , prec, postq , postc]

for any body F .

Generally, if a universal prefix is used, the body must hold for every possible
mapping between the domains and codomains of the query and of the candidate,
respectively, as specified by the type compatibility predicates. If the fully univer-
sal form is used, the body must additionally hold for arbitrary instances of the
unrestricted arguments. Hence, they are essentially interpreted in a don’t know -
nondeterministic way, or as surplus parameters as the required functionality does
not depend on their value. For example, if the contract

insert-some (l : list) r : list
pre true

post ∃ i : item, l1, l2 : list · l = l1 y l2 ∧ r = l1 y [i ]y l2

is used to retrieve components which insert an arbitrary single element at an
arbitrary position into a list, then the usual cons-function

cons (i : item, l : list) r : list
pre true

post r = [i ]y l

intuitively matches,4 regardless which actual element is cons-ed in front of the
list. In contrast to cons, the append -function

append (l1, l2 : list) r : list
pre true

post r = l1 y l2

does not match insert-some under a fully universal prefix because none of the
two argument lists can be guaranteed to be a singleton list. However, this can
be fixed if the additional parameter (which can be either of l1 and l2) is fixed
appropriately. The following definition reflects this idea.

3Throughout this section, I use F [preq ,prec ,postq ,postc ] to denote the body of an unspeci-
fied match predicate. This body usually refers to all bound variables ~xq , ~yq , ~xc = ~xc,u ◦~xc,r and
~yc .

4See the following sections for a detailed discussion of the exact nature of “matches.” For
the examples in this subsection, matching can be interpreted as equivalence of specifications
(cf. Def. 3.2.2).
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Definition 3.1.4 (curried universal form) The curried universal form of a
match predicate has the general structure

∃~xc,u∀~xq∀~yq∀~xc,r∀~yc · Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒ F [preq , prec, postq , postc]

for any body F .

The curried universal form is named for its analogy to the currying technique
which is used in functional programming languages to instantiate the first ar-
guments of a function to certain values. And as with currying, the additional
parameters are instantiated with fixed values : since the unrestricted formal ar-
guments ~xc,u are existentially quantified and precede all other bound variables in
the prefix, the witnesses which satisfy this formula are constants. Now, using the
curried universal form, append matches insert-some, as desired: if T identifies l
with l2 and both return values with each other, respectively, then the proof task
effectively reduces (again modulo the exact definition of the match predicate) to

∃ l1 : list · ∀ l2 : list · ∃ i : item · l1 y l2 = [i ]y l2

which becomes trivially true if some singleton list [c] with an arbitrary element
c is chosen for l1.5

In connection with type compatibility predicates, currying already yields a
powerful retrieval mechanism which is not confined to anonymous constants but
can even “calculate” the required instantiations of the additional parameters.
Consider for example append as query and the component

insert-list (l1, l2 : list , n : N) r : list
pre n ≤ len l1
post len r = len l1 + len l2 ∧
∀m : N1 · (m ≤ n ⇒ r(m) = l1(m)) ∧

(m ≤ len l2 ⇒ r(m + n) = l2(m)) ∧
(m > n ∧m ≤ len l1 ⇒ r(m + len l2) = l1(m))

which inserts a list l2 into another list l1, after a given position n. insert-list
matches but the match is not obvious. T must switch the order of the parameters
and n must be fixed to zero: appending l2 to l1 is the same as inserting l1 at
position zero into l2. But then, append can be expressed as a call to insert-list.

fun append l1 l2 = insert_list l2 l1 0

However, currying is not always sufficient. Sometimes, there exists no single
value for which the match predicate holds, but a functional dependency from the
query arguments to the additional parameters. This effect can be captured by
nesting the existential binder one step deeper into the prefix.

5Note that the inner existential quantifier originates from the specification of insert-some
and is not part of the curried universal prefix.
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Definition 3.1.5 (functionally dependent universal form) The functionally
dependent universal form of a match predicate has the general structure

∀~xq∃~xc,u∀~yq∀~xc,r∀~yc · Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒ F [preq , prec, postq , postc]

for any body F .

Now, the witnesses can be functions which depend on the outer query argu-
ments ~xq . This dependency allows the query

front (l : list) r : list
pre l 6= [ ]
post ∃ i : item · l = r y [i ]

to retrieve the more general function

delete-segment (l : list , n1, n2 : N) r : list
pre n1 + n2 ≤ len l + 1
post len r = len l − n2 ∧
∀m : N1 · (m < n1 ⇒ r(m) = l(m)) ∧

(m ≥ n1 + n2 ∧m ≤ len l ⇒ r(m − n2) = l(m))

which deletes an arbitrary segment from the argument list by instantiating the
parameters n1 and n2 appropriately:

fun front l = delete_segment l (len l) 1

However, the functional dependency supported by Def. 3.1.5 is abstract in
the sense that it is a dependency in the query domain: if the query domain is
considered as an abstract datatype, the witness can be composed entirely in terms
of that datatype. Hence, retrieved components need not to be modified but can
be adapted “from the outside”—reuse via the functionally dependent universal
form follows the client-adaptive grey box style. This abstract view is not always
sufficient and the functional dependency need to be expressed in the domain of
the component, i.e., in the implementation of the datatype. This can again be
achieved by nesting the existential binder one step deeper into the prefix.

Definition 3.1.6 (weak universal form) The weak universal form of a match
predicate has the general structure

∀~xq∀~xc,r∃~xc,u∀~yq∀~yc · Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒ F [preq , prec, postq , postc]

for any body F .

Of course, this variant implies that the witness can no longer be constructed by
the client and, hence, that the component must be modified or at least wrapped
internally—it supports component-adaptive grey box reuse only.
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3.1.4 Existential Prefixes

Universal prefixes embody the assumption that the body of the match predicate
must be satisfied for every possible mapping between the domains and codomains
of the query and of the candidate, respectively. This assumption ensures inde-
pendence of the particular data representation but that can be too restrictive
to yield good recall values. Existential prefixes thus relax the restriction by re-
placing some of the universal quantifiers by existential ones—hence the name.
However, care must be taken with the bodies to avoid unintended matches and
thus a loss of precision. Also, by using different bodies some of the effects could
even be achieved under universal prefixes.

The cod-existential form is the least permissive relaxation. Here, the body of
the match predicate must still hold for any possible mapping between the domains
but not between the codomains. Instead, for each value in the codomain of the
query only one corresponding value in the codomain of the component is required.

Definition 3.1.7 (cod-existential form) The cod-existential form of a match
predicate has the general structure

∀~xq∀~xc,r∀~xc,u∀~yq∃~yc · Tdom(~xq , ~xc,r)⇒ (Tcod(~yq , ~yc) ∧ F [preq , prec, postq , postc])

for any body F .

Due to the universal quantification of the domains, the match is established
independently of the representation of the arguments, i.e., the retrieved compo-
nents may still be reused without further concern for the arguments. Consider
for example a query for a set union

union (s1, s2 : set) r : set
pre true

post r = s1 ∪ s2

and assume that a set is implemented by an arbitrary list such that the members
of both coincide, i.e., T (s , l)⇔ s = elems l . Obviously, under a universal prefix,
append (cf. p. 42) does not match: each set has arbitrarily many valid represen-
tations as list, but post append is valid only for one. However, independent of the
chosen argument representation, this one is a valid representation of the result
required by union and, hence, append matches under the cod-existential prefix.

The apparent drawback of the existential quantification is that no further
assumptions about the results which the retrieved components produce are pos-
sible. Assume that Booleans are encoded by integers “as usual” (cf. p. 39) and
consider the query

member (l : list , i : item) r : B
pre true

post r ⇔ ∃ n ∈ inds l · l(n) = i
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which under a cod-existential prefix retrieves both components

numOccurrences (l : list , i : item) r : N
pre true

post r = card {n | n ∈ inds l · l(n) = i}

and

findLastOccurrence (l : list , i : item) r : N
pre true

post r = max ({0} ∪ {n | n ∈ inds l · l(n) = i})

Yet, both components use different encodings for true and none uses the standard
encoding true 7→ 1. However, this is no valid objection: any assumptions on the
retrieved components should be specified explicitly. Hence, if it is really impor-
tant that the standard practice be followed, then a different type compatibility
predicate must be used.

A further increase of recall can be achieved if the representation independence
of the arguments is given up. Consider for example the query member and the
component

isSegment (l1, l2 : list) r : B
pre true

post r ⇔ ∃ l3, l4 : list · l1 = l3 y l2 y l4

which checks whether the second argument occurs as sublist in the first and
assume that the item i is identified with the list l2 if it has the “right” head
element, i.e., Tdom((i , l), (l1, l2)) ⇔ l = l1 ∧ i = hd l2. Still, isSegment cannot
be retrieved because—in contrast to union/append—the representation of the
argument is relevant: a proof is possible only for the canonical representation
i 7→ [i ].

Apart from “tweaking” the type compatibility predicate, there are generally
two ways to make a proof possible. In the ideal case, Tdom is functional and the
canonical injection function yields just the required representation. But even if
it is relational, a restriction to the intended direction of interpretation (i.e., Tdom)
increases the likelihood of a proof. At the same time and for the same reason,
Tcod can also be restricted to its intended direction (i.e., Tcod).

Definition 3.1.8 (integrative form) The integrative form of a match predi-
cate has the general structure

∀~xq∀~xc,r∀~xc,u∀~yq∃~yc · Tdom(~xq , ~xc,r)⇒ (Tcod(~yq , ~yc) ∧ F [preq , prec, postq , postc])

for any body F .

To some extent, the cod-existential and integrative forms still support black
box reuse. If T is functional, the injection and retrieve functions take care of the
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necessary argument and return value adaptations. If Tdom is relational, the body
holds for any possible or canonic translation of the arguments, respectively. The
critical point is the existential quantification of the return values in connection
with non-deterministic component specifications: if a component can have several
possible return values for a set of arguments, it is no longer guaranteed that each
of them actually satisfies the body of the match condition.

In principle, different variants of the two forms can be derived by varying
type and position of the quantifier of the unrestricted formal arguments in the
same way as in the universal case. However, the reuse effects are also the same
as in the universal case; I will occasionally use these variants but without explicit
definitions.

In a far less ideal case as above, the choice of the argument representation
is non-deterministic: for each argument there exists a suitable representation
but not each (canonical) representation is necessarily suitable. For an example,
consider again the implementation of sets by lists, as before, and the query

numElements (s : set) r : N
pre true

post r = card s

and component

length (l : list) r : N
pre true

post r = len l

Obviously, length does not match, not even under the integrative prefix because
in this case only some of the possible list representations of a set are suitable—
duplicate-free lists. The existential form reflects this situation and allows length
to be retrieved.

Definition 3.1.9 (existential form) The existential form of a match predicate
has the general structure

∀~xq∃~xc,r∃~xc,u∀~yq∃~yc · Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc) ∧ F [preq , prec, postq , postc]

for any body F .

However, the increased recall is paid for with a loss of confidence. Since the
actual representation of the arguments (which in some sense corresponds to the
witness in the universal forms) is no longer known a priori, black box reuse is
no longer supported. Similar to the functionally dependent universal forms (cf.
Definitions 3.1.5 and 3.1.6), the arguments must be wrapped, either from outside
or inside the component itself, such that reuse becomes grey-box style. Hence,
the quantification of the unrestricted variables follows that model.
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3.2 Exact Retrieval

3.2.1 Relevance Condition and Reuse Effects

For exact retrieval, the relevance condition can informally be stated as behavioral
equivalence: a component is deemed relevant if and only if it behaves under all
conditions exactly as required. Hence, it must also fail (even in the same way)
whenever the query specifies a failure and must otherwise return exactly the same
results the query demands.

However, behavioral equivalence is a rather rigid notion as a component must
not “do more” (i.e., be more specific) than required. Consequently, if a query is
nondeterministic, no actual component in a library can be behaviorally equiva-
lent (assuming a deterministic implementation language) to the query, and, hence,
nothing is relevant. For example, if a user inadvertently poses the nondetermin-
istic query

query-sort (l : list) r : list
pre true

post sorted(r) ∧ ∀ i : item ·member(l , i) ⇔ member(r , i)

to retrieve sort routines, no component can be relevant because query-sort does
not specify whether duplicates are to be removed or not but each component has
to make its choice about this.6

From the software engineering perspective, the rigidity of exact retrieval has
also advantages—it supports black box reuse par excellence. Due to the behavioral
equivalence, retrieved relevant components may obviously be plugged into the
intended place “as is”, without further proviso or modification. But it guarantees
some even stronger properties than proper retrieval (cf. Section 3.3) which also
supports black box reuse. In exact retrieval, components cannot have unintended
and, hence, unnoticed side effects. They may thus be considered and exchanged in
isolation, without regard to the environment. Such isolated changes are typical
for re-engineering in general and software maintenance and system tuning in
particular, e.g.,

• replacing a prototype by a more efficient but functionally equivalent imple-
mentation,

• calling an external component through a foreign language interface, or

• changing to a different version of a particular library.

6Incidentally, this example also highlights the roots of the relevance problem. If the retrieval
goal is to retrieve sort functions without duplicate elimination, then the library could contain
relevant components, even under the exact retrieval policy. But then the specification query-
sort is just inadequate to retrieve them. To account for such effects, an accurate empirical
evaluation should thus also average over different formalizations of the retrieval goals.
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3.2.2 Rigid Match

The intuitive formalization of behavioral equivalence and thus also the usual
match predicate body for exact retrieval is equivalence of the pre- and postcon-
ditions, respectively:

(preq ⇔ prec) ∧ (postq ⇔ postc) (3.2)

Since the goal of exact retrieval is to retrieve components which can be considered
in isolation, the body must also hold for any instantiation of the unrestricted
parameters. Hence, the fully universal form (cf. Def. 3.1.3) must be used.

Definition 3.2.1 (rigid match) For a query q and a component c, rigid match
µrigid is defined as

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·
Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(

preq(~xq)⇔ prec(~xc)
)
∧
(
postq(~xq , ~yq)⇔ postc(~xc, ~yc))

)
The same match predicate (except for the explicit notation of the unrestricted

parameters) is called exact pre/post match in [Moo96, p. 43]. Its purpose is
essentially to capture irrelevant syntactic differences in the specifications which
can become rather large, as the following equivalent variants of member (cf. p. 45)
show.

member -2 (l : list , i : item) r : B
pre true

post r ⇔ ∃ l1, l2 : list · l = l1 y [i ]y l2

member -3 (l : list , i : item) r : B
pre true

post r ⇔ (l 6= [ ] ∧ (i = hd l ∨ member -3(tl l , i))

Rigid match is in fact a very rigid relation between two specifications. They
must not only have the same domains (modulo the type compatibility predicate)
but must not even diverge outside their domains. Hence, the query

split-after -first-occ-1 (l : list , i : item) (r1, r2) : list × list
pre member(l , i)
post l = r1

y r2 ∧ ∃ l1 : list · r1 = l1 y [i ] ∧ ¬member(l1, i)

which splits a list l after the first occurrence of an item i (which must occur in
l) does not match a slightly differently specified component

split-after -first-occ-2 (l : list , i : item) (r1, r2) : list × list
pre member(l , i)
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post l = r1
y r2 ∧

∀ l1, l2 : list · l = l1 y [i ]y l2 ∧ ¬member(l1, i) ⇒ r1 = l1 y [i ]

which does exactly the same for all legal inputs but has a different error behavior:
while post split-after-first-occ-1 is false for any r1 and r2 if the precondition is not satisfied,
post split-after-first-occ-2 still is true for an arbitrary partition of l into r1 and r2 (i.e.,
split-after-first-occ-1 is minimal while split-after-first-occ-2 is neither minimal nor
maximal).

3.2.3 Exact Match

Rigid match is particularly well-suited for reverse engineering where it is often
necessary, e.g., for compatibility reasons, to duplicate even the exact error behav-
ior. In most re-engineering applications, however, this is not the case. Instead,
for an exact match it is sufficient that the retrieved components have the same
domain and are equivalent on that domain.

Definition 3.2.2 (exact match) For a query q and a component c, exact match
µexact is defined as

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·
Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(

preq(~xq)⇔ prec(~xc)
)
∧
(
preq(~xq)⇒ (postq(~xq , ~yq)⇔ postc(~xc, ~yc)))

)
Now, using exact match, split-after-first-occ-1 and split-after-first-occ-2 match
each other, as intuitively expected. This behavior is not accidental, as the fol-
lowing easy corollaries show.

Corollary 3.2.3 Rigid match implies exact match for any query and component.

Lemma 3.2.4 Exact match implies rigid match for any total (minimal, maximal,
strictly deterministic) query and component.
Proof: For total specifications, the definition of µexact obviously collapses into
µrigid; similarly, if preq(~xq) holds. Now assume ¬preq(~xq) which implies (from
the first conjunct in the body of µexact) ¬prec(~xc) for all ~xc such that Tcod(~yq , ~yc)
holds, because q and c match under µexact. Hence, if both q and c are minimal,
¬postq~xq , ~yq) and ¬postc(~xc, ~yc) must hold for all ~yq and ~yc, respectively, which
implies µrigid(q , c). In the cases of maximimality and strict determinacy similar
arguments hold. 4

Obviously, Lemma 3.2.4 cannot be “strengthened” to the converse direction,
i.e., if exact match implies rigid match for q and c, then this does not entail
that q and c are minimal: exact match is reflexive but not any specification is
minimal. Similar observations also constrain the relations between most other
match predicates.
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However, the choice of preq to constrain the equivalence on the postconditions
is arbitrary and for practical reasons, e.g., to obtain easier or at least alternative
proof conditions, different equivalent variants of the body may be used. In par-
ticular, it is useful to break the equivalence between the two postconditions into
two implications such that for each direction the respective precondition can be
assumed:

(preq ⇔ prec) ∧ (prec ∧ postc ⇒ postq) ∧ (preq ∧ postq ⇒ postc)

3.2.4 Predicate Equivalence Matches

An alternative view of behavioral equivalence is not equivalence of the respective
pre- and postconditions but equivalence of the entire specification predicates:

F [preq , postq ]⇔ F [prec, postc]

For the construction of the specification predicate F [pre, post ] two interpretations
prevail which both give rise to an equivalence match.

Under the conjunctive interpretation, the specification predicate is true if and
only if both pre- and postcondition are true. This corresponds to a relational view
of specifications: a predicate is identified with the set of valid (input, output)-
pairs. Hence, the conjunctive predicate equivalence match can be interpreted as
isomorphism (modulo the type compatibility predicate) between the respective
sets of (input, output)-pairs.

Definition 3.2.5 (conjunctive predicate equivalence match) For a query
q and a component c, conjunctive predicate equivalence match µ∧-pred-≡ is defined
as

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·
Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(

preq(~xq) ∧ postq(~xq , ~yq)⇔ prec(~xc) ∧ postc(~xc, ~yc)
)

Similarly to exact match, the equivalence check on the postconditions is also
“blocked out” if both preconditions are false. Hence, split-after-first-occ-1 and
split-after-first-occ-2 also match each other using conjunctive predicate equiva-
lence match. However, since both preconditions are not directly related to each
other, accidental matches may spoil the precision, i.e., the match predicate be-
comes true although the specifications of query and component are not equivalent.
For example, consider the well-formed but non-implementable query

query-total -front (l : list) r : list
pre true

post ∃ i : item · l = r y [i ]



52 Chapter 3. Contracts, Retrieval, and Reuse

and the candidate component front. Although front has a smaller domain than
required (and is thus not retrieved under the rigid and exact matches), it matches
under the conjunctive predicate equivalence match, because query-total-front is
non-implementable and thus both specification predicates become false on the
domain difference (i.e., for l = [ ]).

Fortunately, this kind of behavior can occur only for “pathological” (i.e., non-
implementable) specifications, as the subsequent Lemma 3.2.7 shows.

Corollary 3.2.6 Exact match implies conjunctive predicate equivalence match
for any query and component.

Lemma 3.2.7

1. Conjunctive predicate equivalence match implies exact match for any im-
plementable query and component.

2. Conjunctive predicate equivalence match implies rigid match for any imple-
mentable, minimal query and component.

Proof: Assume that µ∧-pred-≡(q , c) holds but not µexact(q , c) or µrigid(q , c), re-
spectively. Then ~xq and ~xc must exist such that Tdom(~xq , ~xc,r) and either:

• The left conjunct of exact or rigid match is wrong, i.e., preq(~xq)⇔ ¬prec(~xc)

and ∀~yq∀~yc·Tcod(~yq , ~yc)⇒
(
preq(~xq)∧postq(~xq , ~yq)⇔ prec(~xc)∧postc(~xc, ~yc)

)
.

Assume that preq(~xq) holds. Thus ¬prec(~xc) and the specification predicate
of c is consistently false. Hence, because c matches onto q by assumption,
∀~yq · ¬postq(~xq , ~yq) must hold but this is a contradiction to the assumption
that the query is implementable. In the case of ¬preq(~xq), the contradiction
follows by symmetry from the implementability of the component.

• preq(~xq) ⇔ prec(~xc) and the right conjunct of exact and rigid match is
wrong. For exact match this implies that preq(~xq) holds, hence prec(~xc),
and, because q and c match under conjunctive predicate equivalence, then
also ∀~yq∀~yc ·Tcod(~yq , ~yc)⇒

(
postq(~xq , ~yq)⇔ postc(~xc, ~yc)

)
which is a contra-

diction to ¬µexact(q , c). For rigid match, the case that preq(~xq) holds leads
to the same contradiction. Hence, ¬preq(~xq) must hold, thus also ¬prec(~xc)
but then the postconditions coincide since query and component are sup-
posed to be minimal, i.e., a contradiction to ¬µrigid(q , c) arises.

4

For retrieval purposes it would be more appropriate to shift the restrictions
on the components, leaving the queries and thus the users unrestricted. However,
as the above example shows, exact match and conjunctive predicate equivalence
match do not even coincide for reasonable libraries. The proof of Lemma 3.2.7
gives only the following corollary (and its converse) but this is the best we can
achieve.
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Corollary 3.2.8 Conjunctive predicate equivalence match implies exact match
for any query and any implementable, total component.

Under the implicative interpretation, the specification predicate is true if and
only if the truth of the precondition implies the truth of the postcondition. This
corresponds to the usual contract-based view of specifications: if the precondition
is broken, anything may happen; if the component is called nevertheless, it may
react arbitrarily.

Definition 3.2.9 (implicative predicate equivalence match) For a query q
and a component c, implicative predicate equivalence match is defined as

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·
Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(

preq(~xq)⇒ postq(~xq , ~yq)
)
⇔
(
prec(~xc)⇒ postc(~xc, ~yc))

)
Moorman Zaremski prefers the implicative interpretation of specifications; in
[Moo96, p. 48], the above implicative variant is called exact predicate match.
Again, the equivalence check on the postconditions is “blocked out” if both precon-
ditions are false and again split-after-first-occ-1 and split-after-first-occ-2 match
onto each other. And as under the conjunctive interpretation, it is a again relax-
ation of exact match.

Corollary 3.2.10 Exact match implies implicative predicate equivalence match
for any query and component.

However, the reverse direction of the preceding corollary as well as the relation
between both predicate equivalence matches are more complicated. Although the
implicative interpretation follows from the conjunctive, this does not directly
scale up to the match predicates, due to the accidental matches which non-
implementable specifications may cause under the conjunctive interpretation.

Corollary 3.2.11 Conjunctive predicate equivalence match implies implicative
predicate equivalence match for any implementable query and component.

The attempt to show the reverse direction exposes a fallacy of the implicative
predicate equivalence match which is similar to but more serious than the one
described for the conjunctive predicate equivalence match (cf. page 51). Again,
components with a “wrong” (i.e., too small) domain may be retrieved under
certain circumstances. This fallacy is caused by the position of the preconditions,
i.e., by the implicative interpretation. It occurs for example if the query

query-completed -front (l : list) r : list
pre true

post l 6= [ ] ⇒ (∃ i : item · l = r y [i ])
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which can be considered as a partial specification for a total variant of the front
function is checked against the original version (cf. p. 44). Obviously, both spec-
ifications are equivalent for non-empty lists but not even the case l = [ ] prevents
a match. Although both the pre- (prequery-completed-front([ ]) vs. ¬pre front([ ])) and post-
conditions (∀r : list · post query-completed-front([ ], r) vs. ∀r : list · ¬post front([ ], r)) differ,
the implicative specification predicates are equivalent. A closer inspection re-
veals that such an accidental match can only happen if the component can be
completed arbitrarily because the query is trivial (i.e., indiscriminate) on the
extended domain. Hence:

Lemma 3.2.12 Implicative predicate equivalence match implies conjunctive pred-
icate equivalence match for any non-trivial query and component.
Proof: Assume that µ⇒-pred-≡(q , c) holds but not µ∧-pred-≡(q , c). Then ~xq and ~xc

must exist such that Tdom(~xq , ~xc,r) and preq(~xq) ⇔ ¬prec(~xc), due to the proposi-
tional structure of both match predicates. If preq(~xq) holds, ∀~yq ·postq(~xq , ~yq) must
also hold because the implicative specification predicate of c is equivalent to true
and q and c match under µ⇒-pred-≡ but this is a contradiction to the non-triviality
of q. If ¬preq(~xq) holds, prec(~xc) must hold, and a similar contradiction arises
due to the non-triviality of c. 4

Generally, the differences between the match predicates for exact retrieval
manifest themselves only if some border conditions are not met. For two rea-
sonable classes of specifications, all the above predicates coincide. Obviously,
all preconditions “reduce away” if they are true for all inputs, leaving a simple
equivalence of the respective postconditions. Hence:

Corollary 3.2.13 For total components and queries, the rigid, exact, and con-
junctive and implicative predicate equivalence matches coincide.

A second reasonable class originates from coalescing the side conditions of the
preceding corollaries.

Corollary 3.2.14 For implementable non-trivial minimal components and queries,
the rigid, exact, and conjunctive and implicative predicate equivalence matches
coincide.

It is easy to verify that the respective proofs still hold if non-triviality (and min-
imality) are substituted by (strict) determinism, provided that the codomains
are non-trivial (i.e., contain at least two different elements) and the type com-
patibility predicates are strictly adequate. Total specifications, however, are not
necessarily subsumed by the latter classes as, e.g., the simplest total specification
for lists,

total (l : list) r : list
pre true
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post true

is neither non-trivial nor deterministic nor minimal. Hence, Corollaries 3.2.13
and 3.2.14 describe two different classes of components.

3.2.5 Prefix Variations

Obviously, the number of retrieved components can be increased if the fully uni-
versal prefixes are replaced by weaker universal variants (except for the weak uni-
versal form which does not support black-box reuse). However, these variations
make sense only if the relevance condition is slightly modified: the additionally
retrieved components can no longer behave exactly as required under all con-
ditions (cf. p. 48) precisely because the unrestricted parameters may have been
instantiated for the proof.

Behavioral equivalence requires independence of a particular data represen-
tation in the domain and codomain and the universal prefixes assure that. But
if the type compatibility is not both strictly adequate and functional, the com-
plete “cross coverage” of the two codomains is too strict and may result in a loss
of recall (cf. the discussion following Def. 3.1.7). Using the cod-existential form
prevents this loss.

Definition 3.2.15 (representation-independent exact match) For a query
q and a component c, representation-independent exact match is defined as

∀~xq∀~xc,u∀~xc,r∀~yq∃~yc·
Tdom(~xq , ~xc,r)⇒

Tcod(~yq , ~yc) ∧
(
preq(~xq)⇔ prec(~xc)

)
∧
(
preq(~xq)⇒ (postq(~xq , ~yq)⇔ postc(~xc, ~yc))

)
The union/append -example (cf. p. 45) demonstrates the increased recall com-
pared to the standard version of exact match. The precise relation between the
two variants is captured by the following corollaries.

Corollary 3.2.16 Exact match implies representation-independent exact match
for any query and component.

Lemma 3.2.17 For an adequate and functional type compatibility predicate Tcod

(i.e., a total function), representation-independent exact match implies exact
match for any query and component.
Proof: By adequacy, ∀~yq∃~yc · Tcod(~yq , ~yc) always holds, and by functionality
this ~yc is unique. Hence, ∀~yq∃~yc · Tcod(~yq , ~yc) ∧ F [~xq , ~xc, ~yq , ~yc] is equivalent to
∀~yq∀~yc · Tcod(~yq , ~yc)⇒ F [~xq , ~xc, ~yq , ~yc]. 4
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Moreover, deterministic components which are retrieved only under the repre-
sentation-independent exact match can (via the injection and retrieve functions)
still be used to implement the query without any observable difference but they
are not behaviorally equivalent in the sense of (3.2); again, the union/append -
example demonstrates this.

3.2.6 Equivalence Properties

The relevance condition of exact retrieval, behavioral equivalence, as well as some
of the chosen match names suggest that the match predicates defined in this sec-
tion are equivalence relations over the set of components. A. Moorman Zaremski
[Moo96] states (without proof) that rigid and implicative predicate equivalence
match are in fact equivalence matches, claiming that “proving that the matches
are equivalences or partial orders is straightforward and based on the properties
of [propositional equivalence and implication].” [Moo96, p. 50f].

However, this is not the whole truth: while it is easy to see that the proposi-
tional structures of the respective bodies satisfy the requirements for an equiva-
lence relation, it is impossible to show this for the full match predicates without
imposing additional assumptions on the type compatibility predicates.

Reflexivity

If the specifications for q and c are identical expressions, the type compatibility
predicates must relate ~xq to ~xc,r and ~yq to ~yc; hence, ~xc,u = ∅. The definition of
rigid match then simplifies to

∀~xq∀~yq∀~xc,r∀~yc·
Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(

prec(~xq)⇔ prec(~xc)
)
∧
(
postc(~xq , ~yq)⇔ postc(~xc, ~yc))

)
which is valid only if both Tdom and Tcod are simply the equality predicate. This
observation also holds for the other match predicates.

Consequently, reflexivity for all the above matches holds only under the as-
sumption that (one variant of) the type compatibility predicate is the equality
predicate.

Symmetry

The main problem in showing symmetry (and also transitivity) is that in general
for each of domain and codomain two different type compatibility predicates T
and T ′ may be involved. These two can then of course not be completely arbitrary
but must be compatible in some sense.
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For symmetry, this means that

Tdom(x , y)⇔ T ′dom(y , x )

must hold (and similarly for the codomain predicate Tcod); under these assump-
tions, symmetry is indeed straightforward. Again, if equality is used as type
compatibility predicate, these assumptions hold trivially.

3.3 Proper Retrieval

3.3.1 Relevance Condition and Reuse Effects

For proper retrieval, the relevance condition can informally be stated as substitu-
tivity : a component is deemed relevant if and only if it returns correct results on
the required domain. This is in fact a generalization of exact retrieval because it
relaxes behavioral equivalence in two ways:

• The domains need not to be equal and the components behavior outside
the domain explicitly fixed by the query is no longer relevant. It may fail,
in any way, but it may also return an arbitrary result.

• On the required domain, results need not to be exactly the same but only
“correct”: components are free to return more specific results than specified.
Hence, non-determinism in queries is no longer mandatory (i.e., don’t know)
to the components and thus an obstacle to retrieval but a choice (i.e., don’t
care) and thus benefits retrieval.

From the software engineering perspective, both aspects are very important:

• Library components are often implemented in a very general way and thus
have a wider domain than expected.

• Library components are often implemented in a very defensive way and
have a defined behavior outside the usual domain but this behavior need
not satisfy the usual specification. For example, the front-function may
return a nil -pointer when it is called with the empty list.

• Library components are often implemented using sophisticated algorithms
and may thus return more specific results than anticipated, e.g., a key-stable
sort function.

• Non-deterministic queries allow the users to concentrate on the aspects they
consider to be essential.
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Consequently, whenever the focus is not on rigidity and isolated changes as in
software modification but on a more liberal notion of software construction by
parts composition, proper retrieval is more appropriate. The composition process
is still safe, because proper retrieval also supports black box reuse. Due to the
substitutivity, all retrieved components are guaranteed to satisfy the explicitly
required behavior; any additional behavior is either more specific and not in
contradiction to the query or visible only outside the required domain.

3.3.2 Proper Matches

The intuitive formalization of substitutivity can be derived by relaxing the for-
malization of behavioral equivalence (cf. Equation 3.2) appropriately. Since the
domains need no longer be equal, the equivalence on the preconditions is replaced
by an implication that reflects the possibly wider domain of the component:
preq ⇒ prec. Similarly, the equivalence on the postconditions is also replaced by
an implication, but this time the order is reversed, reflecting the fact that now
the codomain of the component need only to be contained in that of the query.
Additionally, this implication can be restricted to the explicitly required domain
(cf. also exact match, Def. 3.2.2). Hence:

(preq ⇒ prec) ∧ (preq ∧ postc ⇒ postq) (3.3)

This is a quite common formula. Under the relational view of specifications, it
corresponds exactly to the notion of relational refinement which R. Mili et al
[MMM97] use. Implicitly, (3.3) also occurs in the reification process in model-
oriented specification methods. Here, both conjuncts are considered separately;
they are known as domain and result rule [Jon90, p. 190], respectively. This sep-
aration emphasizes their different roles: the domain rule reduces undefinedness,
the result rule reduces non-determinism [BF+93, p. 184f].

Proper match takes Formula (3.3) as body and wraps it into a fully universal
quantifier prefix.

Definition 3.3.1 (proper match) For a query q and a component c, proper
match µproper is defined as

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·
Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(

preq(~xq)⇒ prec(~xc)
)
∧
(
preq(~xq) ∧ postc(~xc, ~yc)⇒ postq(~xq , ~yq)

)
Proper match is generally considered to be the canonical formalization of

proper retrieval. It thus appears throughout the body of the deduction-based soft-
ware component retrieval literature, although under a variety of different names
(e.g., (relaxed) plug-in match [SF97, CC99], satisfies match [PBA95, Pen98,
PA99], refinement [MMM97] or behavioral subtyping [Ame90, LW94]).
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As exact match, proper match supports black box reuse but it also provides all
the additional advantages substitutivity offers for component retrieval purposes
over behavioral equivalence, as discussed in Section 3.3.1.

For an example of the more appropriate handling of domains which are wider
than anticipated, consider again the query front (p. 44) and a possible total
implementation

front-total (l : list) r : list
pre true

post (l = [] ∧ r = []) ∨ (∃ i : item · l = r y [i ])

which returns the empty list for an input consisting of the empty list. Clearly,
front-total is not retrieved under any of the matches for exact retrieval7 but, as
expected, it is retrieved under proper match because pre front restricts the codomain
test appropriately and thus prevents the completion (l = []∧r = []) from rendering
the proof impossible.

front-total also illustrates the non-determinism handling of proper match.
Consider the query

segment-total (l : list) r : list
pre true

post ∃ l1, l2 : list · l = l1 y r y l2

which queries for functions returning an arbitrary sublist. Under proper match,
front-total matches because it returns a specific sublist—the empty list for the
empty input, the front segment otherwise. This is no longer sufficient for the
equivalence matches used for exact retrieval. The query explicitly allows that
for example ([i , i ], []) is a legal and thus under any of the equivalence matches
also required input/output-pair, but obviously front-total does not provide that.
This situation is similar to the one which distinguishes rigid and exact match (cf.
p. 49); however, there the reasoning was confined to illegal inputs while it here
also applies to the legal inputs.

By construction, proper match is a relaxation of the exact match used in exact
retrieval. To show any relation in the reverse direction (i.e., to conclude from
proper match to exact match), it is necessary to recover the dropped directions
of the equivalences. This can be accomplished by reversing the role of query and
component. It is thus easy to see that the following two corollaries hold.

Corollary 3.3.2 Exact match implies proper match for any query and compo-
nent.

7For rigid and exact match it is easy to see that the equivalences fail due to the different
domains; for the implicative predicate equivalence match consider the input/output-pair ([], [i ])
for an arbitrary item i , which makes the specification predicate true for the query but false for
the actual component. For conjunctive predicate equivalence match consider the input/output-
pair ([], []) which makes the specification predicate false for the query but true for the actual
component.
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Corollary 3.3.3 Any two specifications for which proper match holds in both
directions also match under exact match, i.e.,

∀k1, k2 ∈ K · µproper(k1, k2) ∧ µproper(k2, k1)⇒ µexact(k1, k2)

The reverse direction of the preceding corollary does not hold in general;
however, it follows from Corollary 3.3.2 if the type compatibility predicates are
sufficiently restricted such that µexact becomes symmetric.

It is conceivable to define an intermediate variant between exact and proper
match, which only applies the result rule, i.e., guarantees identical domains but
allows more specific results. However, the usefulness of such a match definition
is doubtful.

Some other variations of proper match, however, are used in practice. The
two most common variations result from (syntactic) modifications of the result
rule guard (i.e., the occurrence of preq in the second conjunct of Formula 3.3);
they thus vary the domain on which the result rule must hold.

The first variant, strict plug-in match, dates back to one of the original8 papers
on specification matching by E. Rollins and J. Wing [RW91] and is thus widely
used, especially in early work [MW95b, FKS95c].9 It drops the guard completely,
i.e., replaces it by true.

Definition 3.3.4 (strict plug-in match) For a query q and a component c,
strict plug-in match µproper is defined as

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·
Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(

preq(~xq)⇒ prec(~xc)
)
∧
(
postc(~xc, ~yc)⇒ postq(~xq , ~yq)

)
The intuition behind strict plug-in match is basically the same as behind

proper match: since the component requires less but grants more than the query
demands, it can be “plugged into the place” of the query. Figure 3.3 which is
adapted from [MW95b] illustrates this process; it also shows that the guard is
lost if the illustrative picture is directly (re-) translated into the match definition.

However, for partial functions, strict plug-in match is strictly stronger (i.e.,
retrieves fewer components) than proper match. In the above example, it fails
to retrieve front-total for the query front precisely because front-total does not
implement a proper front function on its entire domain.

Corollary 3.3.5 Strict plug-in match implies proper match for any query and
component.

8The technical report [RW90b] of the same title as [RW91] is dated October 3, 1990 and is to
the best of my knowledge the first publication which uses the phrase “specification matching”.

9In the cited papers it is generally called plug-in match.
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...
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preq
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〈code〉
...

Figure 3.3: Plug-in compatibility and strict plug-in match

Corollary 3.3.6 Proper match implies strict plug-in match for any total query
and any component.

This loss of recall is partially compensated by a greater robustness of the
retrieved components. Since they provide the required functionality uncondi-
tionally (i.e., over the entire domain given by the argument types), they are
insensitive to changes of or errors in the query domain. This in turn allows to
re-check in such cases only the left conjunct of the match (i.e., the implication
between the preconditions) which leads to simpler proof tasks.

The second variant, robust plug-in match, uses the component’s precondition
as guard. This yields a weaker match definition than strict plug-in match and
thus a higher recall, but does not compromise robustness (in the sense described
above) because the component still delivers the requested results for its own entire
domain and not only for the query domain. Robust plug-in match is also known
as weak plug-in match [Pen98].

Definition 3.3.7 (robust plug-in match) For a query q and a component c,
robust plug-in match µrobust is defined as

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·
Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(

preq(~xq)⇒ prec(~xc)
)
∧
(
prec(~xc) ∧ postc(~xc, ~yc)⇒ postq(~xq , ~yq)

)
However, robust plug-in match is also strictly stronger than proper match and

still fails to retrieve front-total for the query front, for the same reasons as above.
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3.3.3 Predicate Subsumption Matches

Similarly to the situation in exact retrieval, substitutivity can also be interpreted
as a relation between the entire specification predicates:

F [preq , postq ] † F [prec, postc]

However, the exact nature of the relation † is not obvious; moreover, the suitabil-
ity of any given relation heavily depends on the interpretation of the specification
predicate and the nature of the queries and components.

In [Moo96, MW97b], A. Moorman Zaremski and J. Wing use implication in
both directions as the relation † but give it different interpretations (“generaliza-
tion” and “specialization”). Substitutivity, however, can also be interpreted in
both directions:

• From the query to the component: whenever the specification predicate
of the query holds, that of the component must also hold. Under the im-
plicative interpretation, this direction is the “specialized match” of [Moo96,
MW97b].

• From the component to the query: the specification predicate of the query
is logically weaker than that of the component. Under the implicative in-
terpretation, this direction is the “generalized match” of [Moo96, MW97b].

The confusion arises from the fact that the polarity of the query precondition
(i.e., whether in a disjunctive normal form preq is negated or not) depends on
the chosen interpretation of the specification predicate. Obviously, preq should be
negated (and prec not) to capture the domain rule adequately (cf. Equation 3.3).
However, under the conjunctive interpretation the respective pre- and postcondi-
tions have the same polarity. This in turn implies that each choice of a direction
tackles only one aspect of substitutivity correctly.

Definition 3.3.8 (predicate subsumption matches) For a query q and a
component c, left and right conjunctive predicate subsumption match are de-
fined as

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·
Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(

preq(~xq) ∧ postq(~xq , ~yq)⇐ prec(~xc) ∧ postc(~xc, ~yc)
)

and

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·
Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(

preq(~xq) ∧ postq(~xq , ~yq)⇒ prec(~xc) ∧ postc(~xc, ~yc)
)
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respectively.The left and right implicative predicate subsumption match are de-
fined as

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·
Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(

(preq(~xq)⇒ postq(~xq , ~yq))⇐ (prec(~xc)⇒ postc(~xc, ~yc))
)

and

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·
Tdom(~xq , ~xc,r)⇒ Tcod(~yq , ~yc)⇒(

(preq(~xq)⇒ postq(~xq , ~yq))⇒ (prec(~xc) ∧ postc(~xc, ~yc))
)

respectively.

By construction, each predicate subsumption match is a relaxation of the
respective predicate equivalence match, i.e., the following corollary holds trivially.

Corollary 3.3.9 For any query and component,

1. conjunctive predicate equivalence match implies left and right conjunctive
predicate subsumption match,

2. implicative predicate equivalence match implies left and right implicative
predicate subsumption match.

3.4 Approximate Retrieval

3.4.1 Relevance Conditions and Reuse Effects

Under exact and proper retrieval, relevant components constitute complete solu-
tions for the stated problem (i.e., query). Under approximate retrieval a different
policy is used. Here relevant components need to solve the problem only partially
or even need to be modified to yield a solution. This policy gives rise to several
different suitable relevance conditions.

In the specification-based case, partial solutions are usually defined by un-
definedness : a component is already considered as relevant if it returns correct
results on its own domain which may be smaller than required—that is, even if
it is less defined than required.

Similarly to proper retrieval, approximate retrieval is under this relevance
condition aimed at software construction by parts composition. The composition
process can still be safe but the client has to satisfy open obligations which
result from the preconditions of the retrieved components. This can be done by
repeated queries using follow-up contracts which are determined by the respective
composition step:
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• Sequential composition or functional layering of components can be consid-
ered as “trading” the original obligation postq against the usually simpler
prec, yielding (preq , prec) as follow-up contract.

• Alternative composition or adjoining of components can be considered as
“discounting” prec from the original contract. It leaves (preq∧¬prec, postq)
as follow-up contract which may be narrowed further by adjoining more
components already retrieved by the original query or may be closed (com-
pletely) by a new query.

Figures 3.4 and 3.5 illustrate how the follow-up contracts can be used to bridge
the original gap between the pre- and postcondition of the query.

preq 〈gap〉

Follow-up contract

��

postq

preq 〈gap〉 prec 〈code of c〉 postc
+3 postq

Figure 3.4: Follow-up contracts for sequential composition

preq 〈gap〉

Follow-up contract

��

postq

prec 〈code of c〉 postc

��
preq ∧ ¬prec 〈gap〉 postq

Figure 3.5: Follow-up contracts for alternative composition

However, partial solutions can also be defined by non-determinism. Here, two
different approaches are possible. In the first, non-determinism is accepted on
the domain such that a component is already considered as relevant if it works
for a particular data representation. Although this can be considered as a partial
domain match, the reuse effects are entirely different. Since the actual domain
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is only a non-homogeneous subset of the required domain, follow-up contracts
are no longer defined precisely and the systematic, black-box style composition
of the retrieved components becomes impossible. Instead, the acceptable data
representation(s) must be inferred, either from the proof, or, more likely, from
the source code of the component which makes it a white-box approach.

In the second approach, non-determinism is accepted on the codomain: a
component is already considered as relevant if at least one of its possible results
is correct. Again, this compromises black-box reuse because an inspection of the
source code is required which possible result is actually returned.

In the partial domain interpretation, the functional composition process is
constrained to one direction: contracts are always closed backwards or top-down,
trading the (original) postcondition against a simpler precondition. An entirely
different interpretation of a partial solution can be derived if this constraint is
revoked: a component is already considered as relevant if it provides an aspect
of the required result. Consider for example a query for a sort function which
eliminates duplicates and assume that the library contains a sort function without
duplicate elimination and a separate duplicate elimination function which works
only on sorted lists. Intuitively, both components are relevant because they can
be functionally composed to satisfy the query:

q = eliminate-duplicates ◦ sort

Yet, under the partial domain interpretation only the outer component eliminate-
duplicates would be considered as relevant.

However, to arrive at an “intuitive” definition of relevance, care must be taken
in the definition of what constitutes “an aspect of the required result”—just a
possible completion via component composition does not suffice. For example,
this would make the identity function always relevant:

q = eliminate-duplicates ◦ id ◦ sort

In [JD+97], L. L. Jilani et al. informally define approximate retrieval as a
method which “identifies all the components that come closest to the query at
hand” and define different semantic notions of proximity to be used in retrieval.
However, this has the severe drawback that the relevance of a component can no
longer be defined in terms of its index and the query only but also depends on the
particular library (cf. also [MMM98]). Here, I concentrate on the aforementioned
binary relevance notions.

3.4.2 Partial Domain Matches

An appropriate formalization of a partial solution in terms of undefinedness (i.e.,
partial domains) can, oddly enough, not be derived from the domain rule (cf.
Section 3.3). Any match condition which only involves the preconditions cannot
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ensure the suitability of the retrieved components at all and is thus bound to
yield a very low precision.

However, the reasoning which leads to the definition of robust plugin-match
(cf. Def. 3.3.7) can also be applied to approximate retrieval. In robust plugin-
match, the component’s own precondition is used as guard for the implication
in the second conjunct, ensuring that the the component delivers the requested
results for its own domain, if not for the query domain. Only its first conjunct,
the domain rule, is used to enforce that the component’s domain subsumes the
query domain. If this conjunct is dropped, the relevance condition is captured
exactly. Hence:

prec ∧ postc ⇒ postq (3.4)

For the conditional plug-in match, this body is wrapped into a fully universal
prefix. This match definition is in the literature also known as weak post match
[Moo96, MW97b], or semantic feature [PBA95, Pen98].10 The name conditional
plug-in match (and similarly conditional compatibility [FSS98]) emphasizes the
fact the components which are retrieved under this match can still be “plugged
into the place of the query”, albeit under the condition that the open obligations
which result from their preconditions are eventually satisfied.

Definition 3.4.1 (conditional plug-in match) For a query q and a compo-
nent c, conditional plug-in match µcond is defined as

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·
Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(

prec(~xc) ∧ postc(~xc, ~yc)⇒ postq(~xq , ~yq)
)

By construction, this match variant enables components which “almost fit” to
be retrieved without respect to their actual domain. It thus emphasizes the sim-
ilarities in the components’ functionality and neglects their domain differences.
This property makes conditional plug-in match suitable for library indexing pur-
poses. Consider for example the query11

segment-feature (l : list) r : list
post ∃ l1, l2 : list · l = l1 y r y l2

Using conditional plug-in match, both front-variations (i.e., front (cf. p. 44) and
front-total (cf. p. 59)) match while only front-total matches under proper match
and its derived forms.

10This name is based on the interpretation that all retrieved components share the property
described by the query. J. Penix et al. use this interpretation for library indexing.

11Note that the two queries segment-total and segment-feature are semantically equivalent
VDM-SL specifications because they both describe the same total relation. However, I use an
explicit precondition true to denote a query for a total function while I use the variant without
precondition for features.
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The definition of conditional plug-in match could be further strengthened
by dropping the guard, i.e., replacing prec by true. This variant, called plug-in
post in [Moo96, MW97b], could be considered as a more robust variant of the
conditional plug-in match, similar to the relation of strict plug-in match to proper
match. However, this kind of robustness is defined as proper behavior over larger
domains than explicitly stated and is thus at odds with the retrieval policy of
approximate retrieval, proper behavior over smaller domains.

Conditional plug-in domain match obviously uses only the postcondition of
the query and not the usual full (pre, post)-pair. However, the precondition of
the query can be used to additionally restrict the extent of the domain for which
the component must return the required results. preq plays then essentially the
same guarding role as in the proper plug-in match (cf. Def. 3.3.1).

Definition 3.4.2 (partial domain match) For a query q and a component c,
partial domain match µpartial-dom is defined as

∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·
Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(

preq(~xq) ∧ prec(~xc) ∧ postc(~xc, ~yc)⇒ postq(~xq , ~yq)
)

Consider for example the component

extract-palindrome-stem (l : list) r : list
pre l = reverse(l)
post l = r y reverse(r) ∨ ∃ i : item · l = r y [i ]y reverse(r)

which extracts the stem from a palindrome (i.e., the segment of the palindrome
which occurs in original as well as in reversed form). Clearly, extract-palindrome-
stem has the segment-feature-property (i.e., matches under the conditional plug-
in match against the query segment-feature). However, if the stronger query

proper -segment (l : list) r : list
pre l 6= [ ]
post ∃ l1, l2 : list · l = l1 y r y l2 ∧ (l1 6= [ ] ∨ l2 6= [ ])

is used to retrieve functions which return proper segments, the situation becomes
more complicated. Under conditional plug-in match, extract-palindrome-stem
does no longer match because the empty list is a palindrome and thus falls within
the domain of extract-palindrome-stem but it does not admit a proper subseg-
ment.12 Under proper match, extract-palindrome-stem does not match either,
now because the domain rule does not hold: not every non-empty list is a palin-
drome. Hence, the only way to handle this situation adequately (and to retrieve
extract-palindrome-stem) is to use both preconditions as assumption, as in the
partial domain match.

12Hence, a proper-segment-feature without explicit precondition would be non-implementable.
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However, the results of the component are only checked on the part of the
domain which is common to query and component. If that part is empty, the
match relation µpartial-dom holds trivially, leading to “unfit” components being
retrieved and thus to a loss of precision. Such empty common domains may
result from contradictory preconditions, e.g., sorted-strictly-ascending vs. sorted-
strictly-descending ; these contradictions can in general not be prevented by the
user because the components’ preconditions are unknown by definition—if they
were known, there would be no need for component retrieval.

The common domain match prevents such empty common domains by explic-
itly requiring the existence of at least one compatible (w.r.t. the type compat-
ibility predicate) element for which both preconditions hold in addition to the
proper match.13

Definition 3.4.3 (common domain match) For a query q and a component
c, common domain match µpartial-dom is defined as

∃~xq∃~xc,u∃~xc,r · Tdom(~xq , ~xc,r) ∧ preq(~xq) ∧ prec(~xc)

∧
∀~xq∀~yq∀~xc,u∀~xc,r∀~yc·

Tdom(~xq , ~xc,r) ∧ Tcod(~yq , ~yc)⇒(
preq(~xq) ∧ prec(~xc) ∧ postc(~xc, ~yc)⇒ postq(~xq , ~yq)

)
Partial and common domain match, respectively, are particularly well suited

to handle libraries which apply VDM-SL’s state invariants or the similar concept
of predicative subtyping [ROS98]. In fact, since preextract-palindrome-stem is just the
characteristic type predicate of a subtype of list, the specification

extract-palindrome-stem-2 (l : palindrome) r : list
pre true

post l = r y reverse(r) ∨ ∃ i : item · l = r y [i ]y reverse(r)

is equivalent to extract-palindrome-stem; hence, working with extract-palindrome-
stem-2 without taking the characteristic predicate of palindrome into account
leads to unsound results.

13In principle, it is also possible to encode the existence of any finite number of different
elements in the common domain, even though the proof task then becomes rather complicated.
This degree of domain coincidence can then be used to order the retrieved components.



Chapter 4

The System NORA/HAMMR

In this thesis, I investigate deduction-based software component retrieval, start-
ing with its theoretical foundations. But it is not only a theoretical thesis.
Large parts of the actual dissertation work were devoted to building the sys-
tem NORA/HAMMR which allowed an experimental evaluation of the theoretical
considerations.

However, NORA/HAMMR is not only an experimental evaluation vehicle. Al-
though still a prototype, its design was heavily influenced by practical consider-
ations—in fact, exploring viable design alternatives was an equally important
topic. This chapter describes this exploration process and its results. Section 4.1
discusses some practical aspects of deduction-based retrieval in detail while Sec-
tion 4.2 describes the resulting architecture. The final Section 4.3 describes the
setup for the experimental evaluation and the handling of VDM-SL.

4.1 Making Deduction-Based Retrieval Practi-

cal

The idea to employ formal reasoning in order to show an “implementation” or
“refinement” relation between two specifications is central to almost all formal
(e.g., algebraic or model-oriented) software development methods and can thus be
traced back as far as the mid-70’s. Since the mid-80’s, environments have been de-
veloped which incorporated at least rudimentary deduction-based retrieval com-
ponents, e.g., PARIS [KRT87] or Inscape/Inquire [Per89, PP93a], and since the
early 90’s, deduction-based retrieval has been investigated on its own and more
thoroughly.

Yet, the results are disappointing. To the best of my knowledge, no system
actually left its own lab and deduction-based retrieval is quite often perceived
as an “interesting failure.” This failure or, more precisely, the perception of a
failure had a variety of reasons, e.g.,

69
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• insufficient deductive power,

• inadequate calculi,

• incomprehensible notation,

• inappropriate architecture.

This perception was reinforced by a general disapproval of formal methods and
a looming concern about scale-up.

However, automated deduction has made significant progress in the past few
years, both in raw inference rates and in calculi, and recent ATP competitions
[SS97, SS98] indicate that the “deductive bottleneck” of the earlier approaches
has been widened sufficiently1 such that a new attempt is justified.

4.1.1 User Requirements

Deduction-based retrieval is still a demanding theorem proving application but if
the goal is not only to generate realistic prover benchmarks but to make retrieval
practical, the technical requirements must follow (and serve) the users’ require-
ments. Yet, even the most basic and obvious user requirement is sometimes lost:

“Components, not proofs!”

That is, in contrast to, for example, program verification, the proof itself is no
object of interest. Hence, the proof process must be hidden completely—in fact,
even the presence of a theorem prover should be hidden. The main steps to
achieve this are

• the choice of a comprehensible contract language,

• an intuitive user interface, and

• full automation.

The first step is necessary to gain acceptance by software engineers. Obviously,
the different clausal normal form syntaxes still employed by many provers are
much too rudimentary but even full first-order syntaxes, e.g., the DFG-syntax
[HKW96], are still not suitable for a convenient formulation of contracts. A
contract language should thus be

• prover-independent to facilitate smooth prover switches,

1Unfortunately, there is no published hard data to support this claim but current theorem
provers solve formerly “difficult” problems (i.e., requiring several minutes) in some seconds
[Sch98] and the total number of problems solved over the TPTP benchmark collection [SSY94]
is increasing steadily [Sut98].
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• component-oriented to facilitate the easy specification of components in
contrast to plain logic formulas,

• sufficiently expressive and provide notations for, e.g., lists and sets,

• extensible, e.g., via modules or traits, to facilitate the definition of local
sub-vocabularies or custom logics.

Most modern specification languages, e.g., Larch [GHW85, GH86], Z [BN92,
Spi92], or VDM-SL [A+93, Daw91, PL92] satisfy these conditions. Additionally,
using such a specification language as contract language ties software development
and reuse closer together which offers some pragmatic advantages. Obviously, up-
front investments, e.g., teaching or component indexing, can now be amortized
over two phases. More importantly, the contracts for reuse then arise automat-
ically from the development process and do not impose any extra work on the
developers. Hence, retrieving components becomes an alternative to any single
development (i.e., refinement) step—reuse is built into the process from the very
beginning. This does not only increase productivity as the steps become larger
but also enables vertical prototyping and thus increases the confidence into the
validity of the system being built.

An intuitive user interface can provide an additional layer of separation be-
tween the user and the deductive machinery. Its main purpose is to allow the user
a concise and consistent, prover-independent control of the retrieval process. This
control is conceptually exercised on two levels. On the global level behavioral con-
trol parameters affect what proof conditions are generated. This group includes
parameters as for example the libraries to be searched, the query, the match
conditions, and the applied filters. The behavioral control parameters are the
parameters of primary interest to the end-users because they specify what should
be retrieved; the user interface should thus be tailored towards them. On the lo-
cal level, performance control parameters affect what components are retrieved.
This group includes the technically more specific parameters as for example sim-
plification methods, time limits, and lemma libraries. These parameters are only
of minor interest to the end-users, unless—obviously—the performance of the re-
trieval tool degrades. In that case, however, the more expert reuse administrator
is supposed to take over. Hence, they can be subordinated to the behavioral
control parameters. Section 4.2.2 describes NORA/HAMMR’s user interface in
some more detail.

However, the most important step is the full automation of the entire proof
process. Here, the emphasis is on full and entire—an unsuspicious re-user whose
only intention is to locate a component cannot be expected to advise a stalled
interactive prover to “resume by induction on q” or even to invent additional
lemmas which facilitate a proof. The only exception from this user model is the
reuse administrator who is in charge to maintain the library and the retrieval
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tool. The process of reuse administration is discussed in some more detail in
Section 4.2.3.

Next to finding components at all, the other basic user requirement is to
find them “sufficiently fast”. The question, however, is how fast is sufficiently
fast. Even for medium-sized libraries, sub-second response times are still far
out of reach. Fortunately, such response times are not necessary for a practical
retrieval system because it offers large benefits (i.e., fully implemented, tested,
and probably even verified components) and can thus settle for a more relaxed
requirement:

“Results while-u-wait!”

In practice, the response time of a deduction-based retrieval tool depends not only
on the size of the library but also on the required recall level. The optimal trade-
off between response times and recall level is determined by the reuse situation
which in turn is affected by a variety of factors, e.g.,

• reuse and retrieval policies,

• number of relevant components,

• origin and granularity of the query.

In black-box reuse, retrieved components are not subject to any modification.
Each of the retrieved components fully satisfies the retrieval goal, at least for
exact and proper retrieval, i.e., the components become indistinguishable and
the choice of any particular component becomes irrelevant. But then the actual
recall level becomes also irrelevant, as long as at least one component is retrieved
at all. Consequently, the time elapsed until the first component is retrieved is
more important than the total time required to retrieve all matching components.
Hence, more time can be spent on any single proof task. In white-box reuse, the
system is built to take maximal advantage of the library. Retrieved components
must be inspected and—possibly—modified manually before they can be reused.
This requires high recall levels to ensure a sufficient supply of candidates to chose
from. The maximal prover time limit for each proof task can then be derived
from the relation between the inspection and modification times on one hand
and the recall and precision of the answer set on the other hand. In practice, the
inspection and modification times dominate this relation which allows generous
time limits for the ATPs.

4.1.2 Technical Requirements

The most stringent technical requirements follow from the full automation dic-
tum. It is not sufficient just to use an automated theorem prover—it is also nec-
essary to generate the input for the automated prover automatically. However,
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this involves several preprocessing steps which are usually done by “experienced
experimentators.”

The first of these preprocessing steps is decustomization which denotes the
translation from the custom logic via the contract language down to the actual
theorem prover input format. Since this translation usually spans a wide seman-
tical gap, it is advisable to break it down into several substeps.

1. Compilation into a core language: this step takes the original, abstract user
input written in the contract language (e.g., query, protocol description, or
program with assertions), checks its well-formedness and translates it into
a small core language which represents a domain-specific logic (e.g., many-
valued logic or modal logic). It eliminates for example references to the
custom logic or scoping and derived binding constructs. This step usually
requires only standard compiler technology but it is the most labor intensive
step because good contract languages provide by definition a variety of
such constructs. For NORA/HAMMR this is discussed in some more detail
in Section 4.3.3; however, such a step is not specific to deduction-based
retrieval but occurs in most ATP-applications in software engineering, e.g.,
predicate transformers in program verification.

2. Logic translation: usually, the domain-specific logic used as core languages
does not have adequate automatic reasoning support. Such support can
be enabled by a translation or embedding into a more common logic, usu-
ally a FOL-variant which then allows to reuse existing theorem provers.
Section 4.3.3 also contains a description of NORA/HAMMR’s logic transla-
tion step which translates from LPF [BCJ84], the logic of partial functions
underlying VDM-SL, to order-sorted FOL with equality.

3. Task completion: the first two decustomization steps generate a pure proof
problem which needs to be completed before it can be submitted to a the-
orem prover. The most important completion is the addition of an axiom-
atization for the custom logic to the proof task which is discussed in detail
in Chapter 9. Most other completion steps, e.g., selection of search control
parameters, are usually more prover-specific.

4. Task adaptation: the different theorem provers support the order sorted
FOL used as core logic to different extents (cf. Section 4.3.4); it is thus
necessary to adapt the tasks to the specific provers. In many cases, the
adaptation can be achieved by “wrapping” the provers into additional off-
the-shelf components, e.g., for clausification or equality handling. In other
cases, the adaptation can be achieved by a prover-specific task completion,
e.g., adding sort axioms. The most complicated situation, however, arises
when peculiarities of the prover’s calculus require a major modification of
the entire proof task structure; inductive theorem provers for example work
better with explicitly recursive axiomatizations and tasks.
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Figure 4.1: Typical filter pipeline (Detail from Figure 4.2)

In principle, the four decustomization steps are independent of each other; the
later steps can be combined with different “front ends” (i.e., compilation steps)
and thus be reused across different software engineering applications. In practice,
however, the adaptation for a particular prover may have significant influence on
the preceding steps, especially on the task completion. In NORA/HAMMR, the
prover-specific task adaptation is thus more or less almost reduced to cases which
can be implemented with the task completion.2 That is, all prover specifics must
be encoded into different lemma libraries and lemma selection mechanisms.

4.2 System Architecture

The requirements described in the previous section prompt a radical departure
from the traditional monolithic, batch-oriented architectures. For a practical
system, a flexible and open architecture which supports incremental retrieval is
necessary.

4.2.1 Filter Pipeline

The central element of NORA/HAMMR’s system architecture is a customizable
pipeline of independent filters through which the candidates are fed. Each filter
performs only a dedicated task, e.g., proof task generation, rewrite-based rejec-
tion, or final confirmation. A filter typically inspects one component at a time,
makes a local decision and either rejects the component or passes it on to the
next filter. Hence, components which are ruled out upstream never arrive at
downstream filters. In the different filters, the components are represented in
different forms. Some of the upstream filters require only database handles but
the downstream filters generally pass along the entire proof task associated with
a candidate. This is required to communicate local changes of the proof task
(e.g., simplifications) to subsequent filters.

A typical pipeline configuration which was also used in the experiments de-
scribed in the subsequent parts of the thesis is shown in Figure 4.1. This pipeline

2Of course, wrapping external functionality around the ATPs is supported; however, this is
conceptually closer to modifying the applied prover than to adapting the proof task.
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comprises six filters and a final dummy filter to inspect the final result. The
first three pre-filters are required to set up the proof tasks; the first and third
filter are no “filters” in the stricter sense of the word because they never reject a
component.

• The library access filter currently just acts as a “dumb” pipeline source.
More intelligent versions may incorporate indexing algorithms as described
in Section 2.2

• The signature matching filter rules out components with incompatible call-
ing conventions and instantiates the type compatibility predicates appro-
priately.

• The join filter builds the actual proof tasks from the query and the com-
ponents’ specifications, as described in Chapter 3.

These pre-filters could also have been integrated into a single pipeline source;
however, individual filters fit better into the overall architecture and allow faster
and more fine-grained system adaptation. The next three filters constitute the
core of the semantic retrieval process and do the actual deductive work.

• The rewrite-based rejection filter takes the raw proof tasks mechanically
generated by the join filter and applies the simplifications described in
Chapter 5. Since all simplifications are sound, the filter may pass the
modified proof task down in any case, even if it is not reduced to false (i.e.,
the component is not rejected). This “side effect” is of course the intended
main effect of the filter. However, in order to prevent excessive formula
sizes, the results of the quantifier unrolling strategy (cf. Section 5.3) are
not propagated unless the tasks are reduced to true or false.

• In the counter-model based rejection filter the simplified proof tasks are
evaluated over a specific structure. If this yields false, the component is
rejected, otherwise the component is propagated with the original proof
task.

• The confirmation filter uses an ATP to implement the proper specification
matching step. It follows a simple “all-out match” approach, i.e., attempts
to prove all incoming tasks separately and rules out all components associ-
ated with tasks the ATP fails to prove. Since the ATPs are sound, this ap-
proach guarantees a 100%-precision if the match relation is logically weaker
than the relevance relation. This filter also includes all prover-specific pre-
processing steps, e.g., sort encoding or lemma selection.

The final pipeline element is a simple sink. It is only required to collect and
display the final result (cf. Figure 4.3).
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In the current NORA/HAMMR-implementation the pipeline works only on a
single processor. A coarse-grained parallelization on the task level can, however,
easily be achieved because the tasks are independent of each other and because
the order in which each single filter processes the incoming tasks is irrelevant.
Hence, scale-up to larger component libraries can be achieved in a brute-force
manner by adding more processors.

In an experimental extension of NORA/HAMMR the ILF-system [DG+97]
was successfully used to distribute proof tasks over a local-area network [BF98,
BFF99]. The experiments showed that the distribution overhead was insignifi-
cant which also makes competition between different provers feasible. Moreover,
this prototype has also been used to experiment with proper prover coopera-
tion which can substantially increase the recall rates (cf. the results reported in
[BFF98, BFF99]).

In the current implementation the pipeline is also completely linear, i.e., al-
lows (except for the parallelization provided by ILF) no branches through which
proof tasks could be routed alternatively. This results in the typical single point
of failure behavior mentioned earlier and increases the potential loss of recall
by application of unsound rejection filters and incomplete confirmation filters.
This potential can be mitigated by branching architectures implementing more
complicated decision schemas as majority vote or vetoing.

4.2.2 User Interface

The recent example of model checking has shown that simple usability (“push-
button-technology”) is a crucial success factor, even for a formal development
method as for example hardware or protocol verification. It is even more impor-
tant in deduction-based retrieval where the underlying tools (i.e., provers) have
not yet reached the necessary level of maturity.

NORA/HAMMR thus features a graphical user interface which completely
hides the entire deductive machinery. Hence, to use NORA/HAMMR as retrieval
tool, a user needs to know only the target language for signature matching and
VDM-SL for specification matching.

Figure 4.2 shows the main window of the tool. It allows a simple, single-
button operation in a VCR-like style. The retrieval process may be interrupted
at any time, e.g., for the inspection of intermediate results, but can be resumed
again, even if search (e.g., query or compatibility) or control parameters (e.g.,
prover or axiom selection heuristics) have been changed. The icon pad allows
an easy configuration of the pipeline. To add a new filter, its class is selected
via menu; a class-specific dialog window then asks for the initial values of the
filter control parameters. This setup process can also be bypassed and complete
pipelines can be saved to and read back from file, respectively. Search keys are
divided into different categories (currently signature and contract); an additional
“virtual” category allows the on-the-fly extension of the custom logic in the form
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Figure 4.2: GUI: Main window

of additional VDM-SL modules which are imported into the query.

NORA/HAMMR not only presents the final result but provides direct access
to the pipeline for the early inspection of intermediate results at every filter. The
result inspectors grant not only further access to the retrieved components (cf.
Figure 4.3) but also provide persistence. Hence, intermediate results can be used
as “libraries” for further queries which supports a convenient exploration of large
libraries.

4.2.3 Reuse Administration

Reuse administration is always necessary, independently of the applied reuse and
retrieval approaches. Typical administration tasks include

• quality assurance, e.g., enforcement of coding, testing, and documentation
standards,

• library coherence maintenance, i.e., keeping the library well-defined and
maintaining a balance between library size and individual component reuse
frequency,
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Figure 4.3: GUI: Result inspector

• local sub-vocabulary definition to ensure that all clients refer to the same
concepts by the same name,

• system tuning, e.g., maintenance of stop lists.

Except for quality assurance which is largely necessary upon incorporation of
a single component into the library, all administration tasks must be performed
repeatedly throughout the entire life time of the library—without administration,
the quality of the library degrades and it soon becomes unusable. These tasks
also account for the additional up-front investments which can easily double the
cost to develop a reusable component instead of a “write-once” component.

In the deduction-based case, reuse administration and in particular system
tuning become even more important because the retrieval method is computa-
tionally more expensive and, unfortunately, still more brittle. In addition to the
general tasks, three activities can be identified which are specific to and particu-
larly important to deduction-based retrieval.

• Definition of a custom logic: in the deduction-based case, sub-vocabularies
cannot be plain word lists but must be extensions of the specification lan-
guage. Such an extension is called a custom logic. Its definition comprises a
set of functions and predicates together with the respective axioms. Often,
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a custom logic reflects the core functionality of the library, e.g., basic list
predicates or basic date functions. Typically, it can be realized as a set of
modules or traits in the specification language. This step is particularly
important for a practical system because it reduces at the same time the
complexity of the specifications which are visible to the user (i.e., queries)
and the complexity of the emerging proof tasks.

• Organization of a lemma library : additional lemmas often allow much
shorter proofs; if the lemmas are chosen judiciously, the provers can ac-
tually profit from them and do not get lost in the additional search space.

• Prover performance tuning : automated theorem provers usually provide a
wide array of options and parameters which can be “tweaked” to adapt
their underlying general calculi to specific tasks or domains. While there
has been some progress in automatically learning successful option settings
and parameter values from the tasks [Fuc95, FF98], careful monitoring of
the prover performance coupled with human insight into the applied calculi
is still the most common tuning approach.

In the practical experiments with NORA/HAMMR, reuse administration was not
a separate activity but integrated into the entire system development. Most
reuse administration efforts went into the definition of the custom logic and its
accompanying lemma library.

4.3 Experimental Setup

A reliable evaluation of a retrieval system requires a large number of retrieval
experiments; evaluation of different system variants requires the exact repetition
of these experiments.

In the specification-based case, these repeated experiments can conveniently
be generated: since component surrogate and queries coincide, components can
also serve as queries. However, this assumes that the library contains—besides
“real” component surrogates—also a sample of surrogates which adequately rep-
resent queries.

4.3.1 Library

For the retrieval experiments described in Chapters 7 to 9 I constructed a medium-
sized library of 119 list-processing components. These can be divided into

• 30 queries with a total of 43 variants,

• 26 (proper) functions of type list to list or list → item with a total of 44
variants, and
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• 19 predicates on list × list with a total of 32 variants.

However, the difference between queries and predicates is small, because both are
possibly underspecified; for the above numbers, I essentially considered nondeter-
ministic specifications which refer only to the argument or the result as queries
(e.g., insert some) and those which refer to both as predicates (e.g., segment).

Since a full signature matching was not available for the specification matching
experiments, the components have been “twisted” slightly:

• Items are identified with singleton lists; hence, even head has the type
list → list .

• The binary predicates are identified with unary nondeterministic functions;
hence, segment also has the type list → list . As usual, this is interpreted
such that the predicate segment is true on (l ,m) if m is a possible result
of the function call segment(l).

Task Generation

Following the basic idea, each component was then used as query against the en-
tire library (including itself), using plug-in compatibility as match condition. For
simplicity, I did not apply any internal library organization or semantic filtering
but used the full cross match as test set. It thus comprises 119 × 119 = 14161
proof tasks. A manual inspection of these tasks revealed that 1838 or 13.0% of
them are valid. However, the matches are not evenly distributed over the queries.
The average number of matches per query is 15.45 with a standard deviation of
22.82 and a maximum of 116.

Relevance Judgments

For simplicity, and following an established tradition in deduction-based retrieval
[MMM98, Pen98], I deliberately identified match condition and relevance condi-
tion. Hence, the general retrieval factors of the test library are γ = γ = 0.13
under the query-oriented and the document-oriented view, respectively. Both
values coincide only by accident; in general, they may differ significantly.

As a consequence of the entire setup, REL(q) is never empty—it contains at
least q itself. However, it is quite small quite often (|REL(q)| = 1 for 33 queries)
and also unevenly distributed (σREL = 0.19). Hence, the query-oriented precision
average may significantly differ from the document-oriented average. Especially
for sound retrieval algorithms it is usually lower.

Caveats

Of course, this experimental setup (which has initially been published in [SF97])
has a number of possible consequences:
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• Although the library deliberately contains multiple surrogates for some
components (i.e., equivalent specifications), the specifications may be more
uniform in style than a query sample generated by different users (“real
life”) would be. Hence, the generated proof tasks may be more homoge-
neous than in practice, but it is difficult to predict whether this is in favor
of the theorem provers or not.

• Plug-in-match induces larger formulas than many other match definitions;
this may in turn induce harder proof tasks.

• The difficulties induced by signature matching are not properly taken into
account since the type compatibility predicate is restricted to the equal-
ity predicate. Furthermore, the short argument lists generate “smaller”
problems than to be expected in real life.

• The applied VDM-SL-subset (i.e., lists, orders, equality) and the flat, many-
sorted sort structure are easy compared to the full language (e.g., sets,
arithmetic, user-defined datatypes with many generators as for example
abstract syntax trees).

• Queries are not only checked against components but also against other
queries which induces simpler proof tasks. Although this is countered by
the harder proof tasks stemming from checking components against com-
ponents, the net effect is a larger spread in the complexity of the tasks than
in reality.

• The relevance condition may be too restrictive, yielding improper recall and
precision values but again it is difficult to predict whether more relevant
components lead to better results.3

While all the above uncertainties and simplifications must be kept in mind, the
large number of generated tasks and the convenient “replay mechanism” justify
the setup. It has thus also been used in the evaluation of other deduction-based
retrieval systems [Pen98].

4.3.2 Custom Logics

Although VDM-SL already provides a wide variety of notations to describe list-
processing components succinctly (e.g., sublist indexing), the test library contains
a number of “specification idioms”. These idioms can be translated into auxil-
iary predicates and functions which then form a custom logic (cf. Section 4.2.3).
The custom logic needs of course to be formulated within VDM-SL in order to

3This is supported by the results of J. Penix [Pen98] who reports higher recall but lower
precision for “relaxed match” (i.e., relaxed relevance conditions in the terminology used here).
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make it accessible for user queries. The particular variant used in the retrieval
experiments described here is realized as a VDM-SL-module containing a set of
total, explicit, non-recursive function definitions but none of these properties is
required. In this setup, however, the custom logic is a definitiorial extension of the
base logic which in principle allows to eliminate the custom symbols by rewriting
even if this leads to significantly more complicated proof tasks, as discussed in
Sections 5.2.1 and 8.1.

The custom predicates used in the experiments can roughly be divided into
three groups. The first group of predicates describes different relations between
a list and a single element, e.g.,

memberP : list × item → B

memberP (l , i) 4

∃ l1, l2 : list · l = l1 y [i ]y l2

The second group of predicates describes different sublist relations between two
lists, e.g.,

prefixP : list × list → B

prefixP (l ,m) 4

∃ l1 : list · l = m y l1

and, similarly, suffixP and segmentP. The last group of predicates captures dif-
ferent ordering properties of lists, e.g.,

totalorderedP : list → B

totalorderedP (l) 4

∀ i , j : Item, l1, l2 : list · l = l1 y [i ]y [j ]y l2 ⇒ i ≤ j

and, similarly, strictorderedP and equalelementsP. Other predicates in this group
as for example

totalorderP : list → B

totalorderP (l) 4

∀ i , j : Item, l1, l2, l3 : list · l = l1 y [i ]y l2 y [j ]y l3 ⇒ i ≤ j

capture the fact that a list is orderable at all which is trivially true only if the
entire item type is totally ordered.

However, the custom logic also needs to be represented in FOL in order to
make it accessible to the prover. This can be done in two ways. The first ap-
proach relies on the decustomization process briefly described in the next section
to translate the function definitions into axioms. The major drawback of this
approach is that it does not allow for a convenient formulation of additional lem-
mas since only the actual function definition is translated; it is possible to “fold”
lemmas as for example ∀i¬memberP([ ], i) into the definition but that soon leads
to rather unwieldy specifications as for the example
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memberP : list × item → B

memberP (l , i) 4

l 6= [] ∧ ∃ l1, l2 : list · l = l1 y [i ]y l2

where the lemmas clutter the original functionality.
The preferred second approach (which is also used in NORA/HAMMR) thus

relies on the rule library to axiomatize the custom logic. The only slight problem
here is that the reuse administrator has to keep the two variants consistent with
each other.

4.3.3 Handling VDM-SL and LPF

VDM-SL is a very expressive specification language which is tailored much more
towards specifying real-world applications than towards automatically proving
properties of these specifications. The first decustomization steps thus deal with
the translation of VDM-SL into FOL.

module some

imports

from custom-logics-list

types item;
list

functions memberP

exports

functions some : list→̃list

functions

some (l : list) r : list
pre l 6= [ ]
post ∃ i : item ·memberP(l , i) ∧ r = [i ]

end some

Figure 4.4: Component representation in NORA/HAMMR

NORA/HAMMR represents each component or query as a self-contained VDM-
SL module (cf. Figure 4.4 for an example). The component modules are au-
tomatically extracted from the original specifications by a specialized VDM-SL
front-end. The core of such a component module is of course the definition of the
component itself (here the function some); however, it may also contain arbitrary
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local definitions. The custom logic is referenced via the standard module import
mechanism; this allows to feed the component modules into other off-the-shelf
VDM-SL tools, e.g., for validation and verification purposes. In the example,
the component module some imports the two base types item and list and the
predicate memberP from the list custom logic. The front-end “knows” about
the employed custom logic and thus resolves only the remaining “non-custom”
imports. Additional information as for example time stamps, source locations,
and type information is also extracted automatically and stored alongside with
the component modules.

The join filter (cf. Section 4.2.1) takes two component modules and constructs
a VDM-SL abstract syntax tree (AST) which represents the proof task according
to the selected match condition (cf. Chapter 3), and a common symbol table
which contains the appropriately renamed local definitions as well as the custom
logic references. The proof task AST is then rewritten into a simpler normal-
ized form which eliminates most of the syntactic variety VDM-SL allows. This
step eliminates multiple bindings at a single quantifier or let-construct, pattern-
and set-bindings, unique existential quantifiers, elsif- and cases-constructs and
relativizes types with their invariants. This simplified AST is then translated
into a two-valued form. This translation is based on the interpretation of LPF
and its subsequent embedding into a classical (i.e., two-valued) logic given in
[Mid93, JM94]; the embedding has been optimized to reduce the size of the re-
sulting formula. The translation uses two mutually recursive functions 〈[·]〉tt

and
〈[·]〉ff , called the truth and falsehood conditions, respectively (cf. Figure 4.5).

〈[¬A]〉tt
= 〈[A]〉ff 〈[¬A]〉ff = 〈[A]〉tt

〈[A ∧ B ]〉tt
= 〈[A]〉tt ∧ 〈[B ]〉tt 〈[A ∧ B ]〉ff = 〈[A]〉ff ∨ 〈[B ]〉ff

〈[A ∨ B ]〉tt
= 〈[A]〉tt ∨ 〈[B ]〉tt 〈[A ∨ B ]〉ff = 〈[A]〉ff ∧ 〈[B ]〉ff

〈[A⇒ B ]〉tt
= 〈[A]〉ff ∨ 〈[B ]〉tt 〈[A⇒ B ]〉ff = 〈[A]〉tt ∧ 〈[B ]〉ff

〈[∀x : T · A]〉tt
= ∀x : T · 〈[A]〉tt 〈[∀x : T · A]〉ff = ∃x : T · 〈[A]〉ff

〈[∃x : T · A]〉tt
= ∃x : T · 〈[A]〉tt 〈[∃x : T · A]〉ff = ∀x : T · 〈[A]〉ff

Figure 4.5: Translation of LPF into FOL

Both functions are derived in a straightforward manner from the three-valued
interpretation of the logical operators and quantifiers. Their intuition is that the
formula A has the truth value tt in LPF (i.e., A is defined and true) iff the classical
formula 〈[A]〉tt

is provable in classical logic. The basic idea here is to modify the
LPF-formula A by inserting the preconditions for the partial functions in such
a way that both resulting classical formulas 〈[A]〉tt

and 〈[A]〉ff become (classically)
unprovable whenever a (sub-) term is possibly non-denoting. In practice, this
requires a (partial) flattening of the term structures by introducing fresh variables
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for subterms in a way similar to the STE-modification [Bra75]. This flattening
and the precondition insertion are accomplished by a third translation function
〈[t ]〉v which can intuitively be interpreted as “t is defined and evaluates to v”.

〈[f (v1, . . . , vn)]〉v = ∃v1 : T , . . . , vn : Tn · 〈[t1]〉v1 ∧ . . . ∧ 〈[tn ]〉vn∧
pre f (v1, . . . , vn) ∧ post f (v1, . . . , vn , v)

〈[p(v1, . . . , vn)]〉tt
= ∃v1 : T , . . . , vn : Tn · 〈[t1]〉v1 ∧ . . . ∧ 〈[tn ]〉vn ∧ p(v1, . . . , vn)

〈[p(v1, . . . , vn)]〉ff = ∃v1 : T , . . . , vn : Tn · 〈[t1]〉v1 ∧ . . . ∧ 〈[tn ]〉vn ∧ ¬p(v1, . . . , vn)

Figure 4.6: Translation of LPF into FOL: precondition insertion

Figure 4.6 shows for an implicitly defined partial function f and a predicate
p,4 how 〈[·]〉v and 〈[·]〉tt

/〈[·]〉ff interact under the assumption of deterministic speci-
fications (i.e., no loose constructs as for example let-be-such-that).5 However, a
simple-minded flattening blows up the size of the formula substantially, as the
example translation in Figure 4.7 shows.

〈[∀l : list · l = [hd l ]y tl l ]〉tt

≡ ∀l : list · ∃v1 : list · l = v1 ∧ 〈[[hd l ]y tl l ]〉v1

≡ ∀l : list · ∃v1, v2, v3 : list · l = v1 ∧ true ∧ v1 = v2
y v3 ∧ 〈[[hd l ]]〉v2 ∧ 〈[tl l ]〉v3

≡ ∀l : list · ∃v1, v2, v3, v5 : list , v4 : item·
l = v1 ∧ true ∧ v1 = v2

y v3 ∧ true ∧ v2 = [v4] ∧ 〈[hd l ]〉v4 ∧ v5 6= [ ]∧
v3 = tl v5 ∧ 〈[l ]〉

v5

≡ ∀l : list · ∃v1, v2, v3, v5, v6 : list , v4 : item·
l = v1 ∧ true ∧ v1 = v2

y v3 ∧ true ∧ v2 = [v4] ∧ v6 6= [ ] ∧ v4 = hd v6∧
〈[l ]〉v6 ∧ v5 6= [ ] ∧ v3 = tl v5 ∧ l = v5

≡ ∀l : list · ∃v1, v2, v3, v5, v6 : list , v4 : item·
l = v1 ∧ true ∧ v1 = v2

y v3 ∧ true ∧ v2 = [v4] ∧ v6 6= [ ] ∧ v4 = hd v6∧
l = v6 ∧ v5 6= [ ] ∧ v3 = tl v5 ∧ l = v5

Figure 4.7: Translation of LPF into FOL: example

This blow-up can be mitigated if 〈[·]〉v is modified to flatten only subterms

4For total functions f , pref is true; for explicit functions and operators of the custom logic,
post f (v1, . . . , vn , v) can be replaced by f (v1, . . . , vn) = v .

5For loose specifications,VDM-SL’s semantics requires that the predicate holds or does not
hold, respectively, for all possible assignments; this substantially increases the size of the re-
sulting formulas (cf. [Mid93] for details).
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which are argument of a partial function. Moreover, since free and bound vari-
ables are always denoting in LPF (i.e., assignments and quantifiers range over
elements of the domain and not over terms), flattening can be restricted to non-
variable subterms. The modified translation function yields

〈[∀l : list · l = [hd l ]y tl l ]〉tt ≡ ∀l : list · l 6= [ ] ∧ l¬[ ] ∧ l = [hd l ]y tl l

i.e., introduces no additional existentially quantified variables and only a single
redundant conjunct which is easily eliminated during proof task simplification
(cf. Chapter 5).

4.3.4 Applied Systems

The simplifier is described in more detail in Chapter 5. The other systems are
essentially used as off-the-shelf components and were run in autonomous mode
or a fixed setting provided by their developers, unless explicitly stated otherwise.
All systems are public domain, actively maintained and designed for high perfor-
mance. In particular, each of the theorem provers ranked under the “top five” in
recent CADE ATP system competitions [SS97, SS98].

OTTER

OTTER (Organized Techniques for Theorem proving and Effective Research)
[McC94b, MW97a] is an automated theorem prover for first-order logic with
equality based on the resolution calculus. It implements several inference rules
including binary resolution and paramodulation, hyperresolution, and UR-res-
olution, and a variety of reduction techniques including factoring, forward and
back subsumption and demodulation, respectively, orderings and weights, and
Knuth-Bendix completion. OTTER’s main inference loop is based on the given-
clause-algorithm which can be considered as a simple implementation of the set-
of-support-strategy. Besides a huge number of individual parameters to control
the proof search, OTTER also offers two different autonomous modes in which it
selects a parameter setting after a simple syntactic analysis of the proof task.

For the experiments, I used OTTER 3.0.5. The proof tasks were given in
first-order form; clausification was done by OTTER’s built-in routine. Sorts were
encoded by terms, following the approaches described in [Dah96, Mel88, RM93,
SW89]; for each sort structure, the optimal encoding has been selected. In the
usual many-sorted case, sorts are thus replaced by injection functions. The reflex-
ivity of equality was explicitly added to the axioms. The entire task (i.e., axioms
and negated conjecture) was put into the usable-list, no demodulators or term
orderings were given explicitly. However, both autonomous modes reorganized
the original arrangement.
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GANDALF

GANDALF [Tam97a] is an automated theorem prover for first-order logic with
equality based on the resolution calculus. As OTTER, it implements several in-
ference rules including unit and binary resolution, hyperresolution, and paramod-
ulation, and a variety of reduction techniques including forward and back sub-
sumption and demodulation, respectively, orderings and weights, and tautology
elimination. GANDALF’s main inference loop is also based on the given-clause-
algorithm; however, it periodically selects the first clause in the set-of-support-
queue instead of the lightest clause, thus implementing a combination of best-first
and breadth-first search. As OTTER, GANDALF also offers not only a variety of
individual parameters to control the proof search but also an autonomous mode.
However, it works slightly differently. Here, the proof task is also analyzed syn-
tactically but, instead of a single parameter setting, GANDALF selects several
settings and strategies together with a fraction of the total time which is avail-
able for the proof attempt. The variants are then ordered and run one after the
other. If the time slice (or memory) allotted for a variant runs out, GANDALF
switches to a special “end-game mode” in which certain inferences get higher pri-
ority. Intermediate results (e.g., unit clauses) are carried over from one variant
to the next. As a consequence of this time-sharing scheme, results obtained by
runs with longer timeouts cannot be trimmed down to shorter timeouts but the
experiments must be repeated with the actual timeouts.

For the experiments, I used GANDALF c-1.0d. The proof tasks were given
in first-order form; clausification was done by FLOTTER [NRW98], the clausifier
provided by the SPASS-system. The remaining setup (i.e., sort and equality
handling and task layout) was the same as for OTTER.

SPASS

SPASS (Synergetic Prover Augmenting Superposition with Sorts) [WGR96, Wei97]
is an automated theorem prover for first-order logic with equality and sorts based
on the superposition calculus [BG94, GMW97].

For the experiments, I used SPASS 0.92. The proof tasks were given in first-
order form; clausification was done by FLOTTER. Sorts were usually relativized
by unary predicates, following the standard approach [Obe62, Obe89]; all sort
predicates were explicitly tagged as such but beyond that, no other unary pred-
icates were tagged. The relativation requires a number of additional axioms to
represent some properties explicitly which are implicitly assumed in (and hard-
coded into) the term encoding approaches:

• subsort relations,

• sort inhabitation, and

• signature information for the function symbols.
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These axioms are generated automatically by the NORA/HAMMR-system (cf.
Section 9.3) and added to the proof task.

SETHEO

SETHEO (Sequential Theorem Prover) [LS+92, MI+97] is an automated theorem
prover for pure first-order logic (i.e., without equality and sorts) based on the
model elimination calculus [Lov68]. However, SETHEO extends the base calculus
by a variety of inference and control rules in order to increase the its efficiency.
The most important extensions are folding which allows proven subgoals to be
used as lemmas “on the fly” and redundancy elimination using regularity, tautol-
ogy, or subsumption criteria. Equality is treated either axiomatically by adding
(the corresponding instances of) Birkhoff’s equality axioms and schemes [Bir35]
or by Brand’s STE-modification [Bra75]. SETHEO’s implementation follows the
PTTP-technology [Sti88, Sti92]; it requires a transformation of the clauses into
sets of contrapositives.

For the experiments, I used a “customized” variant which builds on top of
SETHEO V3.3. This variant also encodes sorts as terms using the optimal repre-
sentation for any given sort structure but relies on a different implementation of
the term encoding technique (which is part of the PROTEIN-distribution [BF94])
than OTTER and GANDALF. Equality is handled axiomatically but with opti-
mizations for the sort representation: the congruence axioms are generated in
sorted form and no axioms are generated for the function symbols introduced by
the sort encoding.

Method of Measurement

I did not use the GUI for the experiments because it makes an accurate timing for
the single tasks almost impossible. Instead, I used a batch version which bypasses
the GUI, and generates the respective variant of the proof tasks and writes them
into files. These files were then—again in a batch-like fashion—processed by the
provers.

All experiments were run on Sun ULTRA 1/170 workstations with at least
128 MB RAM running SunOS 5.5 or later. Run times were extracted from the
protocol files generated by the respective provers; no claim is made about the
accuracy of these timings. Due to the excessive number of proof tasks averaging
over multiple prover runs was impossible.

Unless otherwise stated, all times refer only to the CPU-time spent by the
prover and exclude preprocessing and “gluing” steps, e.g.:

• I/O,

• task generation and simplification,

• sort and equality encodings, and
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• clausification.

These steps can add a significant overhead, especially in SETHEO’s case.
Competition experiments between different variants or provers were not ac-

tually run on parallel processors but only simulated afterwards, using the log
files of the involved variants: for each task the best reported individual timing
was selected as timing under the competition. However, this systematically accu-
mulates small timing differences (e.g., due to measurement inaccuracies or slight
load differences between the different runs) and thus slightly biases competition
timing.
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Chapter 5

Simplification-based Rejection

Unlike the problems in theorem proving benchmark collections as the TPTP
[SSY94] the proof tasks emerging in deduction-based retrieval still contain signif-
icant redundancy, e.g., the propositional constants true and false which may be
part of the original queries. Hence, proof task simplification is always necessary
as a complexity reduction technique before the actual prover is invoked.

However, simplification can also be used as a low-cost rejection filter: if a
proof task T [q , c] can be simplified to false, the associated component c may be
rejected. Obviously, this rejection filter is recall-preserving as long as the applied
simplifications are sound.

Simplification can apply arbitrarily complex procedures, e.g., arithmetic equa-
tion solvers or decision procedures. In NORA/HAMMR, however, simplification
is currently based on term rewriting only. To achieve efficiency, NORA/HAMMR
provides a set of functions which implement “generic” rewrite rules (e.g., dis-
tributivity of one operator over another) modulo associativity and commutativity
through direct term manipulations and without explicitly constructing substitu-
tions. These functions are not only used to implement the simplifications of the
core logic which I describe in Section 5.1 but also for the additional domain-
specific simplifications (cf. Section 5.2). For these, the lemma library is analyzed
for instances of the generic rules. In sections 5.3 and 5.4 I show how these can be
turned into an efficient rejection filter; the results of this filter will be presented
in Section 5.5.

Rewrite-based simplification has the big advantage over rewrite-based theorem
proving that the applied rewrite system R need not be convergent: termination
(which is necessary in practice) can—by virtue of an arbitrary control strategy—
be forced at the expense of confluence because subsequent filters can still deal
with multiple normal forms. Hence, completion of R is not necessary in practice.

91
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5.1 Core Logic Simplifications

The core logic simplifications deal with the operators which are common to all
proof tasks, e.g., propositional constants, equality, or quantifiers. Since the pre-
ceding preprocessing step translated the proof-tasks (provability-preserving) into
sorted FOL with equality, the usual rules can be applied, even if they are not
valid for LPF, as for example the law of the excluded middle. In LPF

∀l : List · hd l = [ ] ∨ ¬ (hd l = [ ]) (*)

can not be simplified easily (and actually has the truth value undefined). How-
ever, (*) is translated into the FOL-formula

∀l : List · ∃l ′ : List · l = l ′ ∧ l ′ 6= [ ] ∧ (hd l ′ = [ ] ∨ ¬ (hd l ′ = [ ])) (**)

and here the law of the excluded middle can safely be applied to the right conjunct
because the left conjunct still captures the definedness constraint which prevented
the simplification in (*).1

None of the following rules is particularly deep or “tricky”. However, the
presentation uses some of the basic concepts of term rewrite systems. General
introductions into that field are for example [Klo92, DJ90, BN98]. The main
purpose of this section is to document the “practical engineering” of a rewrite
system with a specific application in mind.

Propositional Constants

For the propositional constants only the usual rules apply:

true ∧ x ; x false ∧ x ; false (5.1)

true ∨ x ; true false ∨ x ; x

Since ; rewrites modulo associativity and commutativity, I present all rules in
a “one-sided” version only.

Negation, Conjunction, and Disjunction

As explained above, the rules for the usual negation apply, i.e.,

¬ true ; false ¬ false ; true (5.2)

x ∧ ¬ x ; false x ∨ ¬ x ; true (5.3)

¬ ¬ x ; x (5.4)

1In the following section I show how the resulting formula ∀l : List · ∃ : l ′ : List · l = l ′∧ l ′ 6= [ ]
can further be simplified to false.
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As usual, DeMorgan’s laws are oriented such that a negation normal form is
achieved.

¬ (x ∧ y) ; ¬ x ∨ ¬ y ¬ (x ∨ y) ; ¬ x ∧ ¬ y (5.5)

For conjunction and disjunction we have (besides associativity and commutativ-
ity) the idempotency laws

x ∧ x ; x x ∨ x ; x (5.6)

but also the two troublesome distributivity laws

x ∨ (y ∧ z ) ≡ (x ∨ y) ∧ (x ∨ z ) (†)
x ∧ (y ∨ z ) ≡ (x ∧ y) ∨ (x ∧ z ) (‡)

which prevent any term rewriting system for Boolean algebras (BA) from being
convergent [SA91]. Since most theorem provers work on clausal normal forms, it
seems to be advisable to orient (†) from left to right and (‡) from right to left or
to drop it altogether. However, since most (but not all) provers also work in a
refutational style and negate the conjecture before they start their clausification
procedure this orientation may be counterproductive. Moreover, the choice of
either (†) or (‡) as basic distributive law may result in a loss of simplification
potential, depending on the internal structure of the proof tasks. In particu-
lar, the tasks are universally quantified on the outermost level such that the
choice of (‡) prevents further reductions of the quantifier scopes. Consequently,
NORA/HAMMR uses both variants but in different contexts, i.e., in two different
rewrite systems.

x ∨ (y ∧ z ) ; (x ∨ y) ∧ (x ∨ z ) (5.7)

x ∧ (y ∨ z ) ; (x ∧ y) ∨ (x ∧ z ) (5.7′)

(5.7) is used for simplification purposes, while (5.7′) is essentially used to gen-
erate the actual tasks which are fed into the provers. Section 5.5 contains the
experimental data which justifies this approach.

To compensate for the resulting loss of simplification potential, the usual
adjunctive laws

x ∧ (x ∨ y) ; x x ∨ (x ∧ y) ; x (5.8)

and their negated counterparts

x ∧ (¬ x ∨ y) ; x ∧ y x ∨ (¬ x ∧ y) ; x ∨ y (5.9)

¬ x ∧ (x ∨ y) ; ¬ x ∧ y ¬ x ∨ (x ∧ y) ; ¬ x ∨ y

proved to be valuable. Moreover, in practice the respective disjunctive variants
often also preempt the remaining expensive distributivity law.
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It is obvious, that the rules (5.1) to (5.9) are correct w.r.t. =BA (i.e., the
equational theory of Boolean algebras) and that the two corresponding rewrite
relations ; terminate and are strongly confluent. However, as to be expected
from the results in [SA91], the respective R-normal forms are not “minimal” as
for example the RCNF -normal form

(x ∨ y) ∧ (x ∨ ¬y) ∧ (¬x ∨ z ) ∧ (¬x ∨ ¬z )

is BA-equal to false. But in practice, ; is strong enough and giving up additional
rules as

(x ∨ y) ∧ (¬x ∨ y) ; y

saves a large number of expensive equality tests modulo associativity and com-
mutativity.

An alternative to the application of R would be to use J. Hsiang’s [Hsi85]
rewrite system for Boolean rings which remains convergent even if the classical
disjunction with the rule

x ∨ y ; x ∗ y + x + y

is added. However, this causes an exponential blow-up of the formula size. Even
worse, if the ring normal forms are translated back into BA-terms (which is
necessary because theorem provers cannot deal with the ring addition or exclusive
or directly), a second exponential blow-up occurs and many R-reducible forms
are re-introduced.

Quantifiers

Rewrite rules for quantifiers (and other similar binding constructs) need to take
the bound variables into account. Although explicit substitution calculi [AC+91]
have become fashionable for such formalizations, I stick to the “traditional” meta-
level formalization using implicit eigenvariable conditions.

Some equivalences for the quantifiers as for example

∀x · F [x ] ∧ G[x ] ≡ (∀x · F [x ]) ∧ (∀x · G[x ]) (§)

induce similar termination problems as the distributive laws (†) and (‡) above.
But in this case, the choice of an orientation is not so obvious because both
alternatives have mutually exclusive advantages:

• Orientation from left to right (i.e., anti-prenex form) allows a quantifier
elimination using the techniques described in the next section.

• Orientation from right to left (i.e., prenex form) allows more simplifications
in the larger bodies and ultimately produces better clause normal forms
due to the smaller number of different emerging skolem functions.
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I follow the usual solution in simplification (cf. e.g., [Käu88]) and use both orien-
tations but in different phases. Rules (5.10) to (5.12) are used for the anti-prenex
phase, while their reverse orientations (except for rule (5.12)) are used in the
prenex phase.

Finally, since the core logic is sorted, the standard rules must be slightly
modified to take the sorts into account. While this is straightforward for the
many-sorted case, true subsorts allow for more elaborated variants. For example,
the right-to-left orientation of (§) may become

(∀x : T1 · F [x ]) ∧ (∀x : T2 · G[x ]) ; ∀x : T · (pT1(x )⇒ F [x ]) ∧ (pT2(x )⇒ G[x ])

for T1,T2 < T and type relativation (w.r.t. to T ) predicates pT1 , pT2 . However,
since this defeats the purpose of sorted quantifiers by expanding the body of
the quantifier and the range of the bound variables, I use only the many-sorted
simplifications. However, some of them involve a “relativation residuum” to
capture empty domains adequately. In such cases I use the notation “∈ T ” as
type relativation predicate for T .

In the unsorted case or if T is a priori known to be inhabited (e.g., for gen-
erated datatypes, cf. Section 5.2.2), two rules suffice to remove conjuncts and
disjuncts, respectively, which are alien from quantifier scopes. In the general
sorted case, however, the following set is better suited because it minimizes the
number of emerging relativation residua.

∀x : T · F [x ] ∧ G[x ] ; (∀x : T · F [x ]) ∧ (∀x : T · G[x ]) (5.10)

∃x : T · F [x ] ∨ G[x ] ; (∃x : T · F [x ]) ∨ (∃x : T · G[x ])

Qx : T · F [x ]⊕ G x /∈v(G)
; (Qx : T · F [x ])⊕ G (5.11)

∀x : T · G x /∈v(G)
; G ∨ ¬∃x · x ∈ T (5.12)

∃x : T · G x /∈v(G)
; G ∧ ∃x · x ∈ T

The symbol ⊕ in rule (5.11) stands for either ∧ or ∨. The rewrite machine
only has to check the eigenvariable conditions attached to rules (5.11) and (5.12)
before they are applied; after that, the bound variables are handled properly by
ordinary rewriting.

Equality

Due to the specification style and the construction of the proof tasks (cf. Chapter
3) equality literals make up the largest part of all literals. Efficient equality
handling is thus necessary already during the simplification phase. As usual, the
main problems are to enforce termination and to balance the simplification effects
against the efforts. Both problems can easily be solved if only such equalities are
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used for rewriting where at least one side is a single variable occurring free in the
remaining term:

x = t ∧ F [x ]
x /∈v(t)
; x = t ∧ F [t/x ] (5.13)

x 6= t ∨ F [x ]
x /∈v(t)
; x 6= t ∨ F [t/x ] (5.14)

The negated variant (5.14) is in practice very useful because the type compatibil-
ity predicates often boil down to single equations and the LPF-to-FOL-translation
then exactly produces the left-hand sides of (5.14).

Among G. Birkhoff’s axioms for equality [Bir35], only reflexivity gives rise to
an additional rewrite rule

x = x ; true (5.15)

since commutativity and substitutivity are built into the term representation and
rewrite mechanism, respectively, and transitivity is preempted by (5.13).

A number of rules take care of situations in which the equality literal is the
only literal in the scope of a quantifier and the bound variable occurs one one side
of the equation. Although this situation looks very restricted, even contrived, at
first glance, these rules proved to be very valuable in practice because they capture
common situations which are consequences of the specification style, the LPF-to-
FOL-translation, and the quantifier scope reduction and variable elimination rules
above.

The witness rule eliminates intermediate existentially quantified variables
which are introduced by the LPF-to-FOL-translation ([JM94]; cf. also Section 4.3.3)
and by VDM-SL’s let-construct. Consider for example again the formula from
p. 92:

∀l : List · ∃l ′ : List · l = l ′ ∧ l ′ 6= [ ] ∧ (hd l ′ = [ ] ∨ ¬ (hd l ′ = [ ]))

After application of the variable substitution (5.13) and scope reduction (5.10–
5.12) rules, this simplifies to

∀l : List · (hd l = [ ] ∨ ¬ (hd l = [ ])) ∧ ∃l ′ : List · l = l ′ ∧ l 6= [ ]

in which the witness rule can be applied.

Definition 5.1.1 (witness rule) The witness rule for any type T is

∃x : T · x = t
x /∈v(t)
; t ∈ T (5.16)

The soundness of the witness rule is an immediate consequence of the seman-
tics of FOL with equality.
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Lemma 5.1.2 The witness rule is sound for any type T .
Proof: ∃x :T ·x = t holds iff the domain of T contains (under any interpretation)
an element t ′ such that (x = t)[x/t ′] holds, which reduces to t ′ = t since x /∈ v(t);
at the same time, the diagonal interpretation of the equality predicate requires t ′

to denote the same element as t. Hence, if t also denotes an element in the
domain of T (i.e., t ∈ T holds), t ′ can trivially been found by setting it to t; if
t /∈ T , no other element in the domain of T can be identical to the denotation of
t ′ and thus ∃x : T · x = t cannot hold either. 4

The residuum t ∈ T must be checked dynamically, similarly to “runtime
typechecking” in some programming languages. For generated datatypes T (cf.
also Section 5.2.2), this overhead can be eliminated because the witness rule can
then be strengthened to

∃x : T · x = t
x /∈v(t)
; true

provided that the original formula is well-typed under a homogeneous equal-
ity (i.e., of type ∀α · α × α → B) and does not contain occurrences of partial
functions—under these assumptions the type relativation predicate ∈ T is triv-
ially true.2 Fortunately, the latter constraint is not important in practice because
the LPF-to-FOL-translation just isolates all applications of partial functions from
their respective arguments such that they appear only in minimal scopes.3

Since the proof tasks do not contain uninterpreted constants and function
symbols, non-variable equations (i.e., neither side is a single variable) need not
to be used for rewriting as they are likely to be reduced by the domain-specific
simplifications described in the next section.

5.2 Domain-Specific Simplifications

The core logic rules are not sufficient for simplification: to achieve significant
reductive effects, more domain-specific rules are required. These rules can either
be extracted form the lemma library (cf. Section 5.2.1) in a very straightforward
manner or even be generated automatically if some meta-level information is
provided by the reuse administrator. Section 5.2.2 describes this process for
(freely) generated datatypes.

2More precisely, it is trivially true only for ground terms, but it also holds for non-ground
terms because quantifiers only range over denoting terms.

3In effect, the witness rule undoes (together with the core logic and equality rules) to a large
extent the blow-up caused by the LPF-to-FOL-translation. For properly stated formulas (i.e.,
formulas with truth value true or false), the formula size does usually not change.
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5.2.1 Extracting Simplifications from a Lemma Library

The fully automatic extraction of a “useful” set of domain-specific simplifica-
tion rules is a considerable engineering task. The main problem is to ensure
termination of the extracted rewrite system. In NORA/HAMMR, I refrain from
constructing a proper termination ordering. Instead, I assume that the termina-
tion ordering is implicitly given by the reuse administrator, i.e., equivalences and
equalities are always oriented from left to right.

Equivalences and Equalities

Equivalences can obviously be interpreted as equalities on the datatype of truth
values and thus be handled by the rewrite machinery in the same way as equali-
ties. However, they need not be as obvious as equalities because they may be split
up into two separate implications which are ”scattered” throughout the lemma
library. The most common case is that one implication is defined in a core theory
at the lower hierarchy levels (or even in the meta-logic) while the reverse impli-
cation is defined further up in the hierarchy. In the ideal case, the equivalences
can be recovered by searching the lemma library for these two implications. In
less ideal cases, however, the second implication is not formulated explicitly but
can be inferred (easily). This is typically the case with injectivity axioms,, e.g.,
for the list constructor cons :

∀i , i ′ : item · ∀l , l ′ : list · cons(i , l) = cons(i ′, l ′)⇒ i = i ′ ∧ l = l ′

Here, the reverse implication need not be axiomatized explicitly because it is
an instance of the congruence axioms schema for equality. Finding the reverse
implication, however, may of course become arbitrarily complex and generally
requires theorem proving capabilities.

Unit Clauses

Fully universally quantified unit clauses (i.e., axioms or lemmas consisting of a
universal prefix followed by a single literal) can easily be rewritten as equiv-
alences and then be handled as described above; the right-hand side of the
equivalence is just the polarity of the literal (i.e., true for positive literals, false
for negative literals). Non-universal unit clauses can obviously not be con-
verted into (ordinary) rewrite rules because the existentially quantified variables
may not be instantiated arbitrarily during rewriting. For example, it is obvi-
ously wrong to extract a rewrite rule segmentP(l ′, l) ; true from the lemma
∀l : list · ∃l ′ : list · segmentP(l ′, l). However, non-universal unit clauses can still be
used for simplification if they are not interpreted as rules for the top-level functor
of the literal but as rules for the existential quantifier. Hence, the lemma gives rise
to the correct rule ∃l ′ : list · segmentP(l ′, l) ; true which can be used to simplify
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∀l : list · (∃l ′ : list · segmentP(l ′, l))⇒ l 6= [ ] into ∀l : list · true ⇒ l 6= [ ] and ulti-
mately into false using the quantifier splitting approach described in Section 5.3.
Non-unit clauses can sensibly be converted only into conditional rewrite rules (if
at all). However, since these do not allow a simple and fast execution, which was
the original motivation for rewrite-based simplification, non-unit clauses are not
used for simplification purposes by NORA/HAMMR.

5.2.2 Handling Generated Datatypes

Inductively defined or (freely) generated datatypes abound in software specifi-
cations (e.g., lists, numbers, or sets) and thus also in deduction-based retrieval.
Fortunately, their regular structure allows significant simplifications.

Inductive definedness is a higher-order property. This becomes apparent in
the following definitions. They generalize the approach of J. Harrison [Har95],
which is based on least fixpoints (lfp), to the many-sorted case.4

Definition 5.2.1 (inductively defined set) A set T ⊆ X is called induc-
tively defined by the generator predicate P iff ∀x · P(T , x ) ⇒ x ∈ T holds,
the function f (S ) = {x | P(S , x )} is monotone on 2X → 2X and T = lfp(f ).

For the special case of generated datatypes, P makes only very limited assump-
tions such that it can even be derived automatically from a signature. Moreover,
the function f then is monotone by construction. However, the definitions are
complicated by the many-sorted setup, i.e., by the fact that the arguments of a
generator function may be of a sort other than the one being defined inductively.

Definition 5.2.2 (generated datatype) Let πT be defined as

πT (S ,U ) =

{
S U = T

U else

A type T is generated by the signature ΓT = {gi | gi : Tgi ,1× . . .×Tgi ,n → T} iff
T is inductively defined by

P(S , y) ≡
∨

g∈ΓT
∃x1, . . . , xg,n ·

x1 ∈ πT (S ,Tg,1) ∧ . . . ∧ xg,n ∈ πT (S ,Tg,n)∧
y = g(x1, . . . , xg,n)

The functor symbols g in ΓT are called the generators or constructors of T .

4An alternative formalization of inductively defined datatypes is pursuit by the algebraic
specification school, (cf. e.g., [LEW96]), but since it relies more on the model-theoretic notion
of generated algebras, the meta-reasoning is harder to automate than in the higher-order logic
approach followed here.
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The purpose of the projection function πT is to “curb” the domain of the
generator functions in the right arguments from the datatype being defined to
the set S calculated up to the current iteration and thus to facilitate the fixpoint
calculation. This in turn requires the use of unsorted existential quantifiers, i.e.,
a relativized formalization. However, monotonicity of f is then easy to show.

Lemma 5.2.3 Let T be generated by ΓT . Then the function f as defined in
Definition 5.2.1 is monotone on 2X → 2X .
Proof: Assume S ⊆ S ′ ⊆ X and y ∈ f (S ); hence, P(S , y) holds. Let xi ∈
πT (S ,Tg,i). If Tg,i 6= T , πT (S ,Tg,i) = πT (S ′,Tg,i), otherwise πT (S ,Tg,i) = S ⊆
S ′ = πT (S ′,Tg,i). Hence, xi ∈ πT (S ′,Tg,i) by which P(S ′, y) also holds, which in
turn implies y ∈ f (S ′) and thus monotonicity. 4

Hence, the notion of datatypes generated by a set of constructors is well-
defined even in the many-sorted case. Consider for example the natural numbers
N and (monomorphic) lists with generators ΓN = {0 : N, succ : N → N} and
Γlist = {nil : list , cons : item × list → list}, respectively. N is generated by ΓN
in the usual—algebraic—sense because the succ-constructor has only a single
argument which is of type N. The case of list, however, is more complicated.
It is not generated by Γlist in the usual sense because Γlist does not contain any
constructors for the abstract item-type; even worse, to keep item truly abstract,
no assumptions about its internal structure should be made at all. [LEW96]
thus apply a trick to generalize the notion of generated algebras to “algebras
generated in a sort” and use variables as the artificial generators of the abstract
type. This trick is not necessary here, due to the more careful Definition 5.2.2:
list is generated by Γlist . Its generator predicate simplifies to

P(S , y) ≡ y = nil ∨ ∃x1 : item, x2 ∈ S · y = cons(x1, x2)

which captures the essence of the variable trick cleanly. Of course, the generator
predicate collapses to false (and the least fixpoint into the empty set) if the
item-type is empty, i.e., ∃x1 : item is equivalent to false.

An immediate consequence of the fixpoint definition of T is that it admits
a cases theorem ∀x · x ∈ T ⇔ P(T , x ) which “lists the ways an element of the
inductively defined set can arise” [Har95]. For the natural numbers, generated
by ΓN as above, this yields ∀n · n ∈ N⇔ (n = 0 ∨ ∃n ′ :N · n = succ n ′). The ⇒-
direction of the cases theorem can also be interpreted as the result of relativizing
a sorted universal quantifier with the characteristic predicate “∈ T ”. Reversing
this relativation step thus yields the expected surjectivity axiom for the datatype
in the correct many-sorted formulation.

Corollary 5.2.4 (surjectivity axiom) For any datatype T generated by ΓT

the surjectivity axiom

∀x : T ·
∨

g∈ΓT

∃x1 : Tg,1, . . . , xg,n : Tg,n · x = g(x1, . . . , xn)
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holds.

The fixpoint definition of inductively defined types also yields a general in-
duction theorem; for generated datatypes this boils down to the well-structural
induction schema ([Har95] for more details).

More structure can be superimposed upon a generated datatype by stipulating
that it is also freely generated. Intuitively, this means that each element of
the datatype is uniquely represented by a unique term using the constructors
only. Formally, this is achieved by replacing the existential quantifiers by unique
existential quantifiers.

Definition 5.2.5 (freely generated datatype) A type T is freely generated
by the signature ΓT = {gi | gi :Tgi ,1× . . .×Tgi ,n → T} iff T is inductively defined
by

P(S , y) ≡ ∃1g ∈ ΓT , x1, . . . , xg,n ·
x1 ∈ πT (S ,Tg,1) ∧ . . . ∧ xg,n ∈ πT (S ,Tg,n)∧
y = g(x1, . . . , xg,n)

The usual properties of the free constructors—injectivity and disjointedness—
are than immediate consequences of the unique existential quantifiers.

Corollary 5.2.6 (injectivity axioms, disjointedness axioms) For any data-
type T freely generated by ΓT the injectivity axioms

∀x1, y1 : Tg,1, . . . , xg,n , yg,n : Tg,n ·
g(x1, . . . , xn) = g(x1, . . . , xn)⇒ x1 = y1 ∧ · · · ∧ xn = yn

and the disjointedness axioms

∀x1 : Tg,1, . . . , xg,n : Tg,ny1 : Tf ,1, . . . , yf ,m : Tf ,m ·
¬(g(x1, . . . , xn) = f (y1, . . . , ym))

hold for all f , g ∈ ΓT .

Free generation of the datatype also implies its finite generation, i.e., each
element of the datatype is of finite (but unbounded) size. However, this property
is difficult to formalize and to prove and not very useful for automated theorem
provers. The slightly simplified variant of acyclicity is more useful in practice.
The name acyclicity stems from the fact that the obvious implementation of
infinite terms uses cyclic directed graphs; however, acyclicity rules out only im-
mediate (i.e., starting from the root) cycles in the term graph. It is a syntactic
restriction similarly to the ”no constructor axioms” rule also used to characterize
freely generated datatypes syntactically.
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Lemma 5.2.7 (acyclicity axioms) For any datatype T generated by ΓT the
acyclicity axioms

∀x1 : Tg,1, . . . , xg,n : Tg,n · xi ∈ T ⇒ ¬(xi = g(x1, . . . , xn))

hold for all g ∈ ΓT , provided that ΓT contains at least one constant.

The proof proceeds by structural induction over xi which makes the proviso nec-
essary. The theorem can, however, be generalized to the case where ΓT contains
proper constructor functions only.
Proof: Since ΓT contains a constant c and g cannot be a constant, c and g
are different and the base case holds by the disjointedness axiom. For the step
case, only the case of xi = g(x1, . . . , xn) has to be considered, since all other cases
hold trivially, again by disjointedness. Hence, applying surjectivity over xi after
substitution yields

∀x1 : Tg,1, . . . , xg,n : Tg,n · xi ∈ T ⇒
¬∃y1 : Tg,1, . . . , yg,n : Tg,n ·

g(y1, . . . , yn) = g(x1, . . . , xi-1, g(y1, . . . , yn), xi+1, . . . , xn)

which reduces by injectivity and repeated application of the witness rule 5.16 to
the induction assumption. 4

5.3 Quantifier Splitting

Although ; already detects some non-obvious inconsistencies, it is not yet suffi-
cient as simplification filter: to achieve significant reductive effects, more hidden
inconsistencies must be exposed. Consider for example an R-irreducible (but
inconsistent) formula

∀x , y : T · x < y ∧ F [x , y ] (*)

To detect the inconsistency it is sufficient to consider the case x = y only (pro-
vided that x < x ; false.)

Quantifier splitting techniques are rewrite-based implementations of such case
distinctions, although in a brute-force manner. Hence, splitting is non-terminating
in general and requires an additional control strategy. The generic formulations
of the splitting rules (w.r.t. a split predicate p) are

∀~x · F [~x ] ; ∀~x · (p(~x )⇒ F [~x ]) ∧ (¬p(~x )⇒ F [~x ]) (**)

∃~x · F [~x ] ; ∃~x · (p(~x ) ∧ F [~x ]) ∨ (¬p(~x ) ∧ F [~x ])

It is easy to see that quantifier splitting is an equivalence-preserving sim-
plification. This follows from equivalence preservation of the distributive and
adjunctive laws of the propositional calculus.
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Lemma 5.3.1 Quantifier splitting is equivalence-preserving for any split predi-
cate p.
Proof: For the universal splitting rule we have

∀~x · (p(~x )⇒ F [~x ]) ∧ (¬p(~x )⇒ F [~x ])

≡ ∀~x · (¬p(~x ) ∨ F [~x ]) ∧ (p(~x ) ∨ F [~x ])

≡ ∀~x · ((¬p(~x ) ∨ F [~x ]) ∧ p(~x )) ∨ ((p(~x ) ∨ F [~x ]) ∧ F [~x ])

≡ ∀~x · (p(~x ) ∧ F [~x ]) ∨ F [~x ]

≡ ∀~x · F [~x ]

The equivalence preservation of the existential splitting rule follows by duality. 4

Quantifier splitting resembles the propositional splitting which is for example
used in the Davis-Putnam-Procedure [DP60, DLL62]. Of course, the practical
problem of quantifier splitting is similar to the problem in the propositional case,
viz. the “judicious” choice of the split predicate which must trigger enough simpli-
fications. In NORA/HAMMR, I have experimented with two different predicates
which I describe subsequently.

Diagonalization

Diagonalization is the most basic splitting technique. It makes no further as-
sumptions about the domain of the bound variable and splits w.r.t. the equality
predicate, as in the example (*) above.

Definition 5.3.2 (diagonalization rule) The diagonalization rules for any type
T are

Q x : T · ∀y : T · F [x , y ] ; Q x : T · F [x , x ] ∧ ∀y : T · x 6= y ⇒ F [x , y ] (5.17)

Q x : T · ∃y : T · F [x , y ] ; Q x : T · F [x , x ] ∨ ∃y : T · x 6= y ∧ F [x , y ]

for an arbitrary quantifier Q.

Hence, the split predicate used for diagonalization is not equality but more
precisely a curried version “= y” of equality; this currying-process also requires
the second, nested quantifier in the formulation of the rule. The name “diago-
nalization rule” recalls the fact that (5.17) isolates the diagonal over T ×T into
a separate conjunct in which—hopefully—a contradiction becomes apparent; it
thus also resembles the traditional diagonalization proof technique invented by
Cantor.

In order to make diagonalization into a useful simplification technique, it
should be applied only if the isolated conjunct (disjunct) ultimately becomes
true (false), at least with a high probability. One easy and cheap way to ensure
such a high probability of success is to exploit the syntactic structure of F and
to follow these simple rules of thumb:
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• Apply the universal diagonalization rule only if F contains a positive oc-
currence of an irreflexive predicate or a negative occurrence of a reflexive
predicate.

• Apply the existential diagonalization rule only if F contains a positive oc-
currence of an reflexive predicate or a negative occurrence of a irreflexive
predicate.

Instances of reflexive and irreflexive predicates, respectively, can easily be de-
tected in the lemma library; moreover, the equality predicate is reflexive by def-
inition and can thus be used in both variants.

Surjective Unrolling

Surjective Unrolling is a splitting technique which is applicable only for generated
datatypes. It splits with respect to the surjectivity axiom of the datatype.5

Definition 5.3.3 (surjective unrolling rule) The surjective unrolling rules for
any generated type T with generators ΓT are

∀x : T · F [x ] ;
∧

f ∈ΓT

∀~xf : ~Tf · F [f (~xf )] (5.18)

∃x : T · F [x ] ;
∨

f ∈ΓT

∃~xf : ~Tf · F [f (~xf )]

This definition of the surjective unrolling rule is not a direct instantiation of
the generic splitting schema (**) on page 102 but a result of simplifying (**)
w.r.t. the usual predicate calculus rules and noting that the second conjunct
(resp. disjunct) can be dropped since ¬p(~x ) is always false.

The surjective unrolling rule is defined for any generated datatype; however,
in practice its usefulness depends to a large extent on the disjointedness axioms
of freely generated datatypes to simplify the large formulae resulting from an
unrolling step.

5.4 Rewrite Strategy

Since NORA/HAMMR does not apply completion, the generated term rewrite
system ; is not necessarily confluent; moreover, quantifier splitting is non-
terminating. Selection of a proper rewrite strategy may thus have major impacts
on the efficiency of a rewrite-based rejection filter, not only in terms of runtime
but also in terms of reduction rates.

5A proof rule similarly to the existential version of surjective unrolling has recently been
proposed in the context of model-generation theorem provers for full first-order logic [Ahr00].
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For pragmatic reasons, NORA/HAMMR distinguishes between reduction and
expansion core simplifications and uses a mixed top-down/bottom-up rewrite
strategy. Reduction simplifications (which reduce the size of the term or the
number of variable occurrences) are applied top-down in order to maximize the
effect of the rules (5.1) and (5.3); this is supported further by their internal or-
dering. Expansion simplifications as distributivity (which are terminating with
respect to a more complicated termination ordering than just the term size) are
applied bottom-up in order to minimize the growth in term size. As mentioned
before (cf. Page 93), the rule set contains only one of the distributive laws to
ensure termination.

The distinction between reduction and expansion rules also applies to the
quantifier rules, especially to (5.10) and (5.11). The experiments have shown
that good effects are already achieved if these rules are considered as expan-
sion rules, i.e., applied bottom-up. This combines to some extent the advan-
tages of both the prenex- and anti-prenex-orientation of the rules because the
quantifier bodies are reduced first, potentially allowing more simplifications, be-
fore the quantifier scopes are reduced, potentially allowing quantifier elimination.
However, NORA/HAMMR does currently not contain an extra post-simplification
prenex-phase to merge quantifier scopes together.

Diagonalization and surjective unrolling are non-terminating and require an
additional control strategy. NORA/HAMMR uses a very simple strategy. Simpli-
fication and diagonalization/unrolling are two separate alternating phases; if the
term size after a simplification phase does not exceed a user-specified limit, all
quantifier occurrences are unrolled once.

5.5 Experimental Results

Tables 5.1 and 5.2 summarize the results of the simplification-based rejection
filters for different simplification levels. Here, | t | is the average size of the proof
tasks, defined as the term size of the first-order term representing the conjecture,
i.e., not counting the axiomatization. T task and T query are the average response
times per task and per query, respectively; each query comprises 119 (i.e., | L |)
single tasks. The lower parts of both tables list recall, precision, and fallout as
defined in Section 2.3. However, since all rewrite systems are sound, the rejection
filters are recall-preserving and the recall is consistently 100%. For precision and
fallout, I give both query-oriented and document-oriented averages. Finally, red
is the reduction factor of the filter, i.e., the fraction of tasks which could be
simplified to false. red+ is the total reduction factor which also includes tasks
which are rewritten to true.

Table 5.1 gives the results of the base simplifications, i.e., without quantifier
splitting. Four different simplification levels are listed. RFOL contains the usual
first-order simplifications (rules 5.1 to 5.9), REQ additionally contains simplifica-
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tion for equality (rules 5.13 to 5.16), and RDOMAIN is the full set of automatically
generated domain-specific simplifications, includingREQ . R∅ is the empty rewrite
system (i.e., no simplification); it is included for reference only. Finally, the CNF-
and DNF-entries in the second line indicate in which direction the distributive
law has been oriented and, hence, which normal form is prepared.

R∅ RFOL REQ RDOMAIN

CNF CNF CNF CNF DNF comp.
| t | 87.9 177.1 171.6 55.7 61.8 -
σ|t| 29.4 137.1 176.0 64.9 37.2 -
Ttask (sec.) 0.03 0.07 0.08 0.06 0.05 0.06
σT 0.01 0.04 0.06 0.04 0.02 0.04
Tmax 0.09 0.46 1.25 0.44 0.29 0.44
Tquery (sec.) 3.39 7.97 9.45 7.38 5.85 7.51
σT 0.59 3.61 5.05 3.60 1.84 3.54
Tmax 5.68 21.59 27.63 21.65 14.48 21.54

r (%) 100.00 100.00 100.00 100.00 100.00 100.00
p (%) 12.98 12.98 12.98 17.59 13.47 17.59
δp 1.00 1.00 1.00 1.35 1.04 1.35
p (%) 12.98 12.98 12.98 17.48 14.08 17.48
σp 19.17 19.17 19.17 23.59 21.62 23.59
δp 1.00 1.00 1.00 1.46 1.06 1.46
f (%) 100.00 100.00 100.00 69.9 95.8 69.9
f (%) 100.0 100.00 100.00 69.3 94.5 69.3
σf 0.00 0.00 0.00 21.5 14.9 21.5
red (%) 0.00 0.00 0.00 26.19 3.67 26.19
red+ 0.00 2.75 4.23 31.78 8.63 31.78

Table 5.1: Rewrite-Based Rejection: Base Simplifications

The most obvious result is that purely syntactic simplification are insufficient
for task rejection: neitherRFOL norREQ are able to identify a single non-theorem.
Hence, the fallout is 100% in both cases. However, since both variants already re-
duce a significant fraction of the valid tasks to true (RFOL: 21.0%, REQ : 32.6%),
small total reduction factors are achieved.

The situation improves clearly if the domain-specific simplifications are added.
Using RDOMAIN to rewrite into CNF-style, more than 30% of the tasks are elim-
inated in total. But again, it performs better on the valid tasks (43.1%) than on
the invalid ones (26.2%). Both fallout averages are close to 70% which indicates
that the filter works equally well for all queries. The two rightmost columns show
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that rewriting into CNF-style is not only clearly better than rewriting into DNF-
style but that the former even subsumes the latter: the reduction factor does
not change if both variants are run in a competitive mode. CNF-style remains
superior even with unrolling although it than does no longer subsume DNF-style.
However, this is unfortunate. Because most (refutation-oriented) provers can
handle the tasks much better if they are in DNF-style,6 in fact both variants
need to be generated: CNF-style for rejection purposes, DNF-style for the actual
proof attempts.

Table 5.2 gives the results of the quantifier unrolling strategy over RDOMAIN

for two different timeouts, using a maximal term size of 10.000 as additional
termination criterion.

CNF DNF pipe. comp.
Tmax (sec.) 0.50 5.00 ∞ 0.50 5.00 ∞ 0.50 5.00 0.50 5.00

Ttask (sec.) 0.24 1.48 9.39 0.25 1.17 13.59 0.25 1.42 0.23 1.40
σT 0.21 2.10 118.93 0.21 1.74 258.59 0.21 1.99 0.21 2.09
Tmax - - 5292 - - 26241 - - - -
Tquery (sec.) 28.63 175.59 1117 30.18 139.30 1616 29.20 169.02 26.93 166.14
σT 10.77 88.50 3042 11.40 85.41 10771 11.03 90.06 10.13 90.42
Tmax 54.73 460.10 30708 56.92 405.78 106069 57.76 445.66 54.75 477.06

r (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
p (%) 30.06 35.37 37.23 28.79 33.50 34.41 29.10 36.02 32.19 36.83
δp 2.32 2.73 2.87 2.22 2.58 2.65 2.24 2.78 2.48 2.84
p (%) 26.29 28.98 30.16 24.24 28.08 28.62 25.11 29.55 26.87 30.28
σp 27.75 28.13 27.96 26.83 27.84 27.84 27.32 27.84 27.45 27.83
δp 3.79 5.05 5.38 3.25 5.19 5.32 3.33 5.43 4.41 5.70
f (%) 34.70 27.25 25.15 36.89 29.61 28.43 36.34 26.50 31.41 25.58
f (%) 35.11 28.27 26.32 37.57 30.66 29.52 36.76 27.62 32.18 26.76
σf 19.32 18.29 18.59 20.09 19.53 19.13 19.65 18.76 18.61 18.93
red (%) 56.83 63.31 65.14 54.92 61.25 62.28 55.40 63.96 59.69 64.76
red+ 64.44 70.99 72.82 62.21 68.61 72.00 63.37 71.95 68.68 72.75

Table 5.2: Rewrite-Based Rejection: Unrolling, | t |max = 10000

It is obvious that unrolling dramatically improves the filtering effect. Already
within half a second per task, reduction factors of approximately 55% can be
achieved, while the total reduction factors even reach approximately 65%. More-
over, this more than twofold increase is paid for with only moderate response

6In fact, SETHEO’s normal form translator was not even able to handle the proof tasks in
DNF-style, due to the excessive size of the emerging intermediate formulae.
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times which amount to an average of roughly 30 seconds per query and are “sub-
minute” even in the worst case. Further increases of the timeout still improve
these results, although a saturation effect soon occurs. While reduction factors of
almost 65% can be achieved for moderate timeouts, unrolling with termination
enforced only via the maximal term size becomes prohibitively slow, due to a
small number of tasks (cf. the large standard deviation for Ttask).

As a consequence of the improved filtering effect, the fallout numbers de-
crease significantly, dropping below the 30%-mark already for moderate time-
outs. Again, query-oriented and document-oriented averages lie within a small
margin which indicates again that the filter works equally well for all queries.
Since rewriting is sound, the precision of the answer set increases at the same
time. Due to the large variation in the size of the relevance sets (σREL = 19.2%),
however, a peculiar difference between the query-oriented and document-oriented
points of view can be observed. Although the system-wide, document-oriented
average is for every timeout and combination higher than the query-oriented
average, these order turns upside-down if the leverages are considered. Here,
queries with very small relevance sets induce extraordinary large precision lever-
ages which skew the average. This effect is even reinforced by the fact that such
queries usually also induce a large number of “easy” non-matches which can be
ruled out.

Another effect which is also evident from Table 5.2 is that CNF-style and
DNF-style are now much closer to each other, even if the formal still performs
slightly better. But in contrast to the base simplifications, CNF-style does not
subsume DNF-style any longer. This can be utilized by combining both into a
single filter.

For such a combination, two different approaches are possible, pipelining and
true parallelism. Here, pipelining is implemented very straightforward, requiring
only a single processor. For each task, the variants are simply checked after each
other. If one variant succeeds, the remaining ones are dropped and the next task
is taken. Depending on the chosen order and allocated time slices, quite different
results can be achieved. For the experiments, I chose CNF-style as first filter in
the pipeline, because it shows slightly better results, and for simplicity, I just split
the total time into two equal slices. The results show that this is not the optimal
division, at least not for short timeouts: for 0.5 seconds, the combined filter
performs slightly worse than the pure CNF-style filter. However, with increased
timeouts the actual time slices become less important and the effect of exploring
the search spaces from different starting points begins to dominate. For 5 seconds
better results are achieved for the pipeline than for the pure CNF-style filter.
Although the improvements are relatively small, they should not be devaluated
because they already contain a major part of the maximal possible (i.e., without
time limits) improvements.

If multiple processors are available, further improvements can be achieved
by a parallel competition between the variants. Here, the first processor which
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arrives at a decision (i.e., rejection or acceptance) “wins” and aborts the others.
A parallel rejection filter need not necessarily to be faster than its individual
sub-filters because it has to wait for even the slowest sub-filter if none of them
arrives at a decision. However, it returns the same results as a pipeline consisting
of the same sub-filters would do but is always faster than that.

In practice, competition is at least faster than the slowest sub-filter but gives
better results. The reduction factor increases up to almost 65% and is quite
close to the maximum achieved without time limits. The fallout averages drop
to slightly more than 25%, i.e., almost three out of four irrelevant components
are filtered out, and the precision averages accordingly increase.

In fact, a rewrite-based rejection filter may already be considered as the final
pipeline element. The pipeline is then guaranteed to be recall-preserving, but
the retrieved components require manual inspection before they may be reused.
Nevertheless the achieved precision level of roughly 30% is already competitive,
even if it is compared to more traditional, information retrieval methods. For
example, Y. Maarek et al. [MBK91] report for two different systems between
40% and 50% average precision at a 90%-recall level. However, since these were
the maximum recall levels achieved by the systems, the results do not allow a
definitive comparison of the approaches.7

The large differences between the rejection and total reduction factors indicate
that the simplifications already reduce a significant number of proof tasks to true.
This raises the question of how they perform as low-cost confirmation filters.
Table 5.3 gives some answers to this question. Here, the timeouts were chosen to
correspond with those used in the ATP-based filters.

CNF DNF pipe. comp.

Tmax (sec.) 1.00 90.00 1.00 90.00 1.00 90.00 1.00 90.00
Ttask (sec.) 0.41 4.73 0.42 3.03 0.41 6.08 0.46 6.27
σT 0.43 12.18 0.42 10.61 0.43 12.95 0.43 15.42
Tquery (sec.) 48.43 562 49.75 360 48.80 724 54.19 746
σT 20.62 517 21.32 784 20.70 655 22.10 901

# proofs 1081 1088 1042 1042 1128 1131 1131 1131
r (%) 58.81 59.19 56.69 56.69 61.37 61.53 61.53 61.53
r (%) 38.37 38.65 34.44 34.44 39.54 39.65 39.65 39.65
σr 37.86 37.77 37.96 37.96 37.67 37.64 37.64 37.64
p (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 5.3: Rewrite-Based Confirmation: Unrolling, | t |max = 10000

7Moreover, the IR-systems used a different test library and query set. Still, the numbers
indicate that deduction-based methods become practical.
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The most obvious answer is that rewriting using the quantifier unrolling strat-
egy is a suitable and particularly fast confirmation filter: even within a single
second per task, roughly 60% of the valid proof tasks are identified. Suitability
even holds under the more critical user-oriented view: the response times per
query are “sub-minute”, and the query-oriented recall average is still between
35% and 40%. Hence, rewriting creates a strong bound for the application of
theorem provers.

However, Table 5.3 also reveals that this approach does not scale any further.
Even with a timeout increased by almost two orders of magnitude, only a ne-
glectable number of additional proofs can be found. Moreover, further increases
do not yield any further proofs (cf. the differences between red and red+ in Ta-
ble 5.2). This is in contrast to the rejection case where further improvements can
be achieved, although with a diminishing return.



Chapter 6

Counterexample-based Rejection

The simplification-based rejection filters described in the preceding chapter rule
out only such components which are associated with contradictory proof tasks.
Such filters are still too coarse: if T [q , c] is neither valid nor contradictory, rewrit-
ing fails to produce a definitive result. In such cases, counterexample-based tech-
niques can be applied. If c is a non-match for q , T [q , c] must admit at least one
counterexample, i.e., a structure, an interpretation (of the predicate and function
symbols) and an assignment (of the free variables) under which it evaluates to
false. Such counterexamples can be exploited by two different approaches.

• A number of structures and interpretation are fixed such that they are mod-
els of the background theory A (i.e., the axiomatization of the extralogical
symbols). Under these, all assignments of T [q , c] are checked. If no coun-
terexample is found, nothing can be concluded.

• A ⇒ T [q , c] is checked exhaustively, i.e., under all structures, interpreta-
tions, and assignments. If no counterexamples are found, T [q , c] is valid in
the background theory and c can safely be accepted.

Obviously, both approaches terminate only if the structures and thus the number
of possible interpretations and assignments are finite. Unfortunately, and in
contrast to the situation in hardware verification, most interesting structures in
software engineering applications are infinite; in the test library, the list datatype
induces infiniteness. Depending on the approach, different techniques are possible
to ensure termination:

• Only a finite substructure is fixed, e.g., only the domain of a particular
datatype, and only assignments over this substructure are checked. How-
ever, if T [q , c] cannot be mapped completely onto the substructure, check-
ing cannot be done by exhaustive evaluation but still requires more general
techniques, e.g., rewriting or theorem proving.

111
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• Finiteness of the structures is enforced by application of appropriate approx-
imations or abstractions. The domain elements are abstracted into a finite
number of equivalent classes; lists for example may be abstracted into the
classes nil = {[ ]} and non-nil = {x | x 6= [ ]}. Similarly, the concrete func-
tions and predicates are replaced by abstracted counterparts which work
on the equivalence classes. Then the abstracted problem [[A ⇒ T [q , c] ]] is
checked exhaustively. This is also called abstract model checking.

Usually, such counterexample-based rejection filters are no longer recall-preserving
because wrong substructures or unsound abstractions may produce spurious coun-
terexamples. It is thus an engineering problem to balance this loss of recall against
the rejective power of the filter.

This chapter describes the two counterexample-based rejection filters imple-
mented in NORA/HAMMR. Both filters follow the “fixed substructure” approach
but rely on different evaluation techniques. Section 6.1 deals with rewriting over
finite item-domains while Section 6.2 describes the attempts to prove that tasks
are contradictory, again under the assumption of various finite item-domains.
Rejection filters based on model checking techniques turned out to be inferior
and showed relatively low precision and recall rates in preliminary experiments.
They are thus not investigated closer in this thesis (cf. Chapter 10.3.3 for some
details).

6.1 Rewriting over Finite item-Domains

6.1.1 Counterexample Domains

The free generators nil and cons of the list-datatype allow surjective unrolling of
all list-quantifiers. The item-datatype, which is more abstract, does not provide
such information and admits only the less effective diagonalization rule. However,
this abstractness can also be turned into an advantage because now any—and in
particular any finite—number of virtual generators can be invented to describe
a specific fixed structure. These virtual generators again allow unrolling of the
item-quantifiers but this is only valid in the selected structure and not in general.
Nevertheless, the resulting rejection filter can be recall-preserving if the abstract
item-domain and the interpretation of the predicates over this domain are chosen
judiciously. Obviously, this choice cannot be automated but requires the human
insights of a reuse administrator.

In NORA/HAMMR, I have experimented with several sound and unsound
prospective counterexamples:

1. Since all types can be assumed to be inhabited,1 the smallest possible coun-
terexample contains only a single item i0. In this structure, some of the

1This is a well-formedness condition of VDM-SL-specifications.
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functions and predicates of the domain theory become trivial and can thus
be eliminated from the tasks, entailing further simplification. For example,
the hd -function becomes trivial since

∀l : list · l 6= []⇒ hd l = i0

holds. However, since the axiom

∃i : item · ∃j : item · i 6= j

does not hold, unrolling becomes unsound in this structure and the filter
may lose recall. This problem can be be fixed by stipulating that i0 is a gen-
erator but not or not necessarily the only one. To model these assumptions,
the surjective unrolling rule must be modified, essentially by a combination
of unrolling and diagonalization,

∃i : item · F [i ] ; F [i0] ∨ ∃i : itemF [I ]

or, respectively,

∃i : item · F [i ] ; F [i0] ∨ ∃i : item · i 6= i0 ∧ F [i ]

and with similar rules holding for universal quantifiers.

2. The next, larger item-domain contains two different elements, i0 and i1. It
gives rise to two prospective counterexample structures, depending on the
interpretation of the ≤-predicate over this domain:

(a) i0 ≤ i1

(b) ¬i0 ≤ i1

However, although all axioms hold under both interpretations, they may
induce “too much” internal structure, thereby possibly degrading the rejec-
tive power and the precision of the filter:

(a) Under this interpretation, the item-domain is a total order which is
not required by the original axioms.

(b) Under this interpretation, the item-domain admits no non-trivial par-
tial order and thus also no strict order. Hence, all sorted lists consist
of equal elements only.

3. The final investigated item-domain thus comprises the smallest non-trivial
partial order:

i1

��>>>>>>>>> i2

�����������

i0

I.e., it contains a minimal element i0 and two other mutually incomparable
elements i1 and i2.
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6.1.2 Experimental Results

The above substructures have been turned into rewrite rules using the techniques
described in the previous chapter. These rules were then used to replace the
weaker diagonalization rule in the original rewrite system RDOMAIN which pro-
duced the best filtering effects. The resulting rewrite systems were then applied
to the tasks, again with a maximal term size for unrolling of 10000.

Unfortunately, some of the item-domains do not work very well with such an
aggressive quantifier unrolling. The larger number of real and virtual generators
and the fact that now all occurring quantifiers can be unrolled lead to an explosive
term growth which is not always offset by the additional simplifications and thus
degrades the rejective power of the filters. This is particularly true for the two
modifications of the single-item-domain and for the substructure with three items.
Less aggressive unrolling prevents this term explosion but in turn degrades the
overall effectiveness of the filters even more. The above three domains are thus
not investigated in more detail.

RDOMAIN R1 R2,a R2,b comp.
Tmax (sec.) 0.50 5.00 0.50 5.00 0.50 5.00 0.50 5.00 0.50 5.00

Ttask (sec.) 0.24 1.48 0.15 0.53 0.24 1.36 0.23 1.19 0.16 0.74
σT 0.21 2.10 0.16 1.28 0.21 2.02 0.20 1.91 0.17 1.60
Tquery (sec.) 28.63 175.59 18.01 63.62 28.85 161.83 27.49 141.55 19.51 88.06
σT 10.77 88.50 9.81 62.42 11.30 105.26 11.33 99.41 9.98 91.22

r (%) 100.00 100.00 100.00 100.00 100.00 100.00 99.67 99.62 99.67 99.62
p (%) 30.06 35.37 35.43 37.49 29.59 40.17 31.45 43.38 43.90 53.65
δp 2.32 2.73 2.73 2.89 2.28 3.10 2.42 3.34 3.39 4.14
p (%) 26.29 28.98 31.74 35.22 25.86 33.41 27.77 36.38 39.89 51.60
σp 27.75 28.13 29.77 31.64 27.19 27.82 28.16 28.95 31.24 32.57
δp 3.79 5.05 7.80 10.19 3.28 6.78 3.64 7.28 10.49 17.71
f (%) 34.70 27.25 27.15 24.84 35.44 22.19 32.40 19.39 18.98 12.82
f (%) 35.11 28.27 28.45 26.30 35.89 23.51 32.60 20.45 20.08 14.27
σf 19.32 18.29 21.93 21.72 20.73 20.44 21.36 20.02 20.71 19.57
red (%) 56.83 63.31 63.41 65.42 56.19 67.72 58.87 70.19 70.56 75.93

Table 6.1: Rewrite-Based Rejection: Fixed Domains, Unrolling, | t |max = 10000

Table 6.1 shows the results of the remaining filters for the same timeouts as
in Section 5.5; for reference, the results of RDOMAIN are repeated in the two
leftmost columns. The main result of this experiment is that the restriction to
finite item-domains significantly increases the effectiveness of the rewrite-based
rejection filters, independent of the particular domain. The reduction factors
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increase by up to 17%-points, depending on domain and timeout. The fallout
numbers decrease equivalently, dropping even below the 20%-mark for the R2,b-
based filter and Tmax = 5 secs.

A second important observation is that all selected finite item-domains are
well engineered compromises. Both R1 and R2,a induce recall-preserving filters,
i.e., their relative defect ratio is δe = 0.0. R2,b induces an almost recall-preserving
filter which looses only seven matches and which thus yields an average error
quota of e = 0.07% and a relative defect ratio of δe = 0.01. Moreover, six of
these lost matches are distributed over only two different components, smallest
and greatest. Both component specifications require the input to be a total order
but this cannot hold over this particular domain. Hence, their preconditions
evaluate (over this domain) always to false which causes the failure to retrieve the
two components for some queries. As a consequence of these low defect ratios the
increased reduction factors immediately turn into an increased precision. Despite
the fact that the R2,b-based filter is not completely recall-preserving, it produces
again the best results (p = 43.38%).

As to be expected, the time-dependent behavior of the the filters is strongly
influenced by the size of the respective item-domains. In the case of R1, unrolling
of an item-quantifier already decreases the size of the proof task. Together with
the possible elimination of some function and predicate symbols this slows down
the term growth caused by unrolling of the list-quantifiers which in turn acceler-
ates the rewriting process. This is further reinforced by the improved effective-
ness as more tasks can be rewritten to true or false and thus do not consume
the entire allocated time frame. These effects (and hence the speed-ups) grow
with increasing timeouts. R1 yields a speed-up of s = 1.6 over RDOMAIN for
Tmax = 0.5 secs.; this grows to s = 2.76 for Tmax = 5.0 secs. The resulting aver-
age response times of roughly 20–60 seconds per query (for Tmax = 0.5 secs. and
Tmax = 5.0 secs., respectively) are already at the brink of interactiveness and cer-
tainly comparable to web-based retrieval methods working with a slow network
connection. Even for Tmax = 5.0 secs. the slowest query requires only 305 seconds
(instead of 5.0 ∗ 119 = 595 seconds) and only 20 of the 119 queries in the test
set take longer than 120 seconds. Due to the improved efficiency the true speed-
ups2 are even higher, e.g., s ′ = 10.51 based on Tmax = 0.5 secs. for the R1-based
filter. However, even this filter shows saturation effects. A further increase in
the timeout to Tmax = 90 secs. yields only a small improvement (red = 65.64%).
Additionally, the already relatively (compared to RDOMAIN ) small improvement
from Tmax = 0.5 secs. to Tmax = 5.0 secs. indicates that the saturation now occurs
significantly earlier as in the RDOMAIN -based filter.

In the case of the two R2-based filters, unrolling of an item-quantifier essen-
tially doubles the size of the proof task. Since NORA/HAMMR’s implementation
does not (yet) use a structure-sharing representation for terms, rewriting now

2For zero-defect filters the true speed-up is defined at the lowest precision level.
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takes longer than in the case of R1 and requires for Tmax = 0.5 secs. approxi-
mately the same time as in the original rewrite system RDOMAIN . With increased
timeouts, however, the higher effectiveness of the filter becomes dominant again
and the higher number of task rewritten to true or false within the allocated time
frame cancels out the term growth. For Tmax = 5.0 secs. both filters thus achieve
small speed-ups over RDOMAIN (R2,a : s = 1.09, R2,b : s = 1.24). In contrast to
R1, the saturation effects start later and both filters still profit from an increased
timeout of Tmax = 90 secs. (R2,a : red = 71.17%, R2,b : red = 73.18%)

The three different item-domains serve as counterexamples for largely differ-
ent subsets of the tasks. This becomes apparent (and can be exploited) by a
competition between the filters. The combination significantly improves the re-
sults of the constituent filters. The reduction factor passes the 70%-mark already
after an individual timeout of Tmax ≈ 0.5 secs., i.e., the combination achieves a
true speed-up of s ′ ≈ 10 over the best individual filter and thus a true efficiency
of e ′ ≈ 3.3. For Tmax = 5.0 secs. the reduction factor even increases to more than
75%. The document-oriented fallout average drops down to 12.82%, i.e., in total
the filter detects almost seven out of eight non-matches. However, the query-
oriented average is slightly higher (f = 14.27%) and the standard deviation is
with σf = 19.57 in relation higher than in the individual filters. This indicates
that the combination works well for most of the queries but that every individual
filter performs relatively poor for a small set of hard queries. In fact, in all three
filters the same three queries have with more than 90% the highest fallout.

By construction, the combined filter inherits only the small error quota ofR2,b .
Hence, the improved effectiveness reflects itself not only in the higher reduction
factor but also in a dramatically higher precision—in total, more than the half
of the components passing this combination are relevant. The query-oriented
average jumps up even more and also passes the 50%-mark. This confirms that
only a small set of queries is “resistant” to the chosen counterexamples.

Although finite countermodels are in NORA/HAMMR primarily used to im-
plement rejection filters, it is interesting to see how they perform as further
low-cost confirmation filters, similarly to the approach followed in the general
case in Section 5.3. Obviously, such confirmation filters can no longer guarantee
100% precision because the validitity of a task in one particular structure does
not imply its validity in general.

In practice, however, these low-cost confirmation filters perform rather well
(cf. Table 6.2). For Tmax = 5.0 secs. they achieve recall levels of roughly 65%–
75% and precision levels of roughly 60%–90%. Moreover, all filters have smaller
relative defect ratios than the sound RDOMAIN -based filter. This indicates that
the loss of precision is in relation smaller than the gain in recall.

The aggressive abstraction built into R1 allows the highest number of tasks
to be rewritten to true and thus the highest recall (r = 77.51%) but it also allows
the highest number of spurious “proofs” and thus the highest fallout (f = 7.55%)
and the lowest precision (p = 60.48%). Curiously, however, it also yields the
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smallest relative defect ratio of all variants. The less aggressive abstractions in
R2,a and R2,b lead to fewer spurious “proofs” and thus increase the precision but
due to the involved larger terms less tasks are rewritten to true and false so that
the filters reach only a significantly lower recall level.

RDOMAIN R1 R2,a R2,b comp.
Tmax (sec.) 0.50 5.00 0.50 5.00 0.50 5.00 0.50 5.00 0.50 5.00

r (%) 58.65 59.19 76.91 77.51 60.78 63.51 65.45 69.75 78.76 80.61
r (%) 38.22 38.65 57.49 57.73 44.46 47.89 47.87 53.22 59.20 61.29
σr 41.57 41.78 37.91 37.77 38.91 39.14 39.03 38.77 40.91 40.72
p (%) 100.00 100.00 60.55 60.48 91.70 91.16 90.25 89.21 78.12 84.57
δp 7.70 7.70 4.67 4.66 7.07 7.03 6.95 6.87 6.03 6.52
p (%) 100.00 100.00 71.93 71.95 90.55 90.53 88.18 87.65 83.09 87.75
σp 0.00 0.00 35.10 35.11 17.54 14.98 26.14 25.69 29.04 22.67
δp 39.74 39.74 25.80 25.80 35.28 35.91 30.87 31.08 29.69 33.52
f (%) 0.00 0.00 7.46 7.55 0.82 0.92 1.05 1.26 3.29 2.19
f (%) 0.00 0.00 9.27 9.35 2.03 2.15 1.11 1.32 4.66 3.52
σf 0.00 0.00 18.36 18.48 7.35 7.37 4.95 5.13 13.41 11.40
e (%) 6.64 6.58 3.58 3.50 5.56 5.20 4.95 4.37 3.17 2.87
δe 0.45 0.44 0.28 0.27 0.43 0.40 0.38 0.34 0.24 0.22
e (%) 5.81 5.74 4.26 4.09 6.21 5.90 5.85 5.33 4.13 3.82
σe 9.93 9.87 10.31 10.28 10.21 9.87 9.10 8.63 10.13 10.05
δe 0.45 0.44 0.45 0.45 0.43 0.40 0.55 0.50 0.43 0.41

Table 6.2: Rewrite-Based Confirmation: Fixed Domains, Unrolling, | t |max =
10000

Significantly better results can again be achieved by a competition between the
three different domains. Basically, the competition combines the high recall ofR1

with the high precision of R2,a and R2,b : it achieves r = 80.61% and p = 84.57%.
Here, a slightly different competition mode than in the other experiments is
used: disjunction with vetoing. This means that a component is retrieved if the
associated proof task is rewritten to true in at least one filter but not rewritten
to false in any of the other filters. The integration of this vetoing mechanism
turned out to be crucial. Without vetoing, a slightly better recall is achieved
(r = 80.99%) but since none of the involved filters is precise, the already relatively
high numbers of spurious “proofs” add up even more by the competition and the
precision of the combination degrades (p = 60.69%).

Overall, the results in Tables 6.1 and 6.2 show that counterexample-based fil-
ters and their combinations allow some very interesting recall/precision-tradeoffs.
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These tradeoffs are governed by the choice of the counterexample domain, the
interpretation of “don’t know”-results (i.e., accept or reject) and the mecha-
nism used to implement competition between multiple filters. Moreover, using a
rewrite-based implementation technique all these tradeoffs can actually be real-
ized with relatively restricted computational resources. Even with only a single
processor the average response times fall into a range between only 20 seconds
and 5 minutes.

6.2 Proving over Finite item-Domains

The basic idea of the preceding section—fixing a particular item-domain and
using properties of this domain to achieve a stronger rewrite system and thus
more efficient rejection filter—can also be applied in the case of theorem proving.
Here, the properties of the domain are encoded as additional axioms. The proof
task is no longer checked for validity, but for satisfiability under the extended
set of axioms.3 As in the rewrite-based case, the component can be rejected if
a proof for the (negated) task can be found and is passed through if the prover
fails.

Of course, this is still an unsound filter but it is recall-preserving as long
as the additional axioms are conservative extensions of the original background
theory. The additional axioms need not to be very specific; in the extreme case,
they may be missing completely such that the prover attempts a pure refutation
which is of course recall-preserving. The basic assumption of this approach is
that the additional axioms enable the prover to find enough refutations in a very
short time to justify the additional proof attempts.

6.2.1 Axiomatizing Finite Domains

For the “proof-of-counterexamples” experiments I used the same substructures
as in the rewrite-based case. Since none of the provers has built-in support for
finite domains, the various item-domains need to be axiomatized explicitly.

A finite datatype T can in principle be axiomatized just by enumerating its
elements in a fashion similar to the cases theorem of generated datatypes (cf.
page 5.2.2), viz.

∀y · y ∈ T ⇔
∨

i=1,... ,n

y = ci (*)

for some constants ci . However, there are a number of issues with this schema.
First, it does not adequately capture the size of the domain as the constants need

3Hence, it must be negated before the proof is attempted. However, if the prover works in a
refutational style, it negates the task internally once again, before the actual proof is attempted.
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not be distinct. This may weaken the rejective power of the filter. Second, it is not
necessary to name the domain elements explicitly. While this makes them visible
and thus accessible for use in other lemmas, it might also interfere with prover
internals as for example term orderings and clause indexing. Alternatively, the
domain elements can also be introduced by an existential quantifier. Finally, the
bi-implication does not take full advantage of the availability of sorted quantifiers.
The “⇐”-direction can be eliminated by folding-in the sort information for the
constants:

∀x · x ∈ T ⇒
∨

i

x = ci ≡ ∀x
∧

i

(x = ci ⇒ x ∈ T )

≡ ∀x
∧

i

(x = ci ⇒ ci ∈ T )

≡ true

For the experiments described in the following section I thus used two different
modified versions of (*). The first schema explicitly∧

i

ci : item ∧
∧
i 6=j

ci 6= cj ∧ ∀x : item ·
∨

i

x = ci (6.1)

introduces n different constants while the second schema

∃y1, . . . , yn : item ·
∧
i 6=j

ci 6= cj ∧ ∀x : item ·
∨

i

x = yi (6.2)

uses existential quantifiers. A third version is applicable only for the case of
| item |= 1 where 6.2 simplifies to

∃y : item · ∀x : item · x = y

This can be strengthened to

∃y : item · true ∧ ∀x , y : item · x = y (6.3)

i.e., the domain inhabitation and domain collapse axioms can be separated from
each other. This variant is semantically equivalent but since the domain collapse
axiom ∀x , y :item ·x = y is now fully universally quantified, it is directly applicable
more often (i.e., showing that the item-domain collapses can be done in a single
step and does not entail commutativity and transitivity of equality, as required
in 6.2). Hence, the search space may have a completely different structure.

6.2.2 Experimental Results

In the experiments I applied only the SPASS-prover which found the highest num-
ber of fast proofs in specification matching (cf. Chapters 7–9). I also restricted
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myself to the best variant (i.e., with domain-specific simplifications and lemma
selection following the lemmas-heuristic) in order to investigate its suitability as
additional rejection filter. Without these techniques only far worse results can
be achieved.

Pure Refutations

In a first round of experiments I did not use any specific counterexample axioma-
tization but tried out a pure refutational approach, i.e., the negated tasks where
fed into prover. This mimics the general rewrite-based rejection filter described
in Section 5.5. The motivation for these experiments is to determine whether
the theorem provers applied in the final confirmation filters can also be used to
implement a guaranteed recall-preserving rejection filter which could replace or
improve the rewrite-based approach.

pred. encod. term encod. comp. pipe.
Tmax (sec.) 0.50 5.00 0.50 5.00 5.00 5.00 / 10.00

Ttask (sec.) 0.36 2.97 0.32 2.77 2.68 4.03
σT 0.21 2.33 0.22 2.41 2.40 6.21
Tquery (sec.) 42.72 353.91 38.03 329.45 318.95 479.17
σT 10.04 106.36 10.44 108.99 107.93 267.62

r (%) 100.00 100.00 100.00 100.00 100.00 100.00
p (%) 19.64 23.66 22.33 24.60 26.00 38.90
δp 1.51 1.82 1.72 1.89 2.00 3.00
p (%) 19.61 22.21 20.94 22.49 23.38 32.20
σp 25.92 26.79 25.84 26.65 26.94 28.00
δp 1.98 2.55 2.18 2.58 2.80 6.84
f (%) 61.04 48.13 51.92 45.75 42.47 23.44
f (%) 60.10 47.78 51.46 45.63 42.47 24.62
σf 21.60 20.59 21.19 20.42 19.69 17.02
red (%) 33.90 45.14 41.84 47.20 50.06 66.62

Table 6.3: Proof-Based Rejection: Proof of Contradiction

Table 6.3 shows a clear—but unfortunately negative—answer to these ques-
tions: in general, ATPs are not suitable to replace rewriting using the unrolling
strategy as rejection filters. The first five columns contain the results using the
term and predicate encoding, respectively, to represent sorts, each with two dif-
ferent timeouts as well as a competition between the two representations.

The results for Tmax = 0.5 secs. clearly show that ATPs are not well suited as
fast rejection filters. The fallout rates are 15–25 %-points higher as in the rewrite-



6.2. Proving over Finite item-Domains 121

based filters (cf. Table 5.2). In fact, using the standard predicate encoding, SPASS
is with this timeout barely able to improve the precision of its input. If the non-
matches already detected by the preceding simplification phase4 are discounted,
the precision leverage drops down to δp = 1.12. The situation slightly improves
with increased timeouts, especially if the predicate encoding is used, but even
with Tmax = 5.0 secs., the filter does not achieve the efficiency of the rewrite-
based filter with Tmax = 0.5 secs.. The fallout rates stay within the 45–50% range
and neither a competition between both sort encodings nor a further increased
timeout (not shown) bring a decisive improvement.

However, the numbers also show that following the pure refutational approach
is still better that having no dedicated rejection filter at all. Even with Tmax =
5.0 secs., the average response time per query remain with roughly 5–6 minutes
quite reasonable. Moreover, only for three queries the additional effort spent in
the rejection filter is higher than the realized savings in the confirmation filter.
Hence, this setup accelerates the entire retrieval process. It is, however, unclear
whether this approach can be scaled any farther since it is not known how many
of the non-matches have no models at all and, consequently, what fraction of the
theoretical maximum the rejected tasks already represent.

The last column in Table 6.3 contains the results for a pipeline comprising
the two rewrite-based filters also shown in Table 5.2 and the SPASS-based filter
using the term encoding. The two rewrite-based filters where allowed a total of
5 seconds while the prover twice as much time as before. Even with this setup,
the pipeline’s efficiency is very much dominated by the rewrite-based filters. Its
combined reduction factor red = 66.62% is only a small improvement over the
63.96% already achieved after rewriting; similar relations hold for fallout and
precision because all filters are recall-preserving.

Proof of Counterexamples

In a second set of experiments I tested the effectiveness of the different counterex-
ample axiomatizations over the same candidate domains as in the rewrite-based
case. I only axiomatized the domain size but did not add further domain-specific
axioms; doing this yields only slightly better results. Table 6.4 contains more
results for these three domains as well as the competition over all variants. Here,
I only used the term encoding which in the pure refutational case performed
significantly better than the predicate encoding.

Although | item | = 1 shows a significant improvement over the pure refu-
tational approach, the overall results are disappointing. For | item | = 2 and
| item | = 3 the average fallout remains in the 45–50% range which means pre-
cision levels of approximately 25%. In contrast to the rewrite-based case, the
larger domains thus do not induce stronger filters. In fact, for no domain the

4Remember that the simplifier used to generate the proof tasks does not apply the quantifier
unrolling strategy.
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Domain Size | item |= 1 | item |= 2 | item |= 3 comp.
Axiomatization sign. exist. univ. sign. exist. sign. exist. -
Tmax (sec.) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Ttask (sec.) 2.32 2.51 2.53 2.84 2.82 2.83 2.78 2.23
σT 2.39 2.41 2.41 2.41 2.40 2.41 2.40 2.38
Tquery (sec.) 275.66 305.86 301.5 338.07 335.46 336.52 331.02 265.22
σT 118.70 112.59 113.18 111.14 108.59 108.44 108.29 115.70

r (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
p (%) 30.26 26.87 27.48 23.86 24.20 23.89 24.49 31.68
δp 2.33 2.07 2.12 1.84 1.86 1.84 1.89 2.44
p (%) 25.87 23.88 24.34 22.06 22.36 22.01 22.53 26.69
σp 27.54 27.15 27.35 26.57 26.62 26.53 26.72 27.69
δp 3.45 2.93 3.03 2.53 2.54 2.50 2.56 3.61
f (%) 34.34 40.55 39.32 47.59 46.73 47.52 46.00 32.13
f (%) 35.01 40.82 39.63 47.42 46.85 47.37 45.82 32.83
σf 20.43 20.62 20.53 20.94 20.49 20.35 20.35 19.62
red (%) 57.15 51.75 52.82 45.61 46.36 45.67 47.00 59.08

Table 6.4: Proof-Based Rejection: Proof of Counterexamples

SPASS-based filters achieve even approximately the rejection rate of the respec-
tive rewrite-based implementations. Even for | item |= 1 the additional precision
leverage gained from the finite domain is with ∆p = 2.33:1.89 = 1.23 rather small.
Moreover, the larger domains detect to a large extent the same non-matches as
the single-element domains. The competition between all variants thus yields
only a small improvement over the best individual filter; the additional preci-
sion leverage of ∆p = 2.44 : 2.33 = 1.05 is neglectable compared to the 1.24-fold
improvement achieved in the rewrite-based case.

The effect of the different axiomatizations is relatively small but reveals a sur-
prising pattern. For | item | = 1, the signature extension is clearly superior (i.e.,
faster and more effective) while the existential and universal domain axiomatiza-
tions are almost equivalent. For larger domain sizes, however, this relation flips
and the existential domain axiomatization yields slightly better results than the
explicit signature extension. This effect is even more pronounced for | item | = 3
than for | item |= 2.



Chapter 7

The Retrieval Base Case

A setup analogue to the naive implementations of specification matching pub-
lished previously [MW95b, MW97b, MMM94, MMM97, CJ92, JC94, MM91]
serves as base case for NORA/HAMMR. Its essential purpose is to provide a refer-
ence or, to put it more sloppily, a “bottom line” for the more elaborated variants
provided by NORA/HAMMR. It should help to identify the most effective or
at least some worthwhile improvements and thus help to make deduction-based
retrieval practical.

For the base case I first used the full set (i.e., without rejection filters) of
unsimplified (except for the elimination of the propositional constants required
by some provers) proof tasks together with the full set of axioms and lemmas and
applied several provers in fully automatic mode to them. Since all provers are
sound but very weak in detecting non-theorems, I actually restricted the exper-
iment to theorems only and completed the statistics with “reject after timeout”
entries for the non-theorems.

Table 7.1 summarizes the complete results for two different timeouts. Here,
T task and T valid both refer to the average response times per task, but while T task

includes non-theorems, T valid is restricted to the valid tasks actually attempted
by the provers; hence, ΣT is the total time spent by the provers. T proof is further
restricted to successful, non-trivial proofs, i.e., valid tasks which have been proven
be the ATP but—in later chapters—not by any filter further up in the pipeline.
In the base case, T proof thus excludes the 390 tasks already reduced to true by
elimination of the propositional constants. T query is again the average response
time for a query comprising 119 single tasks; q 0.25 and q 0.75 are the first and third
quantile, respectively. These values indicate that for example using OTTER (in
auto2) with a 90 seconds timeout 25% of the queries required less then 9725
seconds and 75% less than 10624 seconds, or to put it the other way round, that
the “inner half” of the queries was solved between 9725 and 10624 seconds. The
lower part of the table lists recall and precision as defined in Section 2.2; however,
since all provers are sound, the precision is consistently 100%. I have thus also
dropped the derived measures as precision leverage or error quota.
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OTTER GANDALF SPASS SETHEO
auto 1 auto 2

Tmax (sec.) 1.00 90.00 1.00 90.00 1.00 90.00 1.00 90.00 1.00 90.00
Ttask (sec.) 0.97 84.98 0.97 82.26 0.97 83.92 0.99 83.88 0.97 84.93
σT 0.14 19.67 0.14 24.74 0.17 21.94 0.05 22.06 0.16 20.32
Tvalid (sec.) 0.79 51.31 0.76 30.46 0.76 43.14 0.93 42.83 0.78 50.98
σT 0.33 40.96 0.32 40.27 0.42 42.42 0.13 42.59 0.41 43.07
ΣT 1443 94299 1391 55793 1404 79300 1703 78726 1441 93694
Tproof (sec.) 0.37 23.96 0.56 5.58 0.43 18.54 0.66 11.58 0.97 10.72
σT 0.04 23.80 0.23 9.38 0.29 27.45 0.17 19.45 0.02 17.74
Tquery (sec.) 115.7 10112 115.3 9788 115.4 10281 117.9 9981 115.7 10107
σT 13.5 1798 13.6 1886 17.0 1858 3.7 1839 15.8 1824
q 0.75 119.0 10710 119.0 10624 119.0 10646 119.0 10625 119.0 10710
q 0.25 118.4 10399 118.3 9729 119.0 10290 118.5 10203 119.0 10393

# proofs 558 937 749 1274 448 1104 574 1052 612 852
r (%) 30.36 50.98 40.75 69.31 24.37 60.07 31.23 57.24 33.30 46.35
r (%) 11.49 34.65 22.52 57.21 5.14 50.51 11.85 54.33 13.44 29.38
σr 26.67 37.92 33.16 38.98 19.93 38.08 26.34 38.58 28.10 35.25
p (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 7.1: Base Case

The main result of the base case is very clear from the table:

• With a very short timeout of for example a single second, the naive im-
plementation produces “results-while-u-wait” but only at the expense of
insufficient recall rates.

• With a relatively long timeout of for example 90 seconds, all provers are
already able to solve a significant number of tasks but only at the expense
of extremely long overall response times.

• Proof times are short (relative to the timeout) on average but a significant
number of tasks is solved with long proofs only.

Effectively, the responsiveness of such a naive retrieval tool is spoiled by the
large number of non-matches (i.e., non-theorems) which drown the prover. The
effect is still tolerable for short timeout but becomes prohibitive before sufficient
recall rates are achieved. Moreover, the response times per query are skewed to
the right and the arithmetic mean is closer to the first quantile and usually below
the median—that is, most queries take longer than the average. Similarly, even
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significant differences between the provers have only barely visible effects on the
overall response times (e.g., the two different autonomous modes of OTTER).

In some more detail, the provers achieve overall recall rates between 25% and
40% within a single second and between 45% and 70% for 90 seconds. However,
these numbers become less impressive if the 390 (or approximately 20%) trivial
tasks are subtracted which are already reduced to true by the elimination of
the propositional constants. For both timeouts, OTTER’s auto2-mode comes off
first.

Table 7.1 also shows that none of the provers performs consistently well for
all the queries. The standard deviation of the query-oriented recall average is
generally very high and the document-oriented average is consistently higher
than the query-oriented average. This counter-intuitive situation is caused by a
small number of queries with large match sets but only simple tasks which in turn
are almost all solved by the provers. However, this effect becomes less dominant
with increasing timeouts and the query oriented-recall average grows much faster
than the document-oriented average although they never really converge.

A closer inspection of Table 7.1 also reveals some unexpected results. The
first surprise is the bad performance of the CASC-winner of the last two years,
GANDALF, for very short timeouts. This can be explained by the fact that the
time slices become too small to find anything else than the most trivial proofs.
For longer timeouts, the situation improves but it does not run up to OTTER’s
auto2-mode. Even if OTTER is trimmed down to the average time allocated for
each of GANDALF’s strategies (i.e., roughly 13 seconds because the version used
in the experiments implements 7 strategies),1 GANDALF comes off no better:
OTTER still solves 1194 tasks.

A second surprise is that OTTER’s in general highly incomplete second au-
tonomous mode is so much better than the standard autonomous mode. It finds
40% more proofs than the standard mode and simultaneously requires 40% less
time. Moreover, it “loses” almost no proofs. The standard mode only finds
6 proofs exclusively and is faster only for 8 other tasks. Hence, the restriction
of the paramodulation inferences which is the main difference between the two
modes does not harm, at least not for the given domain.

Also surprising is that SPASS, the only prover with built-in support for sorts
does not perform better—after all, the problems are formulated in a sorted calcu-
lus. However, this is a slightly unfair comparison because SPASS solves “different”
tasks than the other provers. The term encodings used to represent the sorts for
these provers are optimized towards the specific situation but are less general
than the standard relativation technique employed by SPASS. On the encoded
variant, SPASS performs much better and solves 1293 tasks within 90 seconds.
Section 9.5 contains a more detailed investigation of the effects of the two different

1This hypothetical setup is still in favor of GANDALF because usually only a subset of the
implemented strategies is actually attempted.
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sort handling techniques in combination with lemma selection.

The final surprise is that the only top-down prover used in the experiments,
SETHEO, does not perform better. Ideally, such provers should be able to han-
dle the large axiom sets much better than bottom-up provers, due to the goal-
orientation built into the calculus. In practice, however, this advantage is usually
offset by their weak equality handling. Since equality is the predominant predi-
cate in the tasks and even worse, not a single proof task is equality-free due to
the specification style, this disadvantage becomes decisive, resulting in SETHEO’s
significant lower recall rates.

Similar to the setup in the rejection filters, the different provers can be run in
parallel, using competition to join their strengths and cancel out their weaknesses.
Table 7.2 summarizes the results for two different competitions and three different
timeouts.

OTTER & SPASS full competition

Tmax (sec.) 1.00 20.00 90.00 1.00 20.00 90.00
Tvalid (sec.) 0.76 7.89 27.40 0.67 7.66 26.62
σT 0.32 8.61 38.75 0.43 8.71 38.38
ΣT 1389 14497 50356 1229 14082 48920
Tproof (sec.) 0.56 3.52 6.42 0.49 3.27 7.38
σT 0.23 0.56 11.66 0.28 4.02 14.54
Tquery (sec.) 115.2 2193 9743 113.9 2189 9731
σT 13.6 407 1897 18.5 413 1904

# proofs 757 1274 1348 817 1279 1375
r (%) 41.19 69.31 73.34 44.45 69.59 74.81
r (%) 23.06 61.90 65.37 27.54 62.51 68.81
σr 33.31 37.14 36.22 34.62 36.97 34.06
p (%) 100.00 100.00 100.00 100.00 100.00 100.00

Table 7.2: Base Case: Prover Competition

The rightmost columns of Table 7.2 show the results for a full competition
between all systems. It results in a speed-up factor of s = 1.14 on the valid tasks
(i.e., the total proof time of the fastest individual prover divided by the real time
required by the competition).2 However, this degrades to a neglectable factor of
1.0048 if it is based on all tasks. This in turn confirms the already mentioned effect
that even significant differences on the valid tasks have only barely visible effects
on the average overall response times. The efficiency (i.e., speed-up divided by

2Speed-ups cannot be calculated on the basis of solved tasks (i.e., proof times) because that
would “punish” a prover for finding a long proof instead of failing.



127

the number of applied processors) of this competition is e = 0.23, again restricted
to the valid tasks only. It can be increased at the expense of the speed-up if the
competition is restricted to more complementary variants. In the experiments,
it becomes maximal for a competition between the two fastest provers, OTTER
(using auto2) and SPASS. This variant yields s = 1.11 and e = 0.55 (cf. also the
leftmost columns of Table 7.2).

However, the above standard definitions of speed-up and efficiency do not
take into account that the competition not only decreases the response times but
also increases the total number of proofs found. The true speed-up must thus
be calculated at the recall level of the best individual prover and with respect
to its response time. This recall level—1274 proofs—is achieved by full competi-
tion with an individual timeout of slightly below 20 seconds which yields a total
proof time Σ′T = 13914 seconds and thus the true speed-up s ′ = 4.01 and the
true efficiency e ′ = 0.80. Again, a higher (true) efficiency can be obtained with
a restricted competition. The above OTTER-SPASS competition requires an in-
dividual time limit of 20 seconds to reach the same recall level, yielding a true
speed-up of s ′ = 3.85. This is a superlinear speed-up because the true efficiency
e ′ = 1.92 is greater than 1 which means that the combination is faster than the
fastest individual prover even if the parallelism is simulated on a single processor,
even for the worst possible order of execution. This observation shows that the
test set is in general perceptive to such a strategy parallelism.
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Figure 7.1: Base Case: Proof times

Together with Table 7.2, Figure 7.1 gives a more detailed overview of the
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actually required proof times. Here, trivial proof tasks have been excluded and
times have been rounded up and arranged for a better legibility. Table 7.2 and
Figure 7.1 show that for any ATP the majority of the tasks which are prov-
able at all have relatively short proofs: except for OTTER’s auto1-mode, 50%
of the respective non-trivial proofs are found in less than 5 seconds. However, a
significant number of tasks is solved with long proofs only: the standard devia-
tions on Tproof are usually substantially larger (up to 60%) than the means Tproof .
Moreover, the ATP-performances (i.e., the number of additional proofs found)
generally fade out with increasing timeouts but repeated “performance bursts”
disturb this trend. These bursts are caused by repeated internal reorganizations
of the search space by the ATPs, e.g., pruning the set of kept clauses or iterative
deepening steps. The performance bursts can vary with the values of various
control parameters and are thus hard to predict from the outside. Hence, the
choice of an optimal timeout which balances additional recall against increased
response times is prover-dependent and requires careful performance monitoring
by the reuse administrator.

From the results of the base case, three conclusions can be drawn which are
very encouraging because they support the basic assumptions and design decisions
of the NORA/HAMMR-system:

1. Current automatic theorem provers are mature enough to be employed in
deduction-based retrieval. However, a non-trivial amount of preprocessing
is necessary to achieve good recall rates.

2. Competition between different systems significantly increases the recall and
decreases the response times.

3. Dedicated rejection techniques as those developed in Chapters 5 and 6 are
required which filter out non-matches as fast as possible to prevent the
provers from “drowning”.

Table 7.3 further elaborates on the third conclusion. Here, only the tasks
which survived a pipeline consisting of the two rewrite-based filters also used in
Table 5.3 were fed into the provers. All results are based on Tmax = 5 secs. for
the rejection filter and Tmax = 90 secs. for the provers.

The effects are already quite dramatic. The average response times per query
drop by about 70%, despite the additional runtime occurred in the rejection
filtering. Hence, almost the total reduction factor of the rejection filters carries
through to the end of the pipeline. Even the worst-case response times are now
better than the former averages. Conversely, the speed-up (i.e., in this case the
ratio between the total response times) is consistently around 3.3. Nevertheless,
the computational effort is still very high and the average response times are
still too long by at least one order of magnitude. Hence, even if future hardware
improvements are discounted, parallelization is essential to make deduction-based
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OTTER GANDALF SPASS SETHEO comp.
auto 1 auto 2

Tmax (sec.) 5.00 / 90.00
Ttask (sec.) 26.26 24.56 25.72 25.96 26.08 24.56
σT 41.91 40.93 41.59 41.80 41.88 41.06
Tquery (sec.) 3125 2923 3061 3090 3103 2923
σT 1840 1727 1810 1829 1834 1739
Tmax 10076 9720 9827 9921 10013 9799
q 0.75 4125 3997 4102 4125 4117 4018
q 0.25 1896 1825 1842 1842 1842 1825

# proofs 1250 1492 1375 1280 1250 1528
r (%) 68.01 81.18 74.81 69.64 68.01 83.13
r (%) 51.76 69.01 63.52 65.42 49.83 75.97
σr 37.95 35.79 36.92 33.45 39.03 31.01
p (%) 100.00 100.00 100.00 100.00 100.00 100.00

Table 7.3: Base Case + Rewrite-Based Rejection

retrieval practical and to scale it up to larger libraries. However, this is rather
easy because only complete tasks must be dispatched to different processors—
there is no need to break single tasks apart.

As a welcome side-effect of the pre-filtering, substantial improvements are
also achieved for the recall. All provers are able to increase the number of proofs
found by simplification (1131, cf. Table 5.3) significantly. The leverage factors
are, however, quite different, ranging from an additional recall of 6.5% for OT-
TER (auto1) and SETHEO to 19.7% for OTTER (auto2). These improvements
represent 119 to 361 additional proofs. If the leverage factors are based on the
original results of the provers, it becomes clear that the weaker provers profit
much more: SETHEO gains more than 46%, OTTER (auto2) still 17%, and the
competition only 11%. Hence, the simplification pre-filter has a leveling effect.
The difference between the best and the worst individual prover, respectively,
drops (from 49.5% to 19.4%) but remains still significant.
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Chapter 8

The Effect of Simplification

The most obvious improvement over the base case is to check simplified variants
of the proof tasks instead of the original, “raw” versions. These simplified variants
can for example be produced as a side effect of the rewrite-based rejection filters
described in Chapter 5.

However, some precautions must be taken. The näıve assumption that a more
simplified proof task should be easier to prove is not necessarily true. Several
effects can be counterproductive:

• The simplification ordering may be at least sub-optimal and ultimately
produce larger tasks, e.g., more clauses.

• The effect of the simplification may become visible only in conjunction with
other preprocessing techniques, e.g., lemma selection.

• The simplification may interfere with prover strategies and heuristics (e.g.,
orderings and weights) and may thus rearrange the search space arbitrarily.

Unfortunately, the effects can hardly be quantified in isolation because they usu-
ally appear in combination. Consider for example the simplification “expansion
of defined symbols” which rewrites (besides others) all <-literals into equalities
and ≤-literals.1 Hence, instead of a single clause {x < y , p(x , y)} the simpli-
fied variant produces the two clauses {x ≤ y , p(x , y)} and {¬ x = y , p(x , y)}. Of
course, completely different proofs may be derived from these clauses, depending,
e.g., on the given lemmas or the automatically chosen ordering on the symbols.
As usual, this uncertainty can be turned into an advantage using competition
between the different variants.

A similar effect is caused by NORA/HAMMR’s pipeline architecture. All ad-
vantages of simplification may already be preempted by the filters which precede
the final ATP, e.g., by the simplifier/rewrite-based rejection filter itself. That is,

1Similar observations also apply to many other important rules, e.g., injectivity of construc-
tor functions.
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all or almost all tasks which would additionally become provable after simplifi-
cation can already be simplified to true. However, this is not really counterpro-
ductive and thus not an issue of concern.

8.1 Applied Simplifications

For the simplification experiments I used the “raw” versions as base case and
I refer to the preceding chapter for its discussion and especially to Table 7.1
for the precise numbers. On top of the base case I used four different levels of
simplification. The first two, denoted as first-order and equational, respectively,
in figures 8.1 to 8.4 are also used in the simplification-based rejection filter; for
these the rewrite systems RFOL and REQ (cf. p. 105) are used.

The next level, denoted as unfolding, expands defined symbols into their defi-
nitions, e.g., < into ≤ and 6=, or 6= into =. The justification for this simplification
which can actually increase the task size significantly is obviously that

• fewer symbols induce smaller search spaces, and

• upfront unfolding saves proof steps.

The risk is obviously that the tasks become too large, upsetting the smaller
search spaces due to the smaller signature, and—less obvious—that the provers
may “undo” the unfolding step.

In any case, some care must be taken to make the unfolding-simplification
work. Consider for example the two symbols 6= and member, defined by the
axioms

∀x , y : item · x 6= y ⇔ ¬x = y

and

∀l : list , i : item ·member(l , i)⇔ ∃l ′, l ′′ : list · l = l ′y [i ]y l ′′

Both symbols are in fact definitional extensions of a suitable base logic (i.e.,
theory of lists) and the definitions can be considered as rewrite rules and can be
used to eliminate the symbols if they are oriented from left to right. However,
experience tells us (and experiments confirm it) that unfolding 6= is generally a
“good idea” while unfolding member is a “bad idea”. Obviously, the reason is that
each occurrence of member introduces two new bound variables. To prevent this
proliferation of bound variables, NORA/HAMMR simply restricts unfolding to
symbols which have quantifier-free definitions. More elaborate unfolding schemes
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which take for example the number of symbol occurrences or the presence of
additional lemmas into account are of course possible.2

The final level of simplifications, denoted as domain, performs unfolding and
then applies the rewrite system RDOMAIN which is constructed from the lemma
library (cf. Section 5.2.1 and 5.2.2).

For simplicity, the simplifications are applied only to the proof task and not to
the axioms and lemmas in the lemma library. However, since these can reasonably
be expected to be given by the reuse administrator in an adequately simplified
form, this is in general no severe omission.

8.2 Experimental Results

The different provers respond quite different to the simplifications. I thus first
discuss the results of each of the provers investigated separately and in some more
detail before I draw some general conclusions.

OTTER

OTTER’s (more precisely, its auto2-mode) results in the simplification experi-
ment exhibit some noteworthy peculiarities.

First of all, the different variants almost converge and the total improvement
is rather small in the long run. For a timeout of 90 seconds, the domain-specific
simplifications (which are the best variant) lead to a total of 1293 proofs which
represents a meager 1.5% improvement over the base case. The other variants
even result in a small net loss of proofs, ranging from 0.6% to 3.0%. Here, the
equational simplifications yield the worst result. This is most likely a consequence
of substituting the variables throughout the task which obviously increases the
number of non-variable term positions to be explored by the restricted paramod-
ulation of the auto2-mode.

Second, unfolding predicate definitions does not pay for OTTER. Except for
a small gain in the sub-second range which is due to the higher number of tasks
rewritten to true, unfolding does not improve much on the pure equational sim-
plification. That is, OTTER’s built-in ordering already handles the definitional
extensions appropriately.

Nevertheless, in general simplification pays even for OTTER and it pays espe-
cially for the shorter timeouts between 1 and 5 seconds. Here, the domain-specific
simplifications represent an 27.6% and 14.8%, respectively, improvement over the

2For example, if the task contains only a single occurrence of member and the lemma
database contains no additional (beyond the definition) lemmas about member, it can eas-
ily be unfolded. Additional lemmas change the situation because then unfolding destroys the
applicability of a lemma. To maintain applicability, all lemmas need to be unfolded, too, which
leads to the proliferation of bound variables and thus to a further increase in proof task size.



134 Chapter 8. The Effect of Simplification

0

200

400

600

800

1000

1200

1400

1600

1800

0.1 1 10 100

P
ro

of
s

�

Time (sec.)

base case
first-order

equational
unfolding

domain
competition

Figure 8.1: Simplification: Proofs over time—OTTER (auto2)

base case. But again, the purely syntactic simplifications fall short and run within
a narrow margin almost parallel to the base case.

However, and this is the final peculiarity which sets OTTER apart from the
other provers, a substantial improvement even in the long run can be achieved by
competition. Running the base case and the domain-specific simplified variant
in parallel yields 1387 proofs or an 8.9% and 7.3% improvement over the single
variants, respectively. The speed-up of this combination is s = 1.25 (e = 0.62)
but again (cf. p. 127) this does not properly reflect the full improvement. The true
speed-up becomes apparent at a timeout of Tmax = 8.8 seconds with s ′ = 8.06
and e ′ = 4.03, i.e., it is again superlinear. For shorter timeouts, however, the
combination is almost entirely dominated by the domain-specific variant.

GANDALF

Although GANDALF is quite similar to OTTER as far as the basic calculus is
concerned, its results in the simplification experiment are different in almost any
aspect.

The most obvious difference is the much larger spread between the different
variants. For the 90 seconds timeout, the domain-specific simplifications result in
a total of 1436 proofs or an 30.1% improvement over the base case, compared to
the 1.5% of OTTER. But unlike OTTER, GANDALF also profits from the weaker
syntactic simplifications. Moreover, the profits reflect the perceived strength of
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Figure 8.2: Simplification: Proofs over time—GANDALF

the respective simplifications, ranging from 1.0% for the first-order simplifications
to 9.9% for unfolding the definitions. Also unlike OTTER, the improvements
do not fade out over time—the curves for the different variants run almost in
parallel.3 The large difference between the equational simplifications and the
base case, however, is counterintuitive at a first glance. In theory, a complete
proof procedure should be insensitive to calculus-level permutations of the proof
task; in practice, this is not always the case but SPASS shows that the sensitivity
can be kept within reasonable bounds (cf p. 136). In GANDALF’s case, equality
is a calculus symbol and at least the last applied strategy is complete such that
it should be less sensitive that it actually is. However, as OTTER’s results show,
incomplete proof procedures can be very sensitive to permutations and GANDALF
usually starts with severely restricted and thus incomplete strategies and spends
large parts of its total time with these strategies.

Finally, for GANDALF competition between different simplifications does not
pay. The competition is dominated almost entirely by the domain-specific variant,
especially for short and medium proof times, and yields only 20 or 1.4% occasional
additional proofs compared to the domain-specific variant. This difference is so
small that it can even be a consequence of timing inaccuracies and load differences
between the different test runs (cf. p. 89).

3However, keep in mind that the proof times are obtained for a 90 seconds timeout and
that—due to GANDALF’s scheduling policy—hypothetical values for shorter timeouts cannot
be “just read off” the graph.
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SPASS

As Figure 8.3 shows, the experimental results for SPASS bear some resemblance
to both OTTER’s and GANDALF’s cases.
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Figure 8.3: Simplification: Proofs over time—SPASS

As OTTER, SPASS shows only a relatively small spread between the variants.
The domain-specific simplifications result only in a 8.6% improvement over the
base case. Again, the purely syntactic simplifications yield virtually no improve-
ment, independent of the chosen timeout. Moreover, a closer inspection of the
solved tasks reveals that there are—in contrast to GANDALF—almost no differ-
ences between the “simple” variants (i.e., base case, first-order and equational
simplifications, respectively): no variant solves more than 18 tasks (or less than
1%) exclusively.

However, unlike OTTER and similar to GANDALF, SPASS clearly profits from
predicate unfolding. It already yields an 5.7% improvement over the base case and
thus accounts for most of the domain-specific improvements. Similarly, SPASS
does not profit from competition—here the result is even more dominated by the
domain-specific variant than in GANDALF’s case. This suggests that the small
1.2% gain is in fact a consequence of the biased competition timing.

All variants also show the typical “pre-saturation peak” at approximately 0.9
seconds, i.e., find an unusual number of proofs at that time. However, this is
hardly surprising because the duration of the pre-saturation phase is determined
only by the axiom set which has for this experiment not been changed between
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the different variants.

SETHEO

Although SETHEO solves significantly fewer tasks, its results in the simplification
experiment follow essentially GANDALF’s pattern.
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Figure 8.4: Simplification: Proofs over time—SETHEO

The domain-specific simplifications yield a 27.2% improvement (w.r.t. the
90 seconds timeout) over the base case which is roughly of the same order as
in GANDALF’s case. Similarly, the weaker simplifications result in smaller but
significant improvements (unfolding: 11.9%, equational: 5.9%) which are again
close to GANDALF’s values. And again, the domain-specific variant subsumes
the weaker variants such that competition yields no further improvements.

The distribution of proofs over time is remarkably regular—the plots of the
different variants run almost in parallel. While this “parallelism” is a coincidence,
most simplifications and in particular the equational and unfolding variant, do in
fact work complementary to SETHEO’s calculus. In both cases, the simplifications
directly correspond to actual proof steps (i.e., extension steps) such that any proof
which (in the base case) involves such a step is (in the simplified case) found one
iterative deepening level earlier.

However, the almost perfect correlation of the base case and the first-order
simplifications is not accidental. It is rather a consequence of the fact that



138 Chapter 8. The Effect of Simplification

SETHEO uses exactly the same rewrite rules within its clausal normal form trans-
lator [Sch98].

General Results

The most general conclusion from the more detailed, prover-specific results dis-
cussed above is that simplification pays, i.e., the additional effort put into the
extra simplification-phase is more than offset by a higher number of proofs and
shorter overall response times. The time improvements over the base case (cf.
tables 8.1 and 8.2) range in the best case from 1.5% for OTTER to 30.3% for
GANDALF; the speed-ups (i.e., ΣT for the base case divided by ΣT for the best
variant plus simplification time) vary between 1.08 for OTTER and 1.52 for GAN-
DALF, again with significantly higher true speed-ups. The average proof times
increase for most provers, with OTTER as the only exception. This increase is
caused by the higher number of “complicated” tasks solved but it is not directly
correlated to the gain in recall. The response times per query, however, remain
essentially unchanged, i.e., they are still dominated by the effort spent on trying
to prove mismatches.

Unfortunately, there are two catches.

1. Purely syntactic simplifications (i.e., constrained to the calculus adequately
handled by the respective prover) do not entail much improvement.

2. Incomplete proof procedures are very sensitive to any kind of proof task
manipulation; in particular, OTTER’s auto2-mode fails to find proofs for
simplified task variants quite often, even if it solves the respective base case.

Fortunately, both catches can be overcome, although the solutions incur substan-
tial infrastructural costs.

The solution for the first catch is obviously to employ domain-specific sim-
plifications, too. These can be implemented efficiently by compiling the lemma
library into a domain-specific term rewrite system as described in Chapter 5; this
approach takes also care of the problem that the simplification phase has to be
updated periodically to keep track with evolving libraries. The effectiveness of
such a pre-compiled, domain-specific simplifier can also be seen from the fact
that the different provers need in the base case already between 1.5 (OTTER)
and almost 5 seconds (GANDALF, SPASS) to achieve the same number of proofs
(792) than the simplifier (without the unrolling strategy) within 0.25 seconds.4

Nevertheless, for larger timeouts, every prover can improve on the results of the
unrolling strategy: on the domain-specifically simplified variants, the provers
solve between 11 (SPASS) and 307 (GANDALF) or 1.0%–27.1% more tasks than
the simplifier using unrolling (cf. Table 5.3)

4SETHEO does not solve that number of tasks at all.
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OTTER GANDALF

mode best comp. pipe. best comp. pipe.
Tmax (sec.) 90.00 90.00 5.00 / 90.00 90.00 90.00 5.00 / 90.00
Tvalid (sec.) 28.13 24.32 - 28.27 27.47 -
σT 40.38 37.99 - 38.53 38.13 -
ΣT 51698 44700 - 51953 50488 -
Tproof (sec.) 4.18 5.75 - 21.70 21.39 -
σT 6.62 9.70 - 28.84 28.70 -
Tquery (sec.) - - 2865 - - 2905
σT - - 1683 - - 1674

# proofs 1293 1387 1563 1438 1456 1612
r (%) 70.35 75.46 85.04 78.24 79.22 87.70
r (%) 61.80 66.48 74.76 74.28 75.27 82.36
σr 36.11 34.41 32.37 29.75 28.98 26.47
p (%) 100.00 100.00 100.00 100.00 100.00 100.00

SPASS SETHEO

mode best comp. pipe. best comp. pipe.
Tmax (sec.) 90.00 90.00 5.00 / 90.00 90.00 90.00 5.00 / 90.00
Tvalid (sec.) 38.13 37.63 - 40.44 40.11 -
σT 42.28 42.12 - 42.90 42.81 -
ΣT 70090 69169 - 74332 73721 -
Tproof (sec.) 15.67 16.00 - 16.99 16.91 -
σT 21.98 22.22 - 21.25 21.01 -
Tquery (sec.) - - 3050 - - 3006
σT - - 1801 - - 1712

# proofs 1142 1156 1342 1084 1092 1405
r (%) 62.13 62.89 73.01 58.98 59.41 76.44
r (%) 61.33 63.88 70.53 40.65 41.66 58.11
σr 37.71 37.27 32.64 37.72 37.82 38.81
p (%) 100.00 100.00 100.00 100.00 100.00 100.00

Table 8.1: Simplification: General Results

Moreover, unrolling does not preempt proving the simplified task variants.
Hence, the full benefit of simplification becomes apparent only in combination
with a rejection filter, as already described for the base case on page 128; in
Table 8.1, the rightmost column under each prover heading contains the data
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corresponding to Table 7.3. This setup leads to an additional 62 (SPASS) to
237 (GANDALF) proofs, or improvements between approximately 4.8%-points
(SPASS, OTTER) and 17.3%-points (GANDALF); these improvements roughly
correlate with the effect of the domain-specific simplifications without rejection
filter. The additional proofs represent increased domain-oriented recall levels of
approximately 4% (SPASS, OTTER) to 12.9% (GANDALF); the recall level peaks
at 87.7% for GANDALF. Similarly increased recall levels and at the same time
slightly smaller standard deviations are also observed for the query-oriented av-
erages; again, GANDALF delivers the best results with r = 82.4% (σr = 26.5%).

The solution for the second catch is obviously to employ competition between
the different simplification variants. However, the discussion of the individual
provers has shown that this pays only for OTTER. More uniform improvements
can be achieved if the competition is extended to the different provers. Table 8.2
summarizes these results; similar to Table 7.2 it shows a restricted competition
between OTTER and SPASS as well as the full competition between all systems.
For each prover, only the best individual variant (cf. Table 8.1) has been used.

OTTER & SPASS full competition

Tmax (sec.) 1.00 20.00 90.00 1.00 20.00 90.00 5.00 / 20.00 5.00 / 90.00
Tvalid (sec.) 0.67 6.80 24.71 0.53 5.76 20.47 - -
σT 0.35 8.64 38.16 0.46 8.23 35.58 - -
Tproof (sec.) 0.65 3.11 7.51 0.55 2.88 8.83 - -
σT 0.20 3.66 15.00 0.23 3.54 18.78 - -
Tquery (sec.) 113.9 2176 9743 111.8 2160 9636 755.2 2758
σT 15.3 415 1897 20.8 423 1927 438.9 1660

# proofs 880 1318 1393 1052 1411 1498 1564 1613
r (%) 41.19 71.71 75.79 57.24 76.77 81.50 85.09 87.76
r (%) 39.78 66.26 71.50 45.92 73.44 78.27 80.09 82.92
σr 35.42 35.24 32.98 37.53 31.28 27.76 28.18 24.94
p (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 8.2: Simplification: Prover Competition

At Tmax = 90 seconds, the speed-up factor of the full competition over the
fastest individual prover (OTTER) on the valid proof tasks is s = 1.37; the
efficiency of this competition is e = 0.34. The restricted competition between
OTTER and SPASS yields s = 1.14 and e = 0.57 under these conditions.

In both cases, the simplified proof tasks induce larger speed-ups than the
original tasks; moreover, for both competition variants the relative speed-ups of
the simplified task over the original tasks (i.e., the respective total proof times
of the competition divided by each other) even exceed the plain speed-up ratios.
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Hence, simplification significantly amplifies the effects of competition.
As in the base case competition does not only speed up the retrieval process

but also improves the recall. The full competition, however, is already almost
dominated by the best prover (GANDALF) and yields only 60 or 4.2% more
proofs which represents an additional 3.26%-points in the recall level. These
numbers shrink down even more if the prover competition is compared to variant
competition with GANDALF; here, the bottom line is a 2.28%-points increase in
the recall level.

Nevertheless, the combination of faster response times and more proofs adds
up to significant higher true speed-ups. The competition achieves GANDALF’s
recall level—1438 proofs—with a timeout of 40 seconds which yields a true speed-
up of s ′ = 2.27 but a still sublinear true efficiency of e ′ = 0.69. In this case, a true
superlinear speed-up cannot be achieved by the restricted competition between
OTTER and SPASS because it solves less tasks than GANDALF alone.

Somewhat surprisingly, however, the prover competition looses most of its
advantages over single provers in terms of recall when it is combined with the
rewrite-based rejection filter. This becomes particularly apparent in GANDALF’s
case (which dominates the competition) where the difference almost completely
disappears. In terms of response times, however, the competition maintains a
substantial advantage of at least 3.7% or approximately 2 minutes per query on
average.
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Chapter 9

The Effect of Lemma Selection

The supply of axioms and lemmas is crucial to automated theorem proving—
a single missed key lemma can make a proof much harder or even impossible.
Unfortunately, the naive solution to include all available lemmas does not work
because it induces too large search spaces. Hence, a pre-selection is necessary
which selects only such axioms which are necessary to find a proof at all or are
likely to shorten it and omits all those which only increase the search space. Of
course, this selection can be heuristic only: deciding whether a lemma shortens
a proof is at least as hard as finding the proof in the first place.

In this chapter I describe the lemma selection process in NORA/HAMMR.
Section 9.1 discusses the general approach of signature-based selection heuristics.
The applied heuristics require meta-level information (e.g., the theory hierarchy)
which expresses the human insights into the custom logic. Section 9.2 thus briefly
describes the specification language used to provide this meta-level information.
Section 9.3 discusses automatic generation of axioms from the meta-level informa-
tion as additional approach to cut the number of required lemmas further down.
Section 9.4 describes the basic selection algorithm and its various refinements
implemented in NORA/HAMMR. Finally, Section 9.5 contains the experimental
results for the different selection heuristics and provers.

9.1 Signature-Based Heuristics

Heuristics for axiom and lemma selection (and the similar problem of parame-
ter setting) are usually based on syntactic properties of the proof task, e.g., its
signature [RS98], the number and structure of literals or clauses, or even com-
plex feature vectors [FF98]. The heuristics either work fully functionally (i.e.,
the selection depends only on the proof task) or maintain a “hotlist” of success-
fully applied axioms and lemmas which is updated whenever a proof has been
found and analyzed. NORA/HAMMR only uses fully functional, signature-based
heuristics because these have two major advantages: they are independent of the

143
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applied calculus and they can be run as pure preprocessing steps. Both aspects
make it easier to exchange the applied ATP independent of the lemma selection
mechanism.

The basic assumption of all signature-based heuristics is that, as a first ap-
proximation, only such axioms and lemmas are useful which describe properties
of the symbols which actually occur in the proof task. However, this is only
an approximation and requires some adjustments which will be described subse-
quently. Furthermore, it is in fact only a heuristic (even if it allows to determine
a minimal set of axioms which makes a proof possible in theory) because one can
always construct examples in which the introduction of a new symbol together
with some lemmas allows an easier proof. Nevertheless, in practice, it has proven
to be useful.

A closer look at the selection problem reveals that it actually consists of two
similar and related subproblems:

1. Selection of the most appropriate variant of the core axioms which facilitate
the proof at all.

2. Selection of promising additional lemmas which may shorten the proof.

The first selection subproblem is closely coupled with the translation step from the
custom logic to the core logic (cf. Sections 4.1.2 and 4.3.3). It occurs whenever a
type admits different but semantically equivalent core axiomatizations or “views”.
Lists for example admit two alternative views, the free datatype view with the
base functions nil and cons, and the monoid view with the base functions nil,
singleton and append. The choice of one view over another may influence the
performance of the applied ATP: a prover with a built-in decision procedure for
the free datatype view [NO80] may perform worse if the monoid view is chosen.
In practice, however, there is often not much of a choice. Usually, one view
is hardcoded into the translation step. NORA/HAMMR for example translates
VDM-SL’s sequences into the nil-cons-fragment; using the monoid view (in which
cons is a defined function) would lead to unnecessarily large rule sets. Hence,
this selection subproblem is not treated in NORA/HAMMR and only the second
subproblem remains as the proper lemma selection problem.

9.2 Hierarchic Specifications

For a signature-based selection heuristic, a flat, unstructured list of rules is not
very suitable because it cannot convey any information about the (implicit) se-
mantic relations between the symbols and rules. Generally, the more meta-level
information is expressed explicitly, the better selection strategies are possible.
NORA/HAMMR thus uses hierarchically ordered specifications to organize a rule
library, similar to the approach of W. Reif and G. Schellhorn [RS98]. The applied
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theory specification language is derived from the notation used in the ISABELLE-
system [Pau94] but NORA/HAMMR should not be considered as a full-fledged
logical framework. The main conceptual difference is that it does not support
the specification of new logics but only conservative and inductive extensions of
order-sorted FOL. A more detailed description of the theory specification lan-
guage can be found in [Wei98].

The theory specification language distinguishes between signatures and the-
ories. A signature is a named collection of classes, types, and predicate and
function symbols, similar to signatures in algebra or definition modules in pro-
gramming languages. The simple example signature ItemVDM1

signature ItemVDM = FOLneq +
types "Item" : equal

end

introduces a type Item as member of an already defined type class equal. Both
types and type classes (ultimately) represent object collections. However, types
are object-level constructs; they are reflected in the proof tasks as sorts. Type
classes are pure meta-level constructs; they are provided only for a convenient for-
mulation of polymorphism.2 Type classes may thus be reflected only indirectly in
the (first-order) proof tasks in the form of their ground instances, i.e., monomor-
phic types. The hierarchical structure is introduced by imports: ItemVDM imports
and thus depends on FOLneq. For signatures, import just amounts to textual in-
clusion. Hence, the signature specification

signature ListVDM = ItemVDM +
types "List" : equal
consts "[]" : "List"

(0);
"::" : "[Item; List] => List"

(infixr 2 45)
end

is equivalent to

signature ListVDM = FOLneq +
types "Item" : equal;

"List" : equal
consts "[]" : "List"

(0);
"::" : "[Item; List] => List"

(infixr 2 45)
end

1The examples are taken in slightly adapted form from the rule library used in the experi-
ments.

2The current implementation of NORA/HAMMR does not fully support type classes and
overloading. The examples do thus not use polymorphic predicates or functions.
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where the import of FOLneq must be resolved recursively.
For predicate and function symbols, a signature must specify types and some

additional parsing information. The example signature ListVDM declares the two
constructors nil (with external representation []) and cons (with external repre-
sentation ::) of the type List. Their respective types List and [Item; List]

=> List are built up from the types declared earlier and the type constructors
for product ([ ; ]) and function type (=>), respectively, which are pre-defined in
the meta-theory. The parsing information (mandatory arity, optional fixity and
priority) is used to instantiate a generic term parser.

A theory is simply a collection of named axioms and lemmas, i.e., FOL-
formulae. It is thus similar to an implementation module. The example theory
ListAxioms

theory ListAxioms : ListVDM =
axioms

Nil "all val L : List . all val I : Item . ~ [] = I :: L";
Surj "all val L : List .

L = []
| (ex val K : List . ex val I : Item . L = I :: K)";

ConsInj "all val L : List . all val K : List .
all val I : Item . all val J : Item .
I :: L = J :: K --> I = J & L = K";

Finite "all val L : List . all val I : Item . ~ L = I :: L"
end

contains the four axioms Nil, Surj, ConsInj and Finite which sufficiently char-
acterize finite lists over the Item-type. Lemmas (of which ListAxioms contains
none) are assumed to be logical consequences of the axioms. Although this is
currently not checked by the NORA/HAMMR-system, it is exploited by the selec-
tion mechanisms (cf. Section 9.4). A theory can be constrained or “typed” by a
signature; in the example, ListAxioms is declared as an instance of of ListVDM.
The constraint automatically imports the constraining signature into the theory.

Both types and type classes can be ordered hierarchically. Again, a type-
subtype relation is directly reflected in the proof tasks in the form of a respective
sort-subsort relation (or axiom) while the class ordering is only used of a fine-
grained control of polymorphism, as in ISABELLE [Pau94] or Haskell [NS91,
NP95]. In the example, the type List could alternatively be axiomatized using
the two subtypes Nil and Cons:

signature ListSubsortedVDM = ItemVDM +
types "List" : equal;

"Nil" < "List";
"Cons" < "List"

consts "[]" : "Nil"
(0);

"::" : "[Item; List] => Cons"
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(infixr 2 45)
end

The new subtypes can then be used for an optimized axiomatization:

theory ListSubsortedAxioms : ListVDM = ListSubsortedVDM +
axioms

Disjunct "all val N : Nil . all val C : Cons . ~ N = C";
SurjNil "all val N : Nil . N = []";
SurjCons "all val C : Cons . ex val L : List . ex val I : Item .

C = I :: L";
ConsInj "all val L : List . all val K : List .

all val I : Item . all val J : Item .
I :: L = J :: K --> I = J & L = K";

Finite "all val L : List . all val I : Item . ~ L = I :: L"
end

Here, the Nil-axiom has bin replaced by a disjointness axiom which can be han-
dled more efficiently in sorted calculi. More importantly, the troublesome non-
horn Surj-axiom has been replaced by two separate versions for the two subsorts.

This core language can then be extended by meta-level constructs to specify
for example operator axioms for associativity and commutativity or generator
functions for freely generated datatypes.

9.3 Generating Axioms

The most effective way to reduce the number of rules in the proof tasks is to build
the rules directly into the calculus. This idea dates back to the very beginnings
of automated theorem proving [Plo72] and has been applied in many variants,
e.g., paramodulation, theory unification, or integrating decision procedures.

Building-in a theory, however, also requires marking function or predicate
symbols with the built-in property. The simplest solutions rely on purely syntac-
tic conventions, e.g., naming schemas or the syntactic structure of the axioms.
OTTER for example interprets every binary predicate symbol whose name starts
with eq as a instance of the equality predicate and the SCAN-IT tool which is a
preprocessor for the theorem prover PROTEIN [BF94, Bau96] uses pattern match-
ing to identify instances of particular axiom schemas. More elaborate solutions
use the FOL-semantics of the rule set. The TOPS tool [Roa97] which is part of
the Meta-Amphion system [LV95, RVL97, LV97] uses a theorem prover to show
that a set of rules is a logical consequence of a theory and can thus be replaced
by a decision procedure for that theory.

Tools as TOPS are very general but they have the disadvantage that they first
force the reuse administrator to formulate the axioms in FOL before they then
spend considerable effort on identifying the concepts behind these FOL-rules.
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NORA/HAMMR uses a different approach. The specification language for the
rule library provides syntactic means to uniformly mark symbols with commonly
built-in properties. These are then interpreted in a prover-specific way which
means that adequate FOL-axioms are generated for ATPs which do not support
that built-in. While this requires a modification of the system kernel whenever
the set of supported built-in properties changes, it has some decisive advantages.
Obviously, it makes reuse administration easier and more reliable: if rules are
generated automatically, one source of errors is eliminated.3 Moreover, it also
separates the specification of a generally applicable rule library from specific re-
quirements of a particular calculus (which can be generated). This also makes
the integration of a new prover into the system easier. The biggest advantage,
however, is that the rule selection can be more efficient because the library con-
tains less rules to select from. For example, without generating axioms, signature
axioms would be selected even for provers which rely on term encodings.

Equality Axioms

Theorem provers which are based on an equality-free calculus (e.g., SETHEO)
usually require an explicit axiomatization of the equality predicate.4 In prin-
ciple, Birkhoff’s rules [Bir35] provide this axiomatization but they contain two
axiom schemas which need to be instantiated over the signature of the proof
task. Unfortunately, in this is also necessary for any skolem functions intro-
duced by clausification. Generating the equality axioms is thus usually inte-
grated into the prover-internal preprocessing phase and need not be supported
by NORA/HAMMR.

Operator Axioms

Building-in operator properties as associativity or commutativity by means of
theory unification [Plo72] was one of the first attempts to reduce the number
of axioms and, consequently, replace search by more goal-directed computation.
However, none of the provers currently integrated into NORA/HAMMR imple-
ments theory unification. The extra operator axioms associativity and commu-
tativity are nevertheless still useful because the rewrite machine used for task
rejection (cf. chapters 5 and 6) employs a version of rewriting modulo AC .

3In fact, the initial rule library contained a number of inconsistencies which showed up
only during the experimental evaluation. Some of these were eliminated by generating the sort
axioms schematically (see below).

4Alternatively, Brand’s modification method [Bra75] can be used but this requires extensive
preprocessing of the proof task.
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Sort Axioms

If a predicate encoding is used to relativize the sorted proof tasks, additional sort
axioms are required or useful to represent all signature information adequately.
These sort axioms may be divided into three categories.

1. subsort axioms : for each subsort relation S1 ≺ S2 the subsort axiom ∀x ·
s1(x ) ⇒ s2(x ) is required [Obe62, Wei96]; for each pair of incomparable
sorts S1, S2 a disjointness axiom ∀x · s1(x )⇒ ¬s2(x ) is required.

2. signature axioms : for each total operator f : S1× . . . Sn → S declared in the
signature an axiom ∀x1, . . . , xn ·s1(x )∧sn(x )⇒ s(f (x1, . . . , xn)) is required;
for each partial operator an axiom ∀x1, . . . , xn · pre f (x1, . . . , xn) ∧ s1(x ) ∧
sn(x )⇒ s(f (x1, . . . , xn)) is required [Wei96].

3. sort inhabitation axioms : for each sort S to which is a priory known to be
inhabited (i.e., which has at least one element), a sort inhabitation axiom
∃x · s(x ) can be generated.

The subsort axioms simply reflect the subset-relation between the two sort do-
mains. The signature axioms allow the ATP to infer the sorts of composite
terms. Both axiom categories are unnecessary for term encodings because the
encodings build the respective properties directly into the representation. Extra
sort inhabitation axioms are not strictly necessary. In fact, they are subsumed by
the signature axioms if the signature contains at least one constant of the sort.
However, they are useful for efficiency reasons, for example, if the constant is
”buried” into a subsort, or if the sort only has a dynamic definition (e.g., prime
numbers). Moreover, term encodings usually assume sort inhabitation implicitly
(by virtue of skolem constants) so that extra sort inhabitation axioms help to
keep the semantics of the different encodings consistent.

The sort axioms can easily be generated automatically for static sorts and
total functions. The signature axioms for partial functions can also be generated
automatically as described above. An optimized axiom version can be generated
in certain cases if the precondition can be separated into conjunctively connected
subexpressions, each constraining only a single component parameter. It is then
possible to generate new (generally dynamic) subsorts with the negated sepa-
rated subexpressions as membership axioms and to remove the precondition by
tweaking the signature appropriately. For example, the head -function of the type
list → item can be represented by the axiom

∀l · domhead (l)⇒ item(head(l))

and the additional two sort definitions

∀l · domhead (l)⇒ list(l)

∀l · domhead (l)⇔ ¬l = [ ]
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This is essentially one of the techniques mentioned in [Jon95] to handle partial
functions in different logics; that paper also discusses the limits of this technique.
NORA/HAMMR currently generates subsort axioms and the simple version of
signature axioms.

Datatype Axioms

Generated and freely generated datatypes come with much internal structure
which results in a potentially large number of axioms. (Cf. Definitions 5.2.2 and
5.2.5.) Fortunately, their internal structure is very regular such that the axioms
can easily be generated automatically. The constructors of a generated datatype
can be considered to span subsorts of the datatype such that the sort handling
described above can be reused. For freely generated datatypes, these subsorts are
mutually disjoint. This leaves generating the injectivity and acyclicity axioms as
the only steps particular to freely generated datatypes. Both are instantiations
of simple axiom schemes; all information required for the instantiation (i.e., gen-
erator functions and signatures) can be extracted easily from the lemma library.

9.4 Selection Mechanisms

Based on the hierarchically ordered rule library and the distinction between ax-
ioms and lemmas, several selection mechanisms can be implemented. They all
follow the same general schema:

1. Determine the signature ΣT [q,c] of the proof task, i.e., all occurring extra-
logical symbols.

2. Determine the defining theory Tf for each symbol f .

3. Select all axioms from all defining theories Tf .

4. Select all axioms from the theories recursively referred to by the Tf .

5. Optionally, select lemmas which do not introduce additional symbols.

This general schema selects axioms (but not lemmas) only if they are defined
in non-redundant theories where a theory is considered to be redundant if it
introduces only symbols not occurring in the problem and is not referred (directly
or indirectly) by other non-redundant theories.

This general schema admits a variety of variants which I describe briefly and
justify informally. These variants differ in the axioms and lemmas which are
selected in steps 3–5. The choice of a specific variant is currently left to the
NORA/HAMMR-user or to the reuse administrator.
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• pure calculus : This is in fact a non-selection mechanism; it is the diametrical
opposite of the naive non-selection mechanism full library because it selects
no rule at all. Its justification is that it forces the prover to work with its
calculus only which is usually very efficient and might be sufficient in many
cases (e.g., if the query is a pure propositional or equational variant of the
candidate component).

• pure axioms : This variant selects only the axioms of the symbols which
actually occur in the proof task but does no completion along the theory
hierarchy (i.e., omits steps 4 and 5 of the general schema). It is thus delib-
erately incomplete but its justification is again that it forces the prover to
work with the actual proof problem and not with the background theory.

• complete axioms : This variant is the general schema without the optional
lemma addition in step 5. It selects (by definition) the smallest set of
rules which make a proof possible at all5 but since this selection does not
necessarily also guarantee the shortest proof, this property (and thus also
this selection) is of limited interest in practice.

• selector add-on: The constructor and selector functions of a generated
datatype are closely coupled by the semantics of that datatype. Hence,
the selector axioms can be added even if the selector functions do not ap-
pear in the proof task.6

• pure lemmas : This variant builds on the complete axioms mechanism but
restricts the set of additional lemmas selected in step 5 of the general schema
to such lemmas defined in the theories determined in step 2. Its justification
is that it keeps a complete axiomatization but “encourages” the prover
to work with the actual problem and not with the background theory by
providing more inference possibilities with the problem.

• local lemmas : This is a slight variant of the preceding pure lemmas mech-
anism; it uses all theories recursively referred to by the Tf (instead of only
the Tf itself) to select the lemmas in step 5 of the general schema. Its
justification is that it selects the smallest set of “necessary” rules as defined
by the reuse administrator but at the expense of a reduced goal orientation.

• full lemmas : The final variant simply implements the full lemma addition
step.

Obviously, the variants are not inherently independent of each other as their
relative merits critically depend on an appropriate theory structure and the ax-
iom/lemma distinction to be provided by the reuse administrator. For example,

5Provided that the library is consistent and theory persistent [RS98].
6The inverse situation that only the destructors appear and not the constructors is impossible

because the constructors are automatically selected together with the datatype.
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selector add-on can be simulated by complete axioms if the constructors and se-
lectors of any datatype are always axiomatized in the same theory. However, this
additional burden for the reuse administrator is minimal and justified because it
also entails an additional degree of human control.

It is not completely clear from the available literature how these variants are
related to the selection mechanism of W. Reif and G. Schellhorn [RS98]. However,
the published examples suggest that their technique amounts to the full lemmas
strategy.

9.5 Experimental Results

The obvious evaluation criterion for the selection mechanisms seems to be their
reduction rate but I do not think that this is a sensible criterion—the proof of a
useful selection mechanism is still in the proof of the tasks. Under this criterion,
however, the selection mechanisms are much harder to evaluate because their
effects may depend on or be overshadowed by other preprocessing steps, particu-
larly by the proof task simplification which may alter the original signature of the
task. To account for this dependency, I evaluated the selection mechanisms for
the unsimplified and the fully simplified task variants, respectively. I only chose
the two basic strategies complete axioms and full lemmas to keep the experi-
mental effort within reasonable bounds; moreover, the relatively small size of the
lemma library (28 axioms, 60 lemmas, on average 4.2 rules per symbol) and its
relatively flat internal structure (maximal theory nesting level: 4) do not warrant
the more elaborate strategies as they would result in different selections only for a
very few tasks. In order to evaluate not only their relative merits over each other
but also their absolute utility, I complemented these two selection strategies by
the two “non-selection” strategies pure calculus and full theory ; the pure calculus
strategy, however, was applied only to the fully simplified task version in order
to achieve useful recall levels.

Notwithstanding the claim that the ultimate utility measure for a selection
mechanism is the number of proofs facilitated, a few numbers are useful results
on their own. The two strategies reduce the average number of rules per proof
task to 11.3 (axioms) and 24.6 (lemmas) with a maximum of 18 (axioms) and 47
(lemmas) rules per task. This reflects average reduction rates of approximately
87% and 78%, respectively, and is in accordance with the results by W. Reif
and G. Schellhorn [RS98]. They report reduction quotas between 80% and 99%,
based on significantly larger libraries containing between 400 and 500 rules.

Similar to the case of the simplification experiments described in the preceding
chapter, the different provers respond quite different to the selection mechanisms.
I thus again discuss the results of each of the individual provers separately and
in some more detail before I draw some general conclusions.
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OTTER

Figures 9.1 and 9.2 show the results for the different selection mechanisms for
OTTER (auto2) for the original and simplified proof tasks, respectively.
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Figure 9.1: Lemma Selection: Proofs over time—OTTER (auto2), unsimplified
tasks

Both selection mechanisms substantially increase the number of fast proofs for
the original, unsimplified proof tasks because they reduce the amount of prepro-
cessing OTTER has to spend on the input (i.e., clausification and back demodu-
lation within the set of support). For short timeouts (less than 0.2 seconds), only
selection enables proofs at all (axioms : 700 proofs, lemmas : 685 proofs) because
preprocessing of the full rule base requires even more than the available time.
With increasing timeouts, however, the “underselection effect” of the axioms-
heuristic becomes apparent, i.e., the smaller branching factors are offset by the
larger number of required proof steps. The lemmas-heuristic becomes superior
for timeouts beyond a second and even the full rule library yields better results
after 5 seconds. In the end, for Tmax = 90 secs., the lemmas-heuristic yields an
additional 101 proofs, increasing the recall average by more than 5%-points up
to almost 75% while the axioms-heuristic looses 291 proofs or more than 20% of
the original recall rate.

A comparison between figures 9.1 and 9.2 shows that similar effects can be
observed for the simplified tasks but on a generally higher recall level. Again,
and obviously for the same reason, both selection strategies substantially increase
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Figure 9.2: Lemma Selection: Proofs over time—OTTER (auto2), simplified
tasks

the number of fast proofs. Even without any axioms, OTTER solves a significant
number of proof tasks on top of those already solved by the simplifier without
surjective unrolling of quantifiers: for Tmax = 0.2 secs. 58 additional proofs are
found on top of the 794 trivial tasks. However, task simplification amplifies
the advantage of having a minimal axiomatization for short timeouts (axioms :
1008 proofs, lemmas : 874 proofs, again for Tmax = 0.2 secs.) as well as the long-
term advantage of additional lemmas. The lemmas-heuristic becomes superior
for Tmax = 0.6 secs. and thus even faster than in the base case and even the
full library yields better results slightly faster. In the end, for Tmax = 90 secs.,
however, almost the same picture emerges as for the unsimplified tasks. The
lemmas-heuristic yields an additional 76 proofs or a 4.1%-points increase of the
recall average over the entire library while the axioms-heuristic looses 210 proofs
or still more than 15% of the original recall rate.

A cross-inspection of both figures reveals that the effects of the two selection
mechanisms are not completely independent of the proof task simplification. The
axioms-heuristic yields a recall improvement of approximately 10%-points and
a speed-up of s = 1.14 for the simplified over the unsimplified task variant (cf.
also Tables 9.2 and 9.3) while the lemmas-heuristic produces essentially the same
results (s = 1.00) for both variants. Again, this seems to be a consequence of
the high degree of incompleteness of OTTER’s auto2-mode whose effects may
overshadow the effects of lemma selection. This is confirmed by a simulated



9.5. Experimental Results 155

competition between the lemmas-heuristic applied to both simplification variants.
It solves a total 1463 proofs with an average response time per task of Tvalid =
19.31 secs. (Tmax = 90 secs.); this represents a larger improvement of 6.4%-points
in the recall level and a larger speed-up factor of s = 1.24.

In contrast to the case of the simplifications, a competition between the differ-
ent selection mechanisms does not lead to substantial improvements. Figure 9.2
also shows a competition between the pure calculus- and lemmas-heuristic, re-
spectively. However, except for short timeouts (Tmax ≤ 0.2 secs.) it is dominated
by the lemmas-heuristic and within 90 seconds the pure-calculus-heuristic solves
only 6 tasks exclusively and is significantly (i.e., more than 0.5 seconds) faster
only for an additional 17 tasks.

GANDALF

As in the simplification experiments, GANDALF’s behavior is quite different from
OTTER’s, despite their similar calculi.
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Figure 9.3: Lemma Selection: Proofs over time—GANDALF, unsimplified tasks

Since GANDALF does not incur the large preprocessing costs of OTTER (and
SPASS), the difference between the selection mechanisms is much smaller for
short timeouts. For the unsimplified tasks and Tmax = 0.2 secs., both variants
improve the performance of the base case (500 proofs) only slightly (axioms : 564
proofs, lemmas : 547 proofs). For the longer timeout of Tmax = 90 secs. two more
striking differences become visible at all. First, GANDALF does not suffer from
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the underselection effect of the axioms-heuristic as much as OTTER. In fact,
the plots for the base case and the axioms-heuristic run within narrow margins
for approximately the first seventy seconds before a significant underselection
effect becomes visible; in the end, it results in a loss of 133 proofs or a 7.4%-
points decline of the recall average. This peculiar behavior (which is repeated for
the simplified task version as well, cf. Figure 9.4) is most likely a consequence
of GANDALF’s time-slicing mechanism and, in particular, its “end-game mode”
which favors (for this application profile) back subsumption into the usable-list
(i.e., axioms and lemmas) [Tam97b] and thus rarely succeeds for the smaller
usable-lists generated by the axioms-heuristic.

Second, GANDALF profits significantly more from the lemmas-heuristic than
OTTER. This shows in two different aspects. In the short term, the break-even
time of the lemmas-heuristic over the axioms-heuristic is much smaller than in
OTTER’s case and is only approximately 0.3 seconds. In the long term, the num-
ber of additional proofs found after Tmax = 90 secs. is much higher, even allowing
GANDALF to surpass OTTER in the total number of proofs: for GANDALF, the
lemmas-heuristic yields an additional 304 proofs or 16.5%-points increase of the
recall average.
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Figure 9.4: Lemma Selection: Proofs over time—GANDALF, simplified tasks

The simplified task variant (cf. Figure 9.4) essentially confirms the above
observations but again amplifies the effects. For Tmax = 0.2 secs., both variants
improve the results achieved with the full theory (728 proofs) significantly more
than in the case of the unsimplified case (axioms : 855 proofs, lemmas : 963
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proofs); without any axioms, GANDALF still solves 46 non-trivial tasks, i.e.,
slightly fewer than OTTER. For the larger timeout of Tmax = 90 secs., the axioms-
heuristic follows the same pattern but the underselection effect becomes stronger:
it results in a loss of 184 proofs or a 13.8%-points decline of the recall average.
For the lemmas-heuristic, however, a saturation effect becomes visible which caps
the achieved improvements at 118 additional proofs or a 2.8%-points increase of
the recall average.

Similar to OTTER’s case a competition between the different selection mech-
anisms does not result in any substantial further improvement. Due to the faster
start-up of GANDALF, the competition between the pure calculus and lemmas-
heuristic, respectively, is even more dominated by the lemmas-heuristic than in
OTTER’s case. Within 90 seconds, the pure calculus heuristic solves only 3 tasks
exclusively; however, it is significantly faster for 40 more tasks or 2.5% of the
tasks solved in total.

In contrast to OTTER’s case the selection mechanisms work largely inde-
pendent of the preceding simplification step. Both mechanisms yield the same
speed-up of s = 1.48 for the simplified over the original task variant which is
relatively close to the speed-up achieved by simplification alone (s = 1.52). The
significantly higher recall improvement of the axioms-heuristic (+15.5%-points,
lemmas : +8.6%-points) again indicates the beginning saturation effects of the
combined preprocessing efforts.

SPASS

As in OTTER’s case, both selection mechanisms substantially increase the number
of fast proofs SPASS is able to find because they almost eliminate the preprocess-
ing overhead associated with the large axiom sets.

For Tmax = 0.2 secs., proofs can again only be found using the smaller axiom
sets; again, the applied selection strategy is largely irrelevant, both for the original
(axioms : 611 proofs, lemmas : 599 proofs) and the simplified variant (axioms :
826 proofs, lemmas : 792 proofs). As the timeout is increased, the underselection
effect of the axioms-heuristic begins to show as usual and in the unsimplified
case the lemmas-heuristic becomes superior for Tmax = 0.4 secs. (cf. Figure 9.5).
In contrast to all other provers, however, the axioms-heuristic still gives slightly
better results than the base case; for Tmax = 90 secs., it additionally yields 35
proofs or an 1.9%-points recall improvement compared to the base case. On
the other hand, of all provers SPASS also receives the highest benefits from the
lemmas-heuristic. Compared to the base case, the additional 392 proofs represent
a 21.3%-points improvement of the recall average. This is significantly more than
the 16.5%-points improvement achieved by the second-ranking prover GANDALF
and allows SPASS to pass both OTTER and GANDALF.

Both observations together justify the conclusion that SPASS cannot han-
dle large, redundant rule sets as well as other provers. This also corroborated
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Figure 9.5: Lemma Selection: Proofs over time—SPASS, unsimplified tasks
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Figure 9.6: Lemma Selection: Proofs over time—SPASS, simplified tasks

by the experiments reported by W. Reif and G. Schellhorn [RS98] and further
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confirmed by the quite similar results over the simplified tasks (cf. Figure 9.6).7

Again, the minimal axiomatization of the axioms-heuristic allows SPASS to solve
a small number of tasks more (+38 proofs) more than with the full library. The
achieved recall improvement of 2.8%-points is in the same order or magnitude
as for the original tasks. Similarly, the lemmas-heuristic yields 423 additional
proofs (+23.0%-points), which is even slightly more than for the unsimplified
tasks; again, this improvement makes SPASS the top-ranking prover.

In contrast to OTTER and GANDALF, proof task simplification here also am-
plifies the effects of lemma selection. This can be seen from the speed-ups the
different mechanisms achieve if the simplified tasks are compared the original
version. The axioms-heuristic yields a speed-up of s = 1.15 and a 6.4%-points
improvement in the average recall level which is close to the effects of simplifica-
tion alone (s = 1.12 / +4.9%-points) whereas the lemmas-heuristic results in a
significantly higher speed-up (s = 1.43) and overall recall gain (+10.3%).

As already shown in OTTER’s and GANDALF’s case, a competition between
the different selection mechanisms yield no noteworthy further improvements:
while 8 tasks are solved exclusively under the pure calculus variant, only 26
proofs are found significantly faster than using the lemmas-heuristic.

The reasons for SPASS’s different and exceptionally strong reaction to the
lemma selection mechanisms are not completely clear; however, it is very likely
to be related to the representation of sort information:

• SPASS uses very elaborate term indexing methods [Gra96] to organize the
clause sets. The term encoding of the sorts leads to deeper term structures
which then allow a finer indexing. This can in turn significantly speed up
the basic retrieval operations (e.g., finding complementary unifiable literals)
on which SPASS’ performance critically depends.

• The term encoding does not require the signature and inhabitation axioms
which induce larger search spaces.

• The sort predicates list and item may interfere with the automatically gen-
erated term orderings in such a way that inferences with relevant lemmas
are postponed.

In order to explore this possible correlation further, I repeated the lemma
selection experiments but now with the same term encoding as used for the other
ATPs. Figure 9.7 shows the results for the simplified task variant in comparison
with the standard predicative sort representation. It uncovers some interesting
aspects; the most interesting aspect is undoubtedly the significantly higher num-
ber of proofs which is now found if the full theory is used (+295 proofs). The

7However, keep in mind that these experimental results (as well as those in [RS98] are based
on a predicate encoding of the sorts. Cf. Figure 9.7 for results based on a term encoding.
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Figure 9.7: Lemma Selection: Proofs over time—SPASS, simplified tasks, different
sort representations

total of 1437 proofs represents a recall level of more than 78% which is almost ex-
actly the same level GANDALF achieves with exactly the same proof problems.8

Moreover, the term encoding also leads to a substantial speed-up (s = 1.66), even
if the pre-saturation of the problems takes slightly longer. The actual selection
heuristics, however, benefit less—if at all—from the term encoding: the axioms-
heuristic still yields a recall improvement (+76 proofs / +4.1%-points) while the
lemmas-heuristic becomes slightly less efficient (-15 proofs / -0.8%-points). The
achieved speed-ups drop appropriately (axioms : s = 1.12, lemmas : s = 1.06).

In total, the term encoding makes SPASS behave much more similar to the
other provers. In particular, it now also exhibits the typical underselection effect
when the axioms-heuristic is used. However, to determine the ultimate cause
for SPASS’ different behavior in the lemma selection experiments, further exper-
iments and more detailed proof analyses are required which go beyond the scope
of this thesis.

Independent of their ultimate cause, however, the different search spaces in-
troduced by the two sort representations can be exploited by a competition (cf.
Figure 9.7). This competition solves 1609 tasks in total which represents an
average recall of r = 87.54%.

8Remember that GANDALF is run on the CNF produced by FLOTTER, the SPASS-
clausifier.
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SETHEO

One of the alleged advantages of top-down provers as SETHEO is their goal
orientation, i.e., the fact that they start the proof from the conjecture and not
from an arbitrary clause. This is then in turn claimed to allow them to handle
larger axiom sets better.
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Figure 9.8: Lemma Selection: Proofs over time—SETHEO, unsimplified tasks

The retrieval experiments support this claim in an indirect way, at least to
some extent, as SETHEO profits significantly less from the lemmas-heuristic than
GANDALF and SPASS. For the unsimplified task variant and Tmax = 90 secs., only
105 additional proofs (or +12.3%-points) are found, compared to the 304 and 392
additional proofs for GANDALF and SPASS, respectively, which represent higher
gains (+16.5%-points / +21.3%-points) which in turn are even achieved from
significantly higher initial recall levels. Conversely, the underselection effect of
the axioms-heuristic is relatively small and amounts to a loss of only 31 proofs
(or -3.6%-points) for Tmax = 90 secs.; moreover, it becomes apparent only for
Tmax ≥ 30.0 secs.. These numbers justify the conclusion that SETHEO is rela-
tively less sensitive to large, redundant rule sets than the other provers used in
NORA/HAMMR.

Similar to the situation of the other provers, both mechanisms significantly
improve SETHEO’s performance for very short timeouts since they cut down the
time spent on preprocessing (i.e., compilation into abstract machine code): for
Tmax = 0.2 secs., both heuristics achieve almost the same recall levels (r ≈ 35%)
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and both find a substantial number of non-trivial proofs (axioms 254 proofs /
lemmas 250 proofs) while SETHEO needs more than a second to find the first
proof using the full axiomatization.
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Figure 9.9: Lemma Selection: Proofs over time—SETHEO, simplified tasks

For the simplified task variant, a similar picture emerges (cf. Figure 9.9).
Again, the underselection effect of the axioms-heuristic becomes apparent rela-
tively late (Tmax ≥ 30.0 secs., as in the unsimplified case) and remains relatively
small (-59 proofs / -5.4%-points) for Tmax = 90 secs. And again, the benefits of
the lemmas-heuristic remain relatively small. It yields only 84 proofs (or +7.7%-
points) more than the full lemma library, i.e., even less than in the unsimplified
case.

For SETHEO, proof task simplification also amplifies the effect of lemma se-
lection but less pronounced than in SPASS’ case. The axioms-heuristic yields a
larger speed-up of s = 1.25 for the simplified over the original proof tasks and
comes thus much closer to the result of the lemmas-heuristic which here only
yields s = 1.34. However, SETHEO is the only prover for which the lemmas-
heuristic does not dominate all other mechanisms. A competition between the
axioms-heuristic and the pure calculus mechanism yields over the simplified tasks
a total of 1208 proofs (r = 65.72%), or a modest 3.4%-points (+40 proofs) recall
improvement over the lemmas-heuristic.
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General Results

The most general conclusion from the more detailed, prover-specific results dis-
cussed above is that lemma selection pays, i.e., the additional effort put into the
extra selection-phase is more than offset by a higher number of proofs and shorter
overall response times; moreover, the runtime overhead of the selection phase is
virtually zero. Tables 9.1 and 9.2 summarize these results for the original and
simplified proof tasks, respectively.

OTTER GANDALF SPASS SETHEO

mode axioms lemmas axioms lemmas axioms lemmas axioms lemmas
Tmax (sec.) 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
Tvalid (sec.) 42.12 23.95 45.39 28.30 37.61 22.75 51.01 44.23
σT 44.68 38.49 43.15 37.66 43.76 36.35 43.92 44.24
ΣT 77420 44013 83427 52006 69134 41810 93757 81288
Tproof (sec.) 0.79 2.38 9.29 13.07 2.21 6.02 5.17 3.52
σT 2.71 4.62 15.31 20.34 6.94 11.92 13.52 9.27

# proofs 983 1375 971 1408 1087 1444 821 957
r (%) 53.48 74.81 52.83 76.61 59.14 78.56 44.67 52.07
r (%) 60.61 67.80 53.73 64.90 60.73 70.61 38.68 36.76
σr 34.46 34.24 35.45 35.88 34.69 31.16 34.22 35.11
p (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 9.1: Lemma Selection: General Results, Unsimplified Tasks

For very short timeouts, every selection mechanism pays, no matter how it
is semantically justified. This is a consequence of the essentially breadth-first
search pattern which all provers ultimately implement to retain completeness.
Any selection mechanism cuts down the branching factor of the search space
significantly which results in a better depth-coverage and thus more proofs for a
given timeout.

The extreme incarnation of this approach is the pure calculus (non-) selection
mechanism, i.e., a proof attempt without any axioms. It is surprisingly effective,
given its simplicity and radicality. It allows the ATPs to solve a large number of
tasks (for most provers approximately 100 tasks, for SPASS—due to the expen-
sive preprocessing—even more than 800) significantly faster than with the full
background theory; the cut-off timeout for this strategy is between 0.7 secs. and
1.1 secs., depending on the prover. Moreover, for a substantial number of tasks
it still enables faster proofs than any other mechanism and a small number of
proofs can be found at all only using this strategy, even for Tmax = 90 secs.

The pure calculus mechanism is easy to implement within any ATP and
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requires—in contrast to the other selection strategies—no additional user inter-
vention. It can be used as a “pre-prover” with very restricted resources, similar to
the approach taken in the FLOTTER-clausifier [NRW98], where the SPASS-prover
is invoked. Such a setup does probably not help with highly tuned benchmark
collections as the TPTP which contain mostly hard problems but in “real life”
applications as here it certainly pays. Hence, if no other, “fancier” selection
mechanisms are implemented, this approach should given a chance.

With increasing timeouts, however, the restricted pure calculus mechanism as
well as the theoretically sufficient axioms-heuristic suffer from a severe underse-
lection effect, i.e., the smaller branching factors are offset by the larger number
of proof steps, and the number of proofs found becomes smaller than in the case
of the more permissive strategies. This leaves the lemmas-heuristic as the se-
lection method of choice. In practice, it almost dominates all other methods;
a competition between different methods yields thus only minor improvements
for Tmax = 90 secs. (cf. Table 9.2). Consequently, the distinction between proper
axioms and derived lemmas seems to be unnecessary in practice, at least for
relatively small lemma libraries as the one used here.

Another important result of the lemma selection experiments is that lemma
selection is not preempted by simplification and vice versa. That is, even though
the two preprocessing steps are not completely independent of each other, neither
of them subsumes the other and their combination allows most provers to solve
significantly more tasks.9 The exact relation between simplification and lemma
selection, however, seems to be very intricate and depends on the particular ATP.
For GANDALF, simplification (s = 1.53, +18.2%-points) and lemma selection
(s = 1.53, +16.6%-points) yield more or less the same results. Both preprocessing
steps are almost orthogonal to each other and their combination yields thus a
speed-up of s = 2.25. SPASS profits much more from the lemma selection (s =
1.88, +21.3%-points) than from simplification (s = 1.12, +4.9%-points). Their
combination, however, yields additional synergies, i.e., the combined speed-up
(s = 2.69) and recall improvement (+27.9%-points) are even larger than the
product and sum, respectively, of the individual values. SETHEO, on the other
hand, is more receptive to simplification (s = 1.26, +12.3%-points) than to lemma
selection (s = 1.12, +5.7%-points); however, the combination of both steps again
yields additional synergies, although to a smaller extent than in SPASS’s case
(s = 1.61, +18.2%-points). The conclusion is that proof task simplification
and lemma selection are equally important for applications and must both be
supported by ATPs if they are intended to be used in applications.

W. Reif and G. Schellhorn [RS98] report on a similar approach to the lemma
selection problem. Their experimental evaluation is done in the context of three
different case studies in program verification but is based on significantly less

9The only exception here is OTTER which is extremely sensitive to any reorganization of
the proof task, due to the highly incomplete auto2-mode (cf. Section 8.2).



9.5. Experimental Results 165

OTTER GANDALF

mode axioms lemmas comp. pipe. axioms lemmas comp. pipe.
Tmax (sec.) 90.00 90.00 90.00 5.00 / 90.00 90.00 90.00 90.00 5.00 / 90.00
Tvalid (sec.) 37.04 23.95 23.57 - 30.67 19.15 18.79 -
σT 44.22 38.83 38.69 - 41.23 33.60 33.52 -
ΣT 68083 44027 43327 - 56374 35189 34531 -
Tproof (sec.) 0.34 2.72 2.46 - 6.92 11.50 11.00 -
σT 1.35 5.81 5.29 - 13.22 20.30 20.22 -
Tquery (sec.) - - - 2873 - - - 2821
σT - - - 1733 - - - 1666

# proofs 1083 1369 1375 1540 1254 1556 1559 1658
r (%) 58.92 74.48 74.81 83.79 68.23 84.66 84.82 90.21
r (%) 60.33 72.71 74.52 80.23 71.13 81.13 82.39 85.16
σr 33.20 29.91 27.55 26.39 30.42 26.31 23.44 24.69
p (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

SPASS SETHEO

mode axioms lemmas comp. pipe. axioms lemmas comp. pipe.
Tmax (sec.) 90.00 90.00 90.00 5.00 / 90.00 90.00 90.00 90.00 5.00 / 90.00
Tvalid (sec.) 32.77 15.94 15.51 - 40.69 33.06 31.76 -
σT 42.90 31.72 31.37 - 44.33 42.48 42.29 -
ΣT 60234 29293 28513 - 74785 60769 58373 -
Tproof (sec.) 2.11 5.47 5.35 - 5.01 4.33 3.31 -
σT 7.17 9.58 9.58 - 13.80 8.54 7.94 -
Tquery (sec.) - - - 2826 - - - 2941
σT - - - 1687 - - - 1670

# proofs 1180 1565 1573 1618 1025 1168 1208 1452
r (%) 64.20 85.15 85.48 88.03 55.77 64.53 65.72 79.00
r (%) 67.65 79.44 83.51 81.68 48.94 51.07 62.49 63.16
σr 33.50 29.29 21.88 28.51 36.68 36.89 33.75 35.83
p (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 9.2: Lemma Selection: General Results, Simplified Tasks

(139 in total) proof tasks. In general, both experiments yield similar results.
[RS98] also report a generally increased number of proofs found, as well as faster
proofs, independent of the particular ATP. The improvements described there
are consistent with the improvements observed here. In particular, [RS98] also
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note SPASS’ strong sensitivity to large lemma sets (if the built-in predicative sort
encoding is used; term encodings are not investigated) as well as the relative in-
sensitivity of tableau-style provers, i.e., SETHEO. Together with the experiments
described here, they cover a wide spectrum of application characteristics. Over
this spectrum, the effectivity of signature-based heuristics is, hardly surprising,
determined by the signature characteristics of the proof tasks and lemma library.
They are most effective when the domain theory contains only few sorts (or,
by extension, is even unsorted) and relatively few operators but many axioms
and lemmas. If term encodings are used, their number is the critical variable:
the more sorts the domain contains, the better the built-in indexing schemas
of the ATPs cope with large lemma sets. Conversely, hierarchical specifications
can be considered as an additional indexing schema which complements the pure
sort-based indexing.

Finally, Table 9.3 shows again the results of the prover competition and its
combination with the rewrite-based rejection filter. For each prover, only the
best variant (i.e., simplified tasks and lemma-heuristic has been used.

OTTER & SPASS full competition

Tmax (sec.) 1.00 20.00 90.00 1.00 20.00 90.00 5.00 / 20.00 5.00 / 90.00
Tvalid (sec.) 0.93 17.64 79.97 0.92 17.88 79.88 - -
σT 0.25 5.95 27.99 0.26 6.07 28.17 - -
ΣT 784 7518 23399 674 6741 22113 - -
Tproof (sec.) 0.15 1.36 2.39 0.13 0.95 2.14 - -
σT 0.22 3.30 6.93 0.20 2.94 7.52 - -
Tquery (sec.) 110.1 2134 9517 109.0 2128 9506 736.1 2692
σT 20.6 429 1971 21.0 433 1977 435.3 1670

# proofs 1233 1569 1621 1365 1576 1631 1648 1673
r (%) 67.08 85.36 88.19 74.27 85.75 88.74 89.66 91.02
r (%) 66.62 80.66 83.76 71.43 81.19 84.34 84.71 86.23
σr 34.71 26.32 23.64 31.86 26.25 23.73 24.45 23.26
p (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 9.3: Lemma Selection: Prover Competition

At Tmax = 90 seconds, the speed-up factor of the full competition over the
fastest individual prover (SPASS) on the valid proof tasks is s = 1.32; the ef-
ficiency of this competition is e = 0.33. The restricted competition between
OTTER and SPASS yields s = 1.25 and e = 0.63 under these conditions. These
speed-ups are comparable to those observed in the other competitions (cf. Ta-
bles 7.2 and 8.2)
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The combination of prover combination and the rewrite-based rejection filters
again improves the recall noticeable. An overall recall level of approximately 90%
is already achieved with a rewriter timeout of Tmax = 5.0 secs. and a prover time-
out of Tmax = 20.0 secs. for each individual prover. The average query response
time Tquery of approximately 12 mins. means that the expected further hardware
improvements make deduction-based software component retrieval a technically
feasible option for the near future.
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Chapter 10

Summary and Conclusions

Deduction-based software component retrieval is a multi-faceted research topic.
In this thesis I have obviously investigated only some of the facets. This final
chapter summarizes its main results (Section 10.1) and relates them to other
work on this topic (Section 10.2). The very final Section 10.3 briefly sketches
some other facets which are left as future work.

10.1 Summary of Results

Deduction-based software component retrieval is an ambitious technology which
has an enormous potential to reduce the cost incurred and the time required to
develop highly reliable software. In this thesis, I have investigated several aspects
of deduction-based software component retrieval and shown ways to make it prac-
tical. Its main theoretical contributions are the investigation and characterization
of abstract match predicates and retrieval algorithms and the detailed investiga-
tion of different match predicates, their reuse effects, and their interrelations. Its
main practical contributions are the design and implementation of an advanced
retrieval system architecture and the substantial experiments with off-the-shelf
ATPs to evaluate and demonstrate the technical feasibility of deduction-based
software component retrieval.

In Chapter 2, I have presented a new, abstract view of component retrieval
based only on the concept of sets of relevant, matching, and found components,
respectively. I have shown how properties of abstract match predicates (e.g., tran-
sitivity) are reflected in these sets and vice versa and how this duality can be used
to build library indexes. I have introduced the concepts of closure under iterated
retrieval and query stability which characterize an important class of retrieval
algorithms. For the algorithm evaluation in the context of NORA/HAMMR’s ar-
chitecture, I have introduced the concepts of precision leverage and relative defect
ratio which measure the filtering qualities of an retrieval algorithm and I have
shown how these concepts relate to each other.

169
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In Chapter 3, I have demonstrated how different match predicates are built
up from their constituents, i.e., quantifier prefix, type compatibility predicate,
and body. I have analyzed how the choices of different type compatibility pred-
icates and—especially—quantifier prefixes already affect the reusability of re-
trieved components, even with the same body; this is also the first time other
quantifier prefixes than the usual fully universal prefix have been considered for
deduction-based retrieval. I have identified relevance conditions and reuse ef-
fects for the three different retrieval modes, i.e., exact, proper, and approximate
retrieval, and defined various match predicates for these modes. I have also for-
mally shown under which conditions on the component specifications and queries
match predicates become equivalent or follow from others.

In Chapter 4, I have identified the two most important user requirements
to making deduction-based software component retrieval more practical, namely
“Components, not proofs!” and “Results-while-u-wait!”. From these, I have de-
veloped a new architecture for retrieval systems which is based on a pipeline
of filters of increasing deductive strength. This pipeline architecture allows to
filter out non-matches quickly and cheaply and thus prevents the applied the-
orem provers from “drowning”. It also supports the any-time inspection of all
intermediate results and it can easily be extended to a parallel architecture, thus
harnessing the computational power of an entire local or wide-area network for re-
trieval purposes. This architecture is implemented in the fully automatic retrieval
system NORA/HAMMR, which is the first realistic complete implementation of
the deduction-based retrieval concept.

In Chapters 5 and 6, I have shown that relatively simple techniques are suffi-
cient to identify a sufficiently large number of non-matches quickly and cheaply.
In Chapter 5, I have described the application of term rewriting to simplify the
proof tasks and to reduce them eventually to true or false, thus exposing trivial
matches and non-matches, respectively. I have developed a general quantifier
elimination schema and instantiated it for equality types (i.e., the diagonaliza-
tion rule) and generated (or data) types (i.e., the surjective unrolling rule). This
approach is surprisingly effective for the test library and reduces the fallout of the
answer set to almost 25%. In Chapter 6, I have analyzed the application of spe-
cific counterexamples to identify non-matches. I have used both term rewriting
and theorem proving to evaluate the proof tasks over prospective counterexam-
ples. Term rewriting turned out to be clearly better, reducing the fallout of the
answer set to less than 15%.

In Chapters 7 to 9, I have shown that fully automatic theorem provers for
first-order logic have in principle reached such a level of maturity that their
performance is no longer the major obstacle to building deduction-based retrieval
systems. In fact, this thesis even represents—to the best of my knowledge—
the first serious attempt to investigate and evaluate the suitability of different
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provers for the proof tasks emerging in deduction-based retrieval.1 However, the
experiments revealed that the applied provers were not yet mature enough to work
directly on the “raw” automatically generated proof tasks. In this case, recall
levels do not exceed 70%, even with timeouts of Tmax = 90.0 secs. per individual
proof task (cf. Figure 10.1).
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Figure 10.1: Proofs over time—base case

In Chapters 8 and 9, I have thus experimented with two independent proof
task preprocessing techniques. In Chapter 8, I have reused the term rewriting
techniques from Chapter 5 to simplify the conjectures; in Chapter 9, I have de-
veloped a simple signature-based heuristic to simplify the background theory by
identifying a suitable subset of axioms and lemmas. Both techniques generally
improve the prover performances, and thus lead to increased recall levels. More-
over, they are to a certain extent complementary and their combination yields
additional improvements, resulting in overall recall levels of 65%–85% (cf. Fig-
ure 10.1).

A welcome side effect of the preprocessing techniques described in Chapters
8 and 9 is that the provers do not only solve more problems but also solve them
faster. The average response times per valid proof task (cf. Table 10.1) drop

1A. Moorman Zaremski’s investigations [Moo96] can hardly be called serious. They are
based on a test set of only 33 valid tasks; moreover, she used the interactive LarchProver
as theorem prover. J. Penix’s investigations [Pen98] are based on a precursor of the library
used here; however, since he follows a different approach to retrieval, the simpler tasks are
overrepresented in his set-up.
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Figure 10.2: Proofs over time—best case

Base Case Best Case Speed-up
task proof task proof task proof

OTTER 30.46 3.95 23.95 1.33 1.27 2.97
GANDALF 43.14 11.99 33.60 6.30 1.28 1.90
SPASS 42.83 7.59 15.94 3.02 2.69 2.51
SETHEO 50.98 5.81 33.06 0.40 1.54 14.53

Table 10.1: Comparison of response times and proof times

approximately from 30–50 seconds in the base case to 15–30 seconds for the best
variant. For most provers, the aggregated speed-up falls into the range from
s = 1.25 to s = 1.5; the exception is SPASS which profits extraordinarily from
the lemma selection step (cf. Section 9.5) and thus achieves a significantly higher
speed-up factor of s = 2.69. Interestingly, the average proof times drop even
faster, from approximately 4–12 seconds to approximately 0.4–6 seconds; this is
reflected in the generally significantly higher speed-ups achieved. This means
that the applied preprocessing steps (i.e., simplification and lemma selection) are
working uniformly over all proof tasks and are still effective even for the simpler
tasks which the provers can already solve in the original form.

Despite all improvements, the common brute-force, all-out-match approach to
deduction-based component retrieval remains naive and unfeasable. In order to
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achieve acceptable recall levels within acceptable response times, more elaborate
approaches as for example NORA/HAMMR’s pipeline architecture are required.
However, there is no one optimal pipeline; rather, the pipeline structure depends
on the targeted response times and the available computational resources. Ta-
ble 10.2 summarizes the pipelining effect for five different pipelines.

P1 P2 P3 P4 P5

Ttask (sec.) 0.47 1.00 1.00 5.35 12.05
σT 0.45 1.56 1.60 10.25 31.53
Tquery (sec.) 55.82 118.9 118.5 636.9 1434.1
σT 22.39 76.9 79.1 499.1 1666.7
Tmax 114.12 399.9 424.4 2781.6 9880.2

# proofs 1355 1473 1581 1621 1675
r (%) 73.72 80.23 86.11 88.29 91.23
r (%) 67.36 75.95 80.91 83.65 86.40
σr 35.70 31.51 28.79 26.02 23.30
p (%) 100.00 100.00 100.00 100.00 100.00

Table 10.2: Comparison of different filter pipelines

P1 is a single-processor pipeline designed to guarantee query response times
of less than two minutes (i.e., a second per component) even in the worst case. It
thus comprises only two filters, a single rejection filter and a single confirmation
filter. P1 uses the rewrite-based rejection filterRDOMAIN with quantifier unrolling
(| t |max= 10000) and a time limit of Tmax = 0.2 secs., followed by a SPASS-
based confirmation filter with term-based sort encoding, lemma selection, and
a time limit of Tmax = 0.8 secs. By construction, SPASS works on the simplified
task variant, because the intermediate results (i.e., before quantifier unrolling)
of RDOMAIN are fed into the confirmation filter. Compared to the base case (cf.
Table 7.1), the pipeline yields dramatically improved results, with a more than
30%-points recall increase for the same timeout.

The second pipeline, P2, is also a single-processor pipeline designed for short
query response times; however, here an average response time of less than two
minutes is targeted. Since the recall of a pipeline is determined by the final
confirmation filter, it is necessary to allocate for each task as much prover time
as possible. Hence, an improvement over P1 can already by achieved by in-
creasing SPASS’ time limit such that the targeted average query response time
is maintained. This allows a time limit of Tmax = 2.3 secs. and yields a recall
of r = 78.24% or 1438 proofs. In this case, the maximal query response time
amounts to 261.0 secs. However, a further improvement can be achieved by
initially allocating more time for the rejection filters. Hence, P2 uses two re-
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jection filters, RDOMAIN followed by the counterexample-based filter R1. Both
filters are used with the same setup as in P1 except for the greater time limits
of Tmax = 0.5 secs. each. This allows SPASS to be run with the significantly in-
creased time limit of Tmax = 3.8 secs., which yields the 1473 proofs (r = 80.23%)
shown in Table 10.2.

The only slight disadvantage of this approach is that for the very few queries
for which the rejection filters fail to reduce the fallout substantially, the addi-
tional time spent in the rejection filters and the larger prover time limit directly
translate into larger response times. For the worst case, the query response time
thus increases to 399.9 secs. This increase is, however, still slightly below the
theoretical maximum due to the increased prover time which indicates that the
rejection filters still recoup some of the initial time investment.

The third pipeline, P3, is a slight modification of P2. It is targeted at the
same response times and uses the same filters with (almost) the same time-
outs but swaps the order of the two rejection filters. Since RDOMAIN is sound,
this set-up allows to bypass SPASS for tasks which are already reduced to true
by RDOMAIN and thus to take advantage of the (partial) complementarity of
rewriting and proving already demonstrated throughout the experiments. This
results in a substantially higher number of proofs (1581) and thus a higher recall
(r = 86.11%) than in the case of P2.

The fourth pipeline, P4, is again a single-processor pipeline. It uses the same
filters in the same order as P3. However, it is designed to optimize the re-
call within acceptable average response times. Hence the time limits have been
increased to Tmax = 5.0 secs. for the rejection filters and Tmax = 20.0 secs. for
SPASS. However, in comparison with the results of P3, it is not clear whether P4

accomplishes this goal. In total, P4 retrieves 40 components more, increasing the
overall recall by slightly more than 2%-points; P4 also works well more uniformly,
as witnessed by the higher query-oriented recall average (r = 83.65%) and lower
variance (σr = 26.02). However, these better results are obtained only at the
expense of an almost five-fold increase in average response times and a maximal
query response time of approximately 45 mins.

The final pipeline P5 is a multi-processor pipeline which employs up to four
processors. Its goal is to maximize the overall recall, within roughly the same
average response times as before but now harnessing much more computational
power. P5’s general structure is the same as that of P3 and P4 but it uses
competition in each step: instead of a single counterexample-based filter it uses all
three, instead of only the CNF-version of RDOMAIN it uses both the CNF-version
and the DNF-version in parallel, and of course it uses all provers in a competition
which also includes the term encoding and predicate encoding versions for SPASS.
Moreover, the prover time limits are increased to Tmax = 90.0 secs. Due to this
massive computational effort, P5 reaches even higher recall levels than P4 but the
saturation effect which already surfaced with P4 becomes even more apparent.
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10.2 Related Work

Deduction-based retrieval has enjoyed quite some popularity as a research topic;
consequently, there is an abundance of related work. This section is not intended
as an exhaustive literature survey. Instead I focus on four different aspects which
are most closely related to NORA/HAMMR.

Match Relations

The definition and investigation of different match relations, their interrelations,
and—to a lesser extent—their effects on the reusability of the retrieved compo-
nents has been a major activity from the beginning of deduction-based retrieval.
Its attraction can no doubt to a large extent be explained by the fact that this
can (and has) be done as a purely theoretical exercise and does not require any
working retrieval system for experimentation.

The original work on specification matching by E. Rollins and J. Wing [RW90b,
RW91] uses only strict plugin match (cf. Def. 3.3.4) as match predicate. A. Moor-
man Zaremski and J. Wing [MW95b, Moo96] extend this work. They define two
generic forms of match predicates, generic pre/post match

(preq R1 prec)R2 (postcR3 postq)

and generic predicate match

F [preq , postq ]⇔ F [prec, postc]

and then derive a variety of different match predicates by instantiating the logical
operators R and the specification predicate F . More details can be found in the
discussions in Chapter 3. In [MW97b] they modify their definition of generic
pre/post match to

(preq R1 prec)R2 (Ĉ R3 postq)

to allow “guarded” versions of some matches by instantiating Ĉ to either postc or
to prec ∧postc. However, their rigid syntactic framework precludes the definition
of proper match (cf. Def. 3.3.1), the most natural and common match predicate.
Moreover, since Moorman Zaremski and Wing do not consider explicit quantifi-
cation, they restrict themselves (implicitly) to the case of fully universal prefixes.

J. Penix’ dissertation thesis [Pen98] also discusses a variety of match predi-
cates. Penix rightly rejects Moorman Zaremski and Wing’s purely syntactic ap-
proach and instead “selects matches based on formalizations of intuitive notions
of reusability, and their utility in component retrieval” [Pen98, p. 23]. How-
ever, his match predicates are still variations of the fully universally quantified
proper match (called satisfies by Penix) and—due to his component adaptation
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framework—he does not consider any of the equivalence matches used for exact
retrieval.

In the context of behavioral subtyping for object-oriented languages, K. Dhara
and G. Leavens [DL96] a match predicate called guarded generalized match which
has a fully universal prefix and a body of the form

(preq ⇒ prec) ∧ ((prec ⇒ postc)⇒ (preq ⇒ postq))

However, this can be shown to be equivalent to proper match.
A. Mili, R. Mili, and R. Mittermeir [MMM94, MMM97] use a relational ap-

proach to specification matching which relies on the notion of refinement of re-
lation. R refines S (R w S ) iff

(R ◦ U ) ∩ (S ◦ U ) ∩ (R ∪ S ) = S

where U is the universal relation over the domain. However, if this is translated
into an explicit representation using pre- and postcondition expressions, it turns
out to be equivalent to proper match. In [JD+97], L. L. Jilani et al. define
approximate retrieval algorithms over a component library ordered by refinement.
However, since the retrieved components depend on the induced topology over
the library, a functionally equivalent match predicate cannot be defined.

J.-J. Jeng and B. Cheng [JC93, JC94] use a match predicate

(preq v prec) ∧ (postc v postq)

which superficially looks the same as strict plug-in match (cf. Def. 3.3.4) but
has a subtle difference: the subsumption relation v used here is not the usual
logical implication relation. Instead, it is operationally defined as a modifica-
tion of Chang and Lee’s subsumption test algorithm [CL73] which checks logical
implication. In this modified subsumption test algorithm, two complementary
literals may be resolved against each other even if their top-level functors are
not the same; they are, however required to belong to the same user-defined con-
gruence class. This modification allows the retrieval system to deal easily with
different naming conventions, e.g., ¬is empty(l) can directly be resolved against
nil? (l). However, this is a double-edged sword and its disadvantages outweigh
its advantages. It is not applied consistently but only for the top-level functors,
the user-defined congruence relation on the literal symbols is non-transparent to
and non-portable between different users, and, most importantly, it compromises
the defining feature of deduction-based retrieval that only proven matches are
retrieved.

The relation between different match predicates is traditionally character-
ized by the so-called “lattice of specification matches”, e.g., [Moo96, Figure 3.5],
[MW97b, Figure 4], [Pen98, Figure 3.2], or [CC99, Figure 1]. This structure is
obtained by ordering the (propositional bodies of the) match predicates by im-
plication. Y. Chen and B. Cheng [CC99] try to consolidate this work. They
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introduce the concept of a reuse-ensuring match via the relational semantics of
specifications and then show that the set of all reuse-ensuring matches is in fact a
complete lattice with proper match as top element, i.e., proper match is the most
general reuse-ensuring match. However, while this intuitive result is hardly sur-
prising, their technical approach is severely flawed. Again, the flaw is caused by
considering only the propositional structure of the bodies of the different match
predicates—if different quantifier prefixes are taken into account, the set of all
reuse-ensuring matches is no longer finite and thus a crucial assumption of their
proof no longer holds.

Library Organization

Match predicates can be used to order components by generality (cf. Def. 2.2.5)
and thus to organize a library hierarchically. A. Mili, R. Mili, and R. Mittermeir
[MMM94, MMM97] describe such a library organization in which the compo-
nents are stored in a lattice-like fashion, using relational subsumption (cf. above)
as ordering in such a way that the most specific components become maximal
elements. Their retrieval algorithms then exploit this hierarchical structure. For
proper retrieval (which is exact retrieval in their terminology) they start with
these maximal elements and proceed breadth-first, checking the nodes against the
query until more general nodes are no longer subsumed by the query. The query
result is then obtained as the (upward) transitive closure of the found minimal
nodes. Hence, their algorithm is closed under iterated retrieval (cf. Def. 2.2.9).

A closer inspection shows that breadth-first search does not exploit the hierar-
chical structure to its fullest extent and is systematically worse than a depth-first
approach, regardless of which maximal node the depth-first search starts. This
follows from the fact that a depth-first search from one maximal node may pre-
empt the search from another maximal node by reaching a common lower bound.

J.-J. Jeng and B. Cheng [JC93, JC94] describe a two-tiered library organiza-
tion. The lower tier uses their modified subsumption test (cf. Page 176) to order
the library components into—relatively shallow—disjoint clusters called sets of
lattices. The upper tier applies a conventional hierarchical clustering algorithm to
combine these sets of lattices into a single connected hierarchy. The clustering al-
gorithm is a variant of Kruskal’s minimum spanning tree algorithm [Kru56]. The
edge weights represent the perceived semantic distance between two components.
They are calculated from the component specifications by a syntax-directed dis-
tance measure. During retrieval, the coarse-grained upper tier of the hierarchy is
then used to prune away large parts of the library. Only the remainder needs to
be inspected more closely, again using the modified subsumption test. However,
it is not clear how well-suited the syntax-directed distance measure is in practice,
and thus how well this approach works.

In J. Penix’s feature-based indexing method, as implemented in the Rebound-
system [PBA95, Pen98, PA99], a pre-defined set Φ of features is used to construct
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an index. Φ is checked off-line against the library, using conditional plug-in as
match condition, and each component is indexed with the set of all matching
features. In contrast to the other two methods, feature-based indexing is an ex-
ternal library organization method, because it relies on the explicit and external
set of features and not on any intrinsic relation between the library components.

Formal Retrieval Models

Deduction-based software component retrieval is a thoroughly formal activity.
Oddly enough, however, there is only very little work in formalizing this activity.
The survey article [MMM98] by A. Mili, R. Mili, and R. Mittermeir also contains
the core of a thesaurus for the retrieval domain. This can also be considered
as a first step towards a formal model of component retrieval. D. Eichmann
[Eic92] has developed a preliminary framework for multi-modal retrieval systems
(i.e., systems applying more than one retrieval mechanism) based on different
sublattices for the different mechanisms.

S. Atkinson [Atk95, Atk97, Atk98] has developed an abstract retrieval frame-
work using the Object-Z notation. This framework contains Z-schemas for all
the key concepts and operations in component retrieval, e.g., keys, orderings, or
component extraction. Atkinson then instantiates this framework for a number
of different component retrieval methods, including faceted classification, specifi-
cation matching, and behavior sampling. He then extends the base framework to
model multi-modal retrieval mechanisms and describes NORA/HAMMR’s pipeline
architecture within this extended framework.

Retrieval Systems

Most work on deduction-based retrieval is of theoretical nature, or describes only
proof-of-concept “implementations” which are experimentally validated only with
a small number of selected example proofs, for example [RW91, CJ92, Moo96,
MW97b]. These implementations cannot really be considered to be retrieval
systems. R. Mili et al. [MMM97] describe an approach in which OTTER is used
to check a larger number of tasks but that work again relies on a mostly manual
set-up.

J. Penix’s Rebound-system [PBA95, Pen98, PA99] is the only other example
of a working prototype which is mature enough for a significant experimental
evaluation. Rebound is a combined component retrieval and adaptation system.
Its retrieval subsystem is based on feature-based indexing which can be considered
as the semantic equivalent to the usual keyword-based classification schemes.
Feature-based indexing uses a set Φ of first-order formulas or features which are
assigned to the components and to the query if they are logical consequences of the
specifications. Hence, φi ∈ Φ is assigned to c if prec ∧ postc ⇒ φi can be proven.
Retrieval is then reduced to comparison of the derived feature sets: a component
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can be retrieved either if its feature set is a subset of the query’s feature set (exact
retrieval in Penix’s terminology) or if it has a non-empty intersection with the
query’s feature set (approximate retrieval).

The original Rebound-system uses the HOL-prover [GM93] for classification.
A later re-implementation (under the name Soccer) relies on PVS [ORS91]; this
technology is currently commercialized for the digital signal processing domain
by EDAptive Computing, Inc. [EDA]. Both HOL and PVS are interactive, higher-
order systems and have been “tuned” by adding domain-specific tactics similar
to the rewrite-based simplifications described in Chapters 5 and 6. Penix has em-
ployed a precursor of the test library used here to evaluate Rebound in different
set-ups. For his initial classification schema, comprising just three features, and
proper match as relevance condition, he reports an average recall of r = 0.82 and
an average precision of p = 0.21.2 An extension of the classification scheme by
two more features increases the average precision to p = 0.29 but decreases the
average recall to r = 0.69. Retrieval times are consistently well below a second
as each query induces only three (or five, respectively) relatively simple proofs.

In the design space spanned by precision, recall, and response time, feature-
based indexing thus covers a position different from that of any of the filters
in NORA/HAMMR. It is significantly faster than any other filter but for a fast
rejection filter it has a relatively poor recall. Likewise, due to its low precision,
it still requires a subsequent ATP-based filter.

10.3 Future Work

No system is ever finished and despite the significant efforts already invested into
its implementation this is also true for NORA/HAMMR. Before NORA/HAMMR
in particular and deduction-based software component retrieval in general are
“ready for prime time” (i.e., can be used outside research labs), a number of
improvements have to be made. Most of these improvements ultimately concern
aspects of scaling-up deduction-based retrieval. In the following, I sketch some
of the most important and interesting issues for future work.

10.3.1 Type-Based Retrieval

Type-based retrieval or signature matching has traditionally been considered as a
computationally more tractable approximation of full deduction-based retrieval,
interpreting types as approximations of full behavioral specifications. It has thus
usually been applied only as a fast, independent prefilter. However, the discus-
sions in Chapter 3 have shown that its role is more complicated and that a careful

2Standard deviations are not given; however, min- and max -values indicate that the standard
deviations are as high as for NORA/HAMMR.
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integration of type-based and full deduction-based retrieval is required. Future
research must especially consider two important problems:

• How can type-based retrieval systematically be generalized to programming
languages beyond the functional paradigm?

• How can type-based retrieval be used to construct type compatibility pred-
icates systematically?

Both problems can be tackled by a systematic re-development of type-based
retrieval within a strong type-theoretic framework, using general type systems
[Car96]. Since type systems are purely syntactic calculi, they are also applicable
to programming languages which do not have such nice semantic interpretations
as functional languages. Moreover, an integration of type systems and R. Di-
Cosmo’s concept of constructive isomorphisms [DiC95] could be used as starting
point for the automatic construction of type compatibility predicates.

10.3.2 Reduction Techniques

Complexity reduction is the key to a further scale-up of deduction-based retrieval.
Reduction techniques can work either locally or globally. Local techniques try to
reduce a single proof task at a time, e.g., as side effect of the simplification-based
rejection filters described in chapters 5 and 6. Global techniques try to minimize
the total proof effort required to achieve a certain recall level, e.g., by reordering
the proof tasks such that tasks which are more likely associated with matches are
preferred. Global reduction techniques offer more reduction potential but they
are obviously harder to realize than local techniques. This subsection describes
two different global techniques.

Feature-Based Indexing

Feature-based indexing can be integrated into NORA/HAMMR’s pipeline; this
is described in more detail in [FLP99]. The index can be used as an initial
filter to reduce the number of emerging proof tasks “at the source”. The global
reduction effect follows from two facts. First, because the features are simpler
than full queries, the proof tasks emerging during the indexing phase are relatively
simple. Second, during retrieval, only the query itself needs to be indexed but not
the library. This integration, however, requires some modifications because the
feature-based indexing method is not only not recall-preserving but also possibly
unsound. The cause for this unsoundness is that the failure to find a proof for
the validity of a feature is identified with its invalidity. This identification is not
correct in practice because the ATP is incomplete. Hence, if the ATP fails to
derive a—necessary—feature for the query, too weak components (i.e., with too
few features) may be retrieved.
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This problem can be avoided if the feature set assigned to each component
is divided into the positive features Φ+ which are defined as above and the
negative features Φ- which can be proven not to hold. Hence, φi ∈ Φ-(c) iff
prec ∧ postc ⇒ ¬φi . Obviously, the positive and negative feature sets of a non-
trivial and implementable component c are always disjoint. It is then easy to
see that a component c can (for the relevance condition of refinement) not be
relevant if it has complementary feature to the query q , i.e., Φ+(c) ∩ Φ-(q) 6= ∅
or Φ-(c) ∩ Φ+(q) 6= ∅. These conditions can be used to improve recall as well as
precision.

Abstract Behavior Sampling

The deduction-based techniques developed in this thesis can easily be extended
to emulate behavior sampling [PP92, PP93b, PB97] within framework of a for-
mal specifications (cf. Section 1.1.2 for a short overview of the basic ideas of
behavior sampling). The global reduction effect of this abstract behavior sam-
pling approach follows again from the fact that the emerging queries are simpler
by construction than those emerging in full-fledged deduction-based retrieval.

In the most basic variant, a sample consisting of a single (input, output)-pair
is simply specified as a (pre, post)-pair relating input- and output parameters of
the specification; the datatypes of the specification language are used to construct
the respective values. For example, the query

sample-1 (l : list) r : list
pre l = [1]
post r = []

can be used to search for the tail -function. The specifications of sample and
component are then matched against each other, using µproper as match relation.

Larger sample sets can also be specified, although the notation becomes
slightly cumbersome: the precondition consists of a disjunction over all inputs,
the postcondition has to relate each output-value to its respective input-value.

sample-2 (l : list) r : list
pre l = [1] ∨ l = [1, 2]
post (l = [1] ⇒ r = []) ∧ (l = [1, 2] ⇒ r = [2])

However, it is relatively simple to translate sample sets automatically into this
form.

However, the main conceptual advantage of abstract behavior sampling over
its implementation-based counterpart, is that it allows a smooth integration of
concrete samples and abstract specifications, as shown by the abstract sample
query

abstract-sample (l : list) r : list
pre l 6= [ ]
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post (l = [1, 2, 3] ⇒ r = [2, 3]) ∧ len l = len r + 1

which combines a sample with a more abstract partial specification. It becomes
even possible to model non-determinism which can in the implementation-based
case only be achieved by “multiplying out” the different answers into different
samples and using Boolean retrieval over this extended sample set.

10.3.3 Calculus and Prover Improvements

Another crucial—but more technical—aspect is to improve the core deductive
machinery. While some improvements will happen quasi naturally by the general
progress in the field of automated deduction, others are more specific to the
characteristics of the emerging proof tasks. This subsection describes some of
these domain-specific improvements.

Decision Procedures

Decision procedures replace search by calculation and can thus construct proofs
“blindingly fast” [Bjø98]. Their usefulness has been proven in several areas, e.g.,
theorem proving (PVS [ORS91]), program verification (ESC [LN98]), or program
synthesis (Meta-Amphion, [VR98]), and it can be expected that they improve
deduction-based retrieval as well.

Decision procedures can be built directly into the theorem provers; however,
this requires usually substantial modifications of the provers (and likely even
their underlying calculus), as only very few provers have been developed with
such theory extensions in mind. Even worse, this effort has to be repeated fore
every prover.

Alternatively, decision procedures can be built into the rewrite machinery used
for simplification and rejection. In fact, the applied rewrite rules for equality and
freely generated datatypes are already very similar to the congruence closure
algorithms [Sho78, Sho79, NO80, Opp80]. Replacing these rules by a specialized
implementation should thus yield a significant speed-up. N. Bjørner has extended
R. Shostak’s algorithm [Sho78] to handle the quantifier-free theory of queues with
prefix-, subqueue-, and membership-predicates and tested it on the original proof
tasks [Bjø98]. However, since the tasks are not quantifier-free, his algorithm
becomes incomplete but it still remains sound and terminating; moreover, it is
very fast. A confirmation filter based on that implementation yields an average
recall of r = 66.70% (or 1226 proofs) within an average query response time
of Tquery = 5.84 secs. (σT = 3.29 secs.) This compares very favorable with the
rewrite-based filter (cf. Table 5.3).
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Abstract Model Checking

Model checking has been highly successful for the verification of parallel and
distributed systems and programs. This raises the question whether and how it
could be used for deduction-based retrieval. Since model checking can usually
find counterexamples for invalid proof tasks quickly, it is natural to apply it in
a rejection filter. However, since model checking is essentially a propositional
method, it terminates only if the domains of all sorts occurring in the proof task
are finite. This is clearly not the case for the test library nor for most useful
component libraries.

Finiteness can be enforced by the application of appropriate abstractions.
Here, the basic idea is the same as in abstract interpretation of computer programs
[CC77]. The infinite concrete domain is replaced by a finite abstract domain.
Each abstract domain element represents an equivalence class. Lists for example
may be abstracted into the classes nil = {[ ]} and non-nil = {x | x 6= [ ]}. The
choice of the equivalence relation is a crucial step of the abstraction process. The
concrete functions and predicates are replaced by abstract counterparts which
work on the equivalence classes. Determining these abstract counterparts is,
however, even harder than choosing appropriate abstract domains. This abstrac-
tion process usually introduces imprecisions, either in the form of underapprox-
imations or in the form of overapproximations. Depending on the introduced
imprecisions and the form of the proof task, the rejection filter can then become
unsound, incomplete, or both.

However, even the approximated finite domains can still cause practical prob-
lems. Since model checking is essentially propositional, first-order tasks are trans-
lated into a shallow relational form, i.e., nested subterms are replaced by vari-
ables, n-ary function symbols are replaced by (n + 1)-ary predicate symbols, and
the clause set is extended by new clauses which ensure the well-definedness of the
fresh predicates. The extended clause set is then ground-instantiated over the
finite domains; each distinct ground atom is replaced by a unique propositional
variable. This instantiation step may cause an exponential blow-up as a clause
with m variables produces mn ground instances, assuming a domain size m.

In practice, blow-up and imprecision are limiting the suitability of rejection
filters based on model checking (cf. [FSS98, FLP99] for more details). Even with
very small domains (i.e., | item |= 1 and | list |= 2), MACE’s [McC94a] memory
limits are exceeded for more than 6% of the proof tasks. For Tmax = 0.5 secs.,
almost 40% of the remaining tasks cannot be completed within the time limit.
Together, this yields an average recall of r = 66.65% and an average precision of
p = 19.52%. Hence, rejection filters based on model checking are worse than those
based on rewriting (cf. Chapters 5 and 6). This is also reflected in a relatively
small precision leverage of δp = 1.50 and a relatively high relative defect ratio of
δe = 0.60. However, abstract model checking is currently a very active research
topic (e.g., [GS97, Sai99, VPP00]) and new, more precise and more aggressive
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abstraction techniques could make rejection filters based on model checking more
practical.

Sort Structures and Sort Encodings

The lemma selection experiments described in Section 9.5 have demonstrated
that sort encodings can have a major impact on the performance of the ATPs
and thus on the retrieval results. It may be expected that different sort structures
(e.g., employing subsorts) have similar impacts. To investigate and quantify these
impacts, the experimental evaluation presented in this thesis could be repeated
with an accordingly recoded domain theory and library.

Two especially interesting questions are whether finer-grained sort structures
are beneficial at all and whether SPASS with its built-in sort support can profit
disproportionally from a such structures or whether term encodings remain com-
petitive. If finer-grained sort structures prove to be beneficial, general techniques
should be developed which extract the optimal sort structure from a domain
theory and automatically transform the theory appropriately. This can be con-
sidered as building-in a decision procedure for sort reasoning, similar in spirit to
the Meta-Amphion approach [Roa97, RVL97].

Simulating Induction

The inductive structure of generated datatypes means that pure (i.e., non-induct-
ive) first-order theorem provers are theoretically incomplete and that inductive
provers must be used. In practice, however, proper inductive provers are too
general (i.e., too weak) for the emerging proof tasks and rely too much on inter-
action. Hence, it is necessary to find heuristics for first-order approximations of
a proper induction.

The two main problems are to identify suitable induction variables and induc-
tion schemas. Due to the regular structure of the proof tasks and the meta-level
information provided in the lemma library, these problems can be solved in a
straightforward way. Since the query should ultimately guide the proof, its induc-
tively defined parameters are good candidates for the use as induction variables.
Similarly, simple structural induction is a good candidate for the use as induction
schema because it does not require any semantic analysis of the proof tasks and
can be derived automatically from the generator functions. A further simplifica-
tion can be achieved if the proper structural induction schema is replaced by the
surjective unrolling schema (cf. Def. 5.18). This “poor man’s induction” has the
advantage of generating smaller formulas in the step case, as the original formula
need not be duplicated in the induction hypothesis and conclusion. However, it
is an obviously even more incomplete approximation.

J. Schumann [Sch00] has used SETHEO to experiment with such induction
approximations, using the same proof tasks as in chapters 7-9. A preprocessing
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step applies the induction schema and splits the original task into multiple inde-
pendent tasks; each of these tasks is then processed further by NORA/HAMMR.
Due to differences in the experimental set-up, the results cannot be compared
directly. However, they clearly indicate that such approximations are a feasible
approach to the induction problem. They also indicate that a competition over
the different induction schemas improves the efficiency of the approach further.

Induction approximation can also be used to build an unsound filter by re-
trieving components for which at least one of the associated inductive (sub-)
tasks can be solved. Such filters should be well-suited for datatypes which are
generated by relatively large signatures, e.g., enumeration types or syntax trees.

Parallel Architectures

As long as the pipeline does not contain a strong indexing schema at the source,
the number of proof tasks emerging for a single query grows in step with the size
of the library. A scale-up to very large libraries (i.e., thousands of components)
can then only be achieved by distributing the proof tasks over a large number of
processors. This is possible at two different levels of granularity.

At the coarser level, the proof tasks are considered as atomic units, i.e., a single
proof task is executed on a single processor only. This requires a centralized
“scheduling filter” which distributes the tasks and collects the results but no
modification of the provers. In a experimental extension of NORA/HAMMR the
ILF-system [DG+97] was used as scheduler. The experiments (cf. [BF98, BFF99]
for details) showed that the scheduling overhead is generally insignificant. Thus,
this brute-force parallelization approach can be used to scale-up deduction-based
retrieval.

At the finer level, the proof tasks are no longer considered as atomic units,
i.e., a single proof task is distributed over a number of processors. This approach
is technically more challenging because it requires communication between the
different processors working on the same task in order to provide any further
improvements over the coarse-grained parallelization. Some ATPs as for example
PARTHEO [SL90] (which is a parallel version of SETHEO) already provide the
necessary communication infrastructure. These ATPs can than again be used
as black boxes. For other systems, a dedicated communication infrastructure
is required. J. Denzinger and D. Fuchs [DF98] describe a system which allows
parallelization and cooperation of different ATPs with only minor modifications
of the provers. Such a system can be used as “meta-filter” in NORA/HAMMR,
comprising multiple cooperating provers.

Moreover, the fine-grained parallelization approach has even more potential
to improve the retrieval performance (i.e., the recall) than the coarse-grained
approach, or in other words, cooperation beats competition. The reason for this
is precisely the communication: cooperating provers exchange solved subgoals
which may help a stuck prover to complete the proof. Preliminary experiments
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[BF98, BFF99] show that a cooperation of different ATPs can improve the recall
over a simple competition between the same ATPs by as much as almost 10%-
points.

10.3.4 Integration with other Formal Techniques

Deduction-based retrieval has traditionally been investigated in isolation, and this
thesis followed the tradition. This isolated view, however, ignores synergies which
can result from combinations with other formal software development methods,
e.g., program verification or program synthesis. These synergies can help to offset
the relatively high up-front investments required to introduce deduction-based
retrieval.

Integration into Program Verification

The major conceptual advantage of deduction-based retrieval is that it retrieves
proven matches only. This conceptual advantage can unfold its full practical
potential by an integration into a Hoare-style program verification system, e.g.,
the Modula Proving System (MOPS) [Kai98, KFS00].

The basic idea of such a combination is that the Hoare-triples, traditionally
written as {P}S{Q} [Apt81], can also be considered as (almost complete) queries.
Since, given P , a terminating execution of S yields Q , the pre/post-pair (P ,Q)
can also be used to search for S if it is still unknown. The unique benefit of such
a combination is that it lifts reuse from the pure code level to the proof level,
provided that the library components are verified against their specifications.

The integration of NORA/HAMMR into MOPS is thus a promising project. It
is made easier by the deliberate choice of VDM-SL as common contract language
for both systems. MOPS uses formal comments to embed specifications into the
source code such that the annotated program can still be compiled and executed
by any Modula-2 compiler.

(*{ entry sum loop

pre sum = 0

post sum’ = n * (n+1) div 2 }*)
(*{ loopinv sum = ((i - 1) * i) div 2 }*)
FOR i := 1 TO n DO

sum := sum + i;

END;

(*{ exit sum loop }*)

Figure 10.3: Embedded specifications in MOPS

entry/exit-tags as shown in Figure 10.3 mark the verification segments; these
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can be nested to break large proofs into separate, manageable pieces or—in com-
bination with NORA/HAMMR—to decompose a large “gap” into separate, simple
queries. The verification segments are, however, not yet suitable as queries be-
cause they do not describe proper components. The code segments are tightly
coupled (“inlined”) with their environments and lack explicit interfaces. For re-
trieval purposes, the verification segments need to be modified to include such
an interface. This can be achieved by extending the simple entry-tag into a full
VDM function- or operation signature, e.g., sum loop(n:int) ext rw sum:int.
These modified verification segments can then be used as hooks for deduction-
based retrieval; the queries can be extracted from the annotated source file and
submitted to NORA/HAMMR. However, a working integration still requires sub-
stantial infrastructure work.

Integration into Program Synthesis

The combination of implementation, verification, and retrieval described above
can be considered as an ad-hoc program synthesis approach. A more princi-
pled approach is deductive synthesis which is going back to [Gre69, Wal69]. It
is based on the Curry-Howard isomorphism [How80] or “proofs-as-programs”-
paradigm which asserts that a constructive proof of a specification is equivalent
to a functional program which is correct with respect to this specification. Its
main problem, however, is that it does not scale up very well, as for example
observed by [Kre98]:

“The main problem of general approaches to program synthesis is that
they force the synthesis system to derive an algorithm almost from
scratch . . . ”

The integration of a specialized deduction-based retrieval subsystem effectively
allows synthesis to bottom-out in previously synthesized components instead of
the built-in operators of the language only and thus helps to raise the level of
granularity. The main problem of such an integration is to prevent overloading
of the retrieval subsystem with an excessive number of equivalent or redundant
queries.

One integration approach, which is described in more detail in [FW99], is
based on the deductive tableau approach [MW80, MW92], or more precisely,
on its higher-order logic reinterpretation as given by A. Ayari and D. Basin
[AB96, AB99]. In this interpretation, higher-order variables are used to represent
the program fragments yet to be synthesized, similar to the meta-variables in
the Hoare-triples. The tableau is represented by the proof state, as shown in
Figure 10.4.

The integration exploits the idea that the introduction of a new meta-variable
marks a substantial change of the proof state and thus warrants a new attempt to
retrieve components. The technical challenge is to extract the first-order queries



188 Chapter 10. Summary and Conclusions

A1 ∧ . . . ∧ An → SPEC
1) [[H1,1; . . . ;H1,n1 ]] =⇒ G1

...

m) [[Hm,1; . . . ;Hm,nm ]] =⇒ Gm

Figure 10.4: Higher-order representation of deductive tableaus

from the higher-order proof state. This can of course not be automated com-
pletely because higher-order logic is more expressive than first-order logic but
good approximations can be found based on the restricted structure of the proof
state. One of the remaining open problems is the construction of an appropriate
signature for the query, similar to the problem faced in integrating retrieval and
verification.

This integration can solve one of the most difficult conceptual problems of
pure retrieval-oriented reuse approaches, namely, what to do when no perfectly
matching components can be found for a particular query. It supports the the
adaptation of retrieved “near-misses” in a clean, unified formal framework for
software design and reuse.
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Birkhäuser, Boston, 1995.

[DJ90] N. Dershowitz and J.-P. Jouannaud. “Rewrite Systems”. In J. van
Leeuwen, (ed.), Handbook of Theoretical Computer Science B: Formal Methods
and Semantics, pp. 243–320. North-Holland, Amsterdam, 1990.

[DJ94] P. T. Devanbu and M. A. Jones. “The Use of Description Logics in KBSE
Systems”. In Fadini [Fad94], pp. 23–38.

[DL96] K. K. Dhara and G. T. Leavens. “Forcing Behavioral Subtyping Through
Specification Inheritance”. In Maibaum and Zelkowitz [MZ96], pp. 258–267.

[DLL62] M. Davis, G. Logemann, and D. W. Loveland. “A Machine Program for
Theorem Proving”. Communications of the ACM, 5(3):394–397, July 1962.

[DP60] M. Davis and H. Putnam. “A Computing Procedure for Quantification
Theory”. Journal of the ACM, 7(3):201–215, July 1960.



Bibliography 193

[EDA] http://www.edaptive.com/.

[Eic92] D. Eichmann. “Supporting Multiple Domains in a Single Reuse Repos-
itory”. In Proceedings of the 4th International Conference on Software Engi-
neering and Knowledge Engineering, Capri, Italy, June 1992. IEEE Computer
Society Press.

[Fad94] B. Fadini, (ed.). Proceedings of the 16th International Conference on
Software Engineering, Sorrento, Italy, May 1994. IEEE Computer Society
Press.

[FF98] M. Fuchs and M. Fuchs. “Feature-based Learning of Search-guiding
Heuristics for Theorem Proving”. AI Communications, 11, 1998.

[FG89] W. B. Frakes and P. B. Gandel. “Classification, Storage, and Retrieval
of Reusable Components”. In Proceedings of the Twelfth Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, pp. 251–254, 1989.

[Fis98] B. Fischer. “Specification-Based Browsing of Software Component Li-
braries”. In D. F. Redmiles and B. Nuseibeh, (eds.), Proceedings of the 13th In-
ternational Conference on Automated Software Engineering, pp. 74–83, Hon-
olulu, Hawaii, October 1998. IEEE Computer Society Press.

[Fis00] B. Fischer. “Specification-Based Browsing of Software Component Li-
braries”. Automated Software Engineering, 7(2):179–200, 2000.

[FKS95a] B. Fischer, M. Kievernagel, and G. Snelting. “Deduction-Based Soft-
ware Component Retrieval”. In J. Köhler, F. Giunchiglia, C. Green, and
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