
Solving Software Reuse Problems

with Theorem Provers

Thomas Baar

1

and Bernd Fisher

2

1

Inst. f. Mathematik, HU Berlin

baar�mathematik.hu-berlin.de

2

Abt. Softwaretehnologie, TU Braunshweig

fish�ips.s.tu-bs.de

Abstrat. In NORA/HAMMR, we investigate the appliation of auto-

mated theorem provers to retrieve software omponents based on their

formal spei�ations. The problem pro�le has major impats on the prob-

lem solving proess. Integration and preproessing steps, e.g., simpli�a-

tion, beome as important as the atual proving proess.

NORA/HAMMR thus uses a pipeline of �lters of inreasing dedutive

strength. Only in the �nal �lter provers are applied. Here, we use ILF to

ontrol ompetition between di�erent systems. Experiments on�rm this

approah. With moderate timeouts we already ahieve an overall reall

of approximately 80%.

1 Introdution

Progress in automated dedution has made the appliation of automated theo-

rem provers (ATPs) to problems in software engineering a more realisti idea than

ever before. With NORA/HAMMR (f. [5℄ for a detailed aount) we investigate

an appliation in software reuse, dedution-based software omponent retrieval.

It uses formal spei�ations as omponent indexes and as queries, builds proof

tasks from these, and heks the validity of the tasks using an ATP. A omponent

is retrieved if the prover sueeds on the assoiated task|retrieval beomes a

dedutive problem.

Solutions of this dedutive problem, however, are onstrained by peuliari-

ties of its software engineering roots whih set it apart from other appliations

domains, e.g., mathematis:

{ The users are no ATP experts; they are not even interested in suessful

proofs but only in retrieved omponents.

{ Response times matter; from the user's point of view it is better to be fast

than omplete (\results-while-u-wait".)

{ Every single user task spawns a large number of proof tasks.

{ If a task is provable, its proof is rather simple but in most ases it is unprov-

able (i.e., no valid theorem) beause it belongs to a non-math.

The di�erent user and problem pro�les have major impats on a realisti imple-

mentation of dedutive retrieval. First, the dedutive omponent must be enap-

sulated ompletely. The \novie" users must be able to formulate their problems

in their own, appliation-oriented language (e.g., NORA/HAMMR uses VDM-SL).

Thus, an eÆient and automati onstrution of prover-spei� tasks beomes

an important part of the problem-solving proess. Then, the time requirements

and the large number of tasks render a na��ve generate-and-test approah infeasi-

ble. Instead, more intelligent arhitetures are required whih prevent the atual

ATP from \drowning." Finally, simpli�ation of the proof tasks and detetion

and removal of non-theorems an no longer be taken for granted and must be

done expliitely.

These requirements prompt an open system arhiteture (f. Setion 3.1),

in whih di�erent dedutive omponents work in ombination on a pratial

appliation whih is too diÆult for a single monolithi system. However, the

single omponents still require a substantial amount of system tuning whih

must be done by an \expert user" or reuse administrator. For this proess (f.

Setion 5), interative theorem proving systems with good presentation and

prototyping failities as for example the ILF-system proved to be suitable.

2 Appliation Bakground

Component retrieval is one of the tehnial key issues in software reuse: \You

must �nd it before you an reuse it!"

1

A variety of di�erent approahes has

been investigated, dedution-based retrieval being the most ambitious (f. [9℄

for an overview.) In ontrast to the other approahes, it exploits exat semanti

information about the omponents and retrieves proven mathes only. Its basi

idea is very simple.

1. Eah omponent is assoiated with a ontrat, a formal spei�ation whih

aptures the relevant behaviour in form of a pre- and postondition, e.g.,

run (l : list) r : list

pre true

post exists l1 : list & l = r

y

l1 ^ ordered(r)

^ forall i : item, l2 : list & l = r

y

[i℄

y

l2) :ordered(r

y

[i℄)

whih omputes the longest ordered initial subsegment (i.e., run) of a list.

2

2. Contrats also serve as queries q, e.g.,

segment (l : list) r : list

pre true

post exists l1, l2 : list & l = l1

y

r

y

l2

an be used to retrieve any funtion whih returns an arbitrary ontinuous

sublist of the argument.

1

The First Golden Rule of Software Reuse, attributed to W. Traz.

2

In VDM-SL,

y

denotes list onatenation, [℄ the empty list, [i℄ a singleton list with

item i. & reads as \suh that" and ordered is a user-de�ned prediate.

3. For eah possible andidate, a proof task is onstruted omprising the re-

spetive pre- and postonditions.

4. A omponent quali�es if an ATP an establish the validity of the assoiated

task.

The exat form of the proof task determines the nature of the reuse. The most

ommon form is plug-in ompatibility

(pre

q

) pre

) ^ (pre

q

^ post

) post

q

)

whih supports blak box reuse|retrieved omponents may be reused \as is",

without further proviso or modi�ation. Other notions of ompatibility support

white box reuse but then manual heks or ode modi�ations are required in

order to guarantee the appliability of the retrieved omponents.

3 The Dedutive Infrastruture

3.1 System Arhiteture

The key problem in dedution-based software retrieval is to maintain a balane

between fast responses and high reall (i.e., number of proofs found.) The large

number of tasks makes it also a hard problem. Thus, a arhiteture is required

whih prevents the atual ATP from \drowning". NORA/HAMMR uses a pipeline

of �lters of inreasing dedutive strength in order to redue the number of proof

problems stepwise. Several pre�lters based on signature mathing and rewrit-

ing try to identify non-mathes as fast and early as possible and only for the

remaining proof problems a real ATP is started.

Yet, all experiments show that still no single ATP on its own is powerful

enough to be \the" dedutive omponent for all the tasks passing the pre�lters.

NORA/HAMMR thus integrates di�erent ATPs, using the ILF-system [4℄ as an

\ATP-sheduler" to ontrol them. ILF provides easy aess to the resoures of

an entire loal omputer network for time-onsuming proof attempts and ob-

viates the neessity to generate spei� input-�les for every ATP. This allows

us to use di�erent methods for the same problem in parallel. Currently, we use

resolution (OTTER and SPASS) and tableau style systems (SETHEO.) Even a

proper ombination of methods following the TECHS-approah [3℄ is supported.

Further parallelization is ahieved along another dimension. NORA/HAMMR an

generate di�erent variants of the same problem, e.g., using di�erent axiom sets

whih are handled by ILF in the same way.

Figure 1 shows the resulting system arhiteture. Users ommuniate only

with NORA/HAMMR, using a simple graphial user interfae desribed in [5℄.

The tasks are piped through the di�erent pre-proessing stages provided by

NORA/HAMMR. At the end of the pipeline, ILF takes over ontrol and dis-

pathes the tasks to the ATPs. Sine the users need no proofs, ILF just returns

whether a proof has been found at all, and NORA/HAMMR eventually displays

the omponent.

OTTER

NORA/HAMMR

De-Customization ILFAxiom-SelectionSimplification

SPASS SETHEO

User

Pipeline

Application

Provers

Fig. 1. System arhiteture

3.2 De-Customization

VDM-SL o�ers a wide variety of syntati onstruts, e.g., let-expressions, pat-

tern mathing, built-in datatypes, dynami types using type invariants and many

more. The proess to ut this down is alled de-ustomization. It translates the

proofs tasks into LPF, the logi of partial funtions [1℄ whih we use as ore

language. De-ustomization replaes binding expressions on the term level (e.g.,

let- or ases-expressions) by standard quanti�ers suh that non-deterministi

expression evaluation (due to VDM-SL's loose semantis) and unde�ned expres-

sions (due to partial funtions) are mapped orretly (f. [8℄.) It also eliminates

dynami types and replaes them with their stati super-types by relativization

with the type invariants, similar to the standard relativization tehnique [10℄.

A seond step takes are of the partial funtions and translates LPF into

FOL, following [7℄. The translation is provability-preserving, i.e., `

LPF

' ()

`

FOL

'

0

holds. It uses a set of signed funtions to map any LPF-formula whih

ontains an unde�ned subterm to an unprovable FOL-formula. E.g., the LPF-

formula 8l : List � hd l = hd l whih has the truth value unde�ned beomes

8l : List � l 6= [℄^hd l = hd l. Sine the quanti�ers in LPF range only over proper

(i.e., de�ned) values, we an optimize the handling of formulas and terms whih

ontain no ourrenes of partial funtions.

The original translation by Jones and Middelburg uses in�nitary logi to

deal with reursively de�ned datatypes. Sine we translate only into pure FOL

but do not apply proper indutive provers, we need �rst-order approximations

for those datatypes. This approximation omprises two steps.

In the �rst step, the free generation property of the datatype is enoded by

additional �rst-order axioms, similar to [6℄. In detail, we have to enode (i) the

onstrutor property of the onstrutor funtions (i.e., that terms with di�erent

top-level onstrutors are never equal), (ii) the surjetivity of the onstrutors

wrt. the datatype domain (i.e., that the top-level funtion symbol of eah element

in the domain is one of the onstrutor funtions), and (iii) the freeness or

injetivity of the onstrutor funtions (i.e., if two terms with the same top-level

onstrutor are equal then their respetive arguments are equal, too). Although

these axioms do not apture the �nite generation property, they work quite well

in pratie. For example, in the usual theory of lists whih is freely generated

by nil and ons, the three properties give rise to the following axioms

3

(i) 8i :

item ; l : list � nil 6= ons(i; l), (ii) 8l : list � l = nil _ 9i : item; m : list � l =

ons(i;m), and (iii) 8i; j : item; l;m : list � ons(i; l) = ons(j;m)) i = j ^ l =

m.

However, we an even improve this and inorporate ardinality information

whih we an infer from the onstrutors and the signature information ontained

in the theory database. If a sort is freely generated by at least two onstrutors

and all argument domains are guaranteed to be non-empty (e.g., beause the sig-

nature ontains onstants of the neessary types), then we know that it ontains

at least two di�erent elements. In the list example, we an thus add a fourth

axiom (iv) 8l : list � 9m : list � l 6= m.

A seond step deals with the indution sheme whih follows from a datatype

de�nition. Obviously, it annot be enoded by �rst-order axioms. However, the

speial nature of our proof tasks allows the very powerful heuristi to use the

formal parameter(s) of andidate omponent as indution variable(s) and to

instantiate the indution sheme appropriately.

3.3 Simpli�ation

Unlike the problems in benhmark olletions as the TPTP [14℄, proof tasks in

appliations are generated automatially and thus not simpli�ed. E.g., in our

ase they may still ontain the propositional onstants true and false from the

original ontrats or redundant equations whih may be used to simplify the

task. Hene, rigorous simpli�ation is a neessary �rst step.

In NORA/HAMMR, we use a rewrite-based simpli�ation proedure, and

sine we are working with extensions of FOL, the applied set of rewrite rules

is two-tiered. The ore tier deals with the FOL operators and equality. It elim-

inates the propositional onstants, rewrites the tasks into onjuntive normal

form and then further into anti-prenex form to minimize quanti�er sopes.

The ustom tier deals with all other symbols. It an also be separated into

two subsets. One subset ontains all rules whih an be extrated from \suit-

able" axioms and lemmas in the database, i.e., universally losed unit literals,

equations, and impliations. Unit literals are rewritten into true or false, de-

pending on their sign. For equations and impliations we only hek whether

they derease the size of the terms but do not use a proper termination order-

ing. The other subset follows from the generator information for datatypes. Of

ourse, the onstrutor property and injetivity of the onstrutor funtions in-

due the usual rewrite rules. The surjetivity gives rise to a witness rule, e.g.,

9x : List � x = t ; true (provided that the bound variable x does not our

free in t.) Similarly, the ardinality information an be turned into rewrite rules.

Note that both rules onsider the quanti�er as an ordinary operator symbol.

3

The neessary sort information an easily be obtained from the funtion spei�ations

in the theory database (f. Setion 3.5.)

3.4 Rejetion

Simpli�ation an also be used in a rejetion �lter: if a proof task G an be

simpli�ed to false, the andidate may obviously be rejeted. Unfortunately, only

very few of the inherent inonsistenies an already be deteted by the simpli-

�ations so far. For rejetion purposes it is neessary to make muh more of

them expliit. To this end, we an again exploit the generator information for

datatypes and use the surjetivity of the onstrutor funtions to \unroll" sorted

quanti�ers, e.g., 8l : list �H [l℄ beomes H [nil ℄^8i : item; l : list �H [ons(i; l)℄. By

repeated unrolling and re-simpli�ation we are then able to detet almost half

of the mismathes.

Even though this rewrite-based simpli�ation is a good low-ost rejetion

�lter, it is still too oarse and more methods to show A 6j= G formally are

neessary. The obvious approah is to negate the goal and to hek A ` :G.

However, this is only a suÆient and not a neessary ondition and in many

ases we have that A 6j= G and A 6j= :G both hold.

Another approah is to look for expliit ountermodels, i.e., strutures in

whih the axioms A hold but not G. We have experimented with model hek-

ing tehniques (f. [13℄) but sine A inludes the theory of lists, we an only

approximate the neessary �nite strutures and the approah beomes unsound.

However, as humans we an spot the ountermodels easily beause usually only

a small part of the struture is required. Moreover, this part is even quite similar

for most tasks. Hene, in order to show A 6j= G, we formalize the ountermodel

by additional axioms CM and try to dedue the negated goal, i.e., we have to

solve the task A[CM ` :G. This approah relies of ourse on the fat that the

extension CM is onsistent with the original axioms A. However, this annot be

proven automatially but must be shown manually by the reuse administrator.

3.5 Axiom Seletion

The proof tasks ontain a variety of extra-logial symbols whih need to be

axiomatized by the reuse administrator. NORA/HAMMR provides a theory de-

sription kernel whih resembles in some ways a logial framework, e.g., Isabelle

[11℄. The main di�erene is that it does not support the spei�ation of new logis

but only of onservative or indutive extensions of order-sorted FOL or theories.

The appliation of suh a dediated theory desription language is nevertheless

worthwhile beause it expliitly aptures meta-information whih is essential for

many speialized tehniques and whih annot easily extrated automatially

from a at list of FOL-formulas.

A theory desription omprises a set of sort, funtion, and prediate delara-

tions together with axioms, lemmas, and rules whih desribe properties of the

delared symbols. Theories are hierarhially ordered by the extension relation

in the same way modules are ordered by the import relation. The example theory

TList

theory TList = FOL +

lasses CListEq :: CEq

types "List" :: CListEq;

"Nil" < "List"

diretly extends the base theory FOL. It introdues the lass (i.e. olletion of

sorts) CListEq of list sorts with equality as a sublass (i.e. subolletion) of the

general equality lass CEq. CListEq omprises the sort List and a Nil-subsort.

Based on these domains, prediates and funtions an be delared. The theory

kernel supports di�erent operator �xities and priorities as well as variable arity

operators. For the list example, typial delarations are

onsts "nil" : "Nil" (0);

"#" : "[Item; List℄ => List" (infix 2 45);

"^" : "[List; List℄ => List" (infix 2 45);

"mem" : "[Item; List℄ => o" (2)

whih introdue a nil-onstant, two binary in�x operators # (ons) and ^ (ap-

pend) with priority 45 and a non�x binary prediate mem (membership), respe-

tively.

Properties of these symbols an be spei�ed in di�erent ways. As usual, ar-

bitrary FOL-formulas an be used but the kernel allows a distintion between

proper axioms and lemmas where it is assumed (but not heked) that the lem-

mas are indutive onsequenes of the axioms, e.g.,

axioms

memDef "forall I:Item . forall L:List .

mem(I,L) <-> exists L1:List . exists L2:List . L = L1 ^ (I # L2)"

lemmas

memNil "forall I:Item . ~ mem(I, nil)"

The kernel also provides expliit notations for properties whih are exploited by

other steps, e.g., assoiative-ommutative operators or freely generated datatypes:

"List" freely generated by "nil", "#";

The large number of axioms and lemmas ontained in a theory database

requires a redution mehanism whih selets only those whih are neessary

to �nd a proof at all or are likely to shorten it and omits all those whih only

inrease the searh spae.

In NORA/HAMMR, we use signature-based heuristis similar to that of Reif

and Shellhorn [12℄. Their basi assumption is that rules are redundant if they

ontain no symbols whih our in the problem, or more preisely, if they are

de�ned in redundant theories. A theory is redundant if it introdues only symbols

not ouring in the problem and is not referred (diretly or indiretly) by other

non-redundant theories.

Due to the distintion between axioms and lemmas the strategy of Reif and

Shellhorn an be modi�ed in several ways, e.g., (i) selet only axioms, (ii)

additionally, selet lemmas if they ontain only symbols whih our in the

original problem, (iii) additionally, selet lemmas if they ontain at least one

symbol whih ours in the original problem but no symbol from non-redundant

theories, or (iv) selet all axioms and lemmas from non-redundant theories.

NORA/HAMMR urrently implements the variants (i) and (iv).

4 Experiments

We used a library of 119 spei�ations of list proessing funtions. Approximately

75 of them desribe atual funtions (e.g., tail, rotate, or delete minimal) while

the rest simulates queries. We thus inluded under-determined spei�ations

(e.g., the result is an arbitrary front segment of the argument list) as well as

spei�ations whih do not refer to the arguments (e.g., the result is not empty).

We then ross-mathed eah spei�ation against the entire library, using plugin-

ompatibility as math relation. This yielded a total of 14161 proof tasks where

1839 or 13.0% were valid.

The theory database used in the experiments omprises 65 theories, in whih

24 di�erent funtion and prediate symbols are axiomatized. The axiomatization

onsists of 38 ore axioms and approximately 100 additional lemmas whih are

(�rst-order or indutive) onsequenes of the axioms.

We then used the rewrite-based methods (f. Setion 3.3) to detet and �lter

out obvious (mis)mathes. We thus ruled out up to 6663 (47.1%) of the tasks as

invalid and another 858 (6.1% or 46.1% of the valid problems) as trivial.

In a �rst experiment, we used the axiom seletion mehanisms to generate

three di�erent variants of the proof tasks. SPASS was able to solve between 933

4

and 1089 of the mathes (50.7%{59.2%) within one seond, depending on the

variant. With an inreased time-out of 60 ses., the numbers grew to 67.9%{

71.8%. As expeted, ompetition between the variants signi�antly inreased

the reall, by approx. 7.5%. For short timeouts we even observed a \superlinear"

growth. E.g., for a timeout of 10 ses., ompetition between all three variants

solved 3.2% more problems than the best variant with a timeout of 30 ses. At

the same time, the total elapsed runtime dropped by approx. 6%.

In a seond experiment, we tested ompetition between the di�erent provers

OTTER, SETHEO, and SPASS. For a small but representative subset we ahieved

even better results|up to 56% ompared to the best single system. Remarkably,

none of the provers is \subsumed" by another as eah solved at least one problem

exlusively.

5 Reuse Administration using ILF

NORA/HAMMR provides some general preproessing methods, e.g., axiom se-

letion and rewriting mehanisms, and o�ers, in onnetion with ILF, an open

system arhiteture whih allows for the easy integration of further dedutive

omponents. However, their ombination results in an aepted retrieval tool

only after some domain-spei� tuning of the entire system.

Sine we onsider the ATPs essentially as blak boxes, we onentrate on

problem tuning, e.g., through additional lemmas or development of better sim-

pli�ation methods. This requires an experimental testbed whih o�ers

{ translation of the proof tasks generated by the appliation system into a

human readable form,

4

All numbers inlude the trivial 858 mathes deteted by simpli�ation.

{ translation of example proofs found by an ATP into a human readable form,

{ prototyping of user-de�ned methods whih exploit the task struture, and

{ good experimental support to gather statistial data and evaluate the meth-

ods.

Our experiene has shown that ILF is an exellent testbed and, espeially, that

the ombination of its presentation and prototyping failities is very useful. The

former allows the detetion of simpli�ation potential, the latter allows the ex-

ploitation of this potential. If a prototyped method turns out to be useful in the

experiments, it an be integrated into the system. This feedbak from ILF to

NORA/HAMMR improves its overall performane.

However, \novie" users of NORA/HAMMR never interat with ILF|its ap-

pliation as experimental testbed is restrited to the reuse administrator. His

skills must be exploited to ahieve better results when the automated methods

and their ombinations are exhausted.

We used reuse administration to develop better rejetion methods. A spe-

ial property of the generated unprovable tasks is that in most ases only a few

additional ountermodel axioms given by the reuse administrator allow a for-

mal refutation of the atual goal by an ATP (f. Setion 3.4.) Fortunately, the

same set of axioms allows to dis-proof a large number of tasks. After inspe-

tion of some failed dis-proof attemps, it turned out that the neessary axioms

are rather simple and onsistent with the other theory of lists, e.g., a > b or

memberP(ons(b; ons(a;nil)); b) for some new onstants a and b.

Through proof task inspetion we disovered that some ompliated sub-

formulas oured in many goals, sometimes even more than one, e.g., 9l :

list � app(l; ons(x;nil)) = y. Suh formulas an be replaed by simpler terms

(e.g., last(x; y)) before the ATP is started if the appropriate axioms as 8x8y �

last(x; y) $ 9z � app(z; ons(x;nil)) = y) are added to the task. Beause the

axioms are onservative extensions, this de�nitorial folding does not hange the

semantis of a theory.

Both methods (i.e., ountermodel axiomatization and folding) an be om-

bined, if suitable lemmas for the de�ned prediates are added. This ombination

improves the results onsiderably|almost 95 % of the non-mathes whih re-

main after rewrite-based rejetion an be dis-proved if the tasks are simpli�ed

aording the skethed approah.

6 Conlusions

In this paper, we desribed the appliation of ATPs to solve a problem in software

reuse, the retrieval of omponents based on their formal spei�ations. Paradox-

ially, the key suess fator of our system NORA/HAMMR is that it defers the

appliation of ATPs as far as possible.

The problem pro�le makes it neessary to invest muh e�ort in preproessing

steps, e.g., logi onversion, simpli�ation, or detetion of non-theorems. These

steps require domain-spei� (i.e., depending on the partiular omponent li-

brary) tuning. Here, we use the presentation and prototyping failities of ILF.

Experienes gained with this interative use of ILF an then be fed bak into

NORA/HAMMR and used to optimize the appliation of automated systems.

On the atual dedutive level, our main method of attak is ompetition,

both between di�erent task variants and between di�erent ATPs. Here, we use

the ILF-system to ontrol the provers. Our results show this attak is suessful:

ompetition inreases the reall rates onsiderably, by up to 50% ompared to

single systems. Currently, we thus ahieve an overall reall of approximately

80% with moderate timeouts whih indiates that dedution-based retrieval may

beome feasible with the next hardware generations.

Referenes

[1℄ H. Barringer, J. H. Cheng, and C. B. Jones. "A Logi Covering Unde�nedness in

Program Proofs". Ata Informatia, 21(3):251{269, Otober 1984.

[2℄ W. Bibel and P. H. Shmitt, (eds.). Automated Dedution - A Basis for Applia-

tions. Kluwer, Dordreht, 1998. To Appear.

[3℄ J. Denzinger and D. Fuhs. "Enhaning onventional searh systems with multi-

agent tehniques: a ase study". In Pro. Intl. Conf. on Multi Agent Systems

(ICMAS'98), 1998. To Appear.

[4℄ B. I. Dahn, J. Gehne, T. Honigmann, and A. Wolf. "Integration of Automated and

Interative Theorem Proving in Ilf". In Pro. CADE-14, LNAI 1249, pp. 57{60,

Springer, 1997.

[5℄ B. Fisher, J. M. P. Shumann, and G. Snelting. "Dedution-Based Software Com-

ponent Retrieval". In Bibel and Shmitt [2℄. To Appear.

[6℄ J. Harrison. "Indutive de�nitions: automation and appliation". In Pro. 8th

Intl. Workshop on Higher Order Logi Theorem Proving and Its Appliations,

LNCS 971, pp. 200{213. Springer, 1995.

[7℄ C. B. Jones and K. Middelburg. "A Typed Logi of Partial Funtions Reonstruted

Classially". Ata Informatia, 31(5):399{430, 1994.

[8℄ K. Middelburg. Logi and Spei�ation | Extending VDM-SL for advaned formal

spei�ation. Computer Siene: Researh and Pratie. Chapman & Hall, 1993.

[9℄ A. Mili, R. Mili, and R. Mittermeir. "A Survey of Software Reuse Libraries". Annals

of Software Engineering, 1998. To appear.

[10℄ A. Obershelp. "Untersuhungen zur mehrsortigen Quantorenlogik". Mathema-

tishe Annalen, 145:297{333, 1962.

[11℄ L. C. Paulson. Isabelle: A Generi Theorem Prover, LNCS 828. Springer, 1994.

[12℄ W. Reif and G. Shellhorn. "Theorem Proving in Large Theories". In Bibel and

Shmitt [2℄. To Appear.

[13℄ J. M. P. Shumann and B. Fisher. "NORA/HAMMR: Making Dedution-Based

Software Component Retrieval Pratial". In Pro. 12th Intl. Conf. Automated Soft-

ware Engineering, pp. 246{254, Lake Tahoe, November 1997.

[14℄ G. Sutli�e, C. B. Suttner, and T. Yemenis. "The TPTP Problem Library". In

Pro. CADE-12, LNCS 814, pp. 252{266. Springer, 1994.

