Solving Software Reuse Problems
with Theorem Provers

Thomas Baar! and Bernd Fischer?

! Inst. f. Mathematik, HU Berlin
baar@nathematik.hu-berlin.de
? Abt. Softwaretechnologie, TU Braunschweig
fischQips.cs.tu-bs.de

Abstract. In NORA/HAMMR, we investigate the application of auto-
mated theorem provers to retrieve software components based on their
formal specifications. The problem profile has major impacts on the prob-
lem solving process. Integration and preprocessing steps, e.g., simplifica-
tion, become as important as the actual proving process.
NORA/HAMMR thus uses a pipeline of filters of increasing deductive
strength. Only in the final filter provers are applied. Here, we use ILF to
control competition between different systems. Experiments confirm this
approach. With moderate timeouts we already achieve an overall recall
of approximately 80%.

1 Introduction

Progress in automated deduction has made the application of automated theo-
rem provers (ATPs) to problems in software engineering a more realistic idea than
ever before. With NORA/HAMMR (cf. [5] for a detailed account) we investigate
an application in software reuse, deduction-based software component retrieval.
It uses formal specifications as component indexes and as queries, builds proof
tasks from these, and checks the validity of the tasks using an ATP. A component
is retrieved if the prover succeeds on the associated task—retrieval becomes a
deductive problem.

Solutions of this deductive problem, however, are constrained by peculiari-
ties of its software engineering roots which set it apart from other applications
domains, e.g., mathematics:

— The users are no ATP experts; they are not even interested in successful
proofs but only in retrieved components.

— Response times matter; from the user’s point of view it is better to be fast

than complete (“results-while-u-wait”.)

Every single user task spawns a large number of proof tasks.

— If a task is provable, its proof is rather simple but in most cases it is unprov-
able (i.e., no valid theorem) because it belongs to a non-match.



The different user and problem profiles have major impacts on a realistic imple-
mentation of deductive retrieval. First, the deductive component must be encap-
sulated completely. The “novice” users must be able to formulate their problems
in their own, application-oriented language (e.g., NORA/HAMMR, uses VDM-SL).
Thus, an efficient and automatic construction of prover-specific tasks becomes
an important part of the problem-solving process. Then, the time requirements
and the large number of tasks render a naive generate-and-test approach infeasi-
ble. Instead, more intelligent architectures are required which prevent the actual
ATP from “drowning.” Finally, simplification of the proof tasks and detection
and removal of non-theorems can no longer be taken for granted and must be
done explicitely.

These requirements prompt an open system architecture (cf. Section 3.1),
in which different deductive components work in combination on a practical
application which is too difficult for a single monolithic system. However, the
single components still require a substantial amount of system tuning which
must be done by an “expert user” or reuse administrator. For this process (cf.
Section 5), interactive theorem proving systems with good presentation and
prototyping facilities as for example the ILF-system proved to be suitable.

2 Application Background

Component retrieval is one of the technical key issues in software reuse: “You
must find it before you can reuse it!”! A variety of different approaches has
been investigated, deduction-based retrieval being the most ambitious (cf. [9]
for an overview.) In contrast to the other approaches, it exploits exact semantic
information about the components and retrieves proven matches only. Its basic
idea is very simple.

1. Each component ¢ is associated with a contract, a formal specification which
captures the relevant behaviour in form of a pre- and postcondition, e.g.,

run (I : list) r : list
pre true
post exists 11 : list & | = r ™ 11 A ordered(r)
Aforall i :item, 12 : list & | = r ™ [i] ™ 12 = —ordered(r ™ [i])

which computes the longest ordered initial subsegment (i.e., run) of a list.>
2. Contracts also serve as queries g, e.g.,

segment (I : list) r : list
pre true
post exists 11, 12 : list & I =11 ™ r ™ |2

can be used to retrieve any function which returns an arbitrary continuous
sublist of the argument.

! The First Golden Rule of Software Reuse, attributed to W. Tracz.
2 In VDM-SL, ™ denotes list concatenation, [] the empty list, [i] a singleton list with
item 4. & reads as “such that” and ordered is a user-defined predicate.



3. For each possible candidate, a proof task is constructed comprising the re-
spective pre- and postconditions.

4. A component qualifies if an ATP can establish the validity of the associated
task.

The exact form of the proof task determines the nature of the reuse. The most
common form is plug-in compatibility

(pre, = pre.) A (pre, A post, = post,)

which supports black box reuse—retrieved components may be reused “as is”,
without further proviso or modification. Other notions of compatibility support
white box reuse but then manual checks or code modifications are required in
order to guarantee the applicability of the retrieved components.

3 The Deductive Infrastructure

3.1 System Architecture

The key problem in deduction-based software retrieval is to maintain a balance
between fast responses and high recall (i.e., number of proofs found.) The large
number of tasks makes it also a hard problem. Thus, a architecture is required
which prevents the actual ATP from “drowning”. NORA/HAMMR uses a pipeline
of filters of increasing deductive strength in order to reduce the number of proof
problems stepwise. Several prefilters based on signature matching and rewrit-
ing try to identify non-matches as fast and early as possible and only for the
remaining proof problems a real ATP is started.

Yet, all experiments show that still no single ATP on its own is powerful
enough to be “the” deductive component for all the tasks passing the prefilters.
NORA/HAMMR thus integrates different ATPs, using the ILF-system [4] as an
“ATP-scheduler” to control them. ILF provides easy access to the resources of
an entire local computer network for time-consuming proof attempts and ob-
viates the necessity to generate specific input-files for every ATP. This allows
us to use different methods for the same problem in parallel. Currently, we use
resolution (OTTER and SPASS) and tableau style systems (SETHEO.) Even a
proper combination of methods following the TECHS-approach [3] is supported.
Further parallelization is achieved along another dimension. NORA/HAMMR can
generate different variants of the same problem, e.g., using different axiom sets
which are handled by ILF in the same way.

Figure 1 shows the resulting system architecture. Users communicate only
with NORA/HAMMR, using a simple graphical user interface described in [5].
The tasks are piped through the different pre-processing stages provided by
NORA/HAMMR. At the end of the pipeline, ILF takes over control and dis-
patches the tasks to the ATPs. Since the users need no proofs, ILF just returns
whether a proof has been found at all, and NORA/HAMMR eventually displays
the component.
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Fig. 1. System architecture

3.2 De-Customization

VDM-SL offers a wide variety of syntactic constructs, e.g., let-expressions, pat-
tern matching, built-in datatypes, dynamic types using type invariants and many
more. The process to cut this down is called de-customization. It translates the
proofs tasks into LPF, the logic of partial functions [1] which we use as core
language. De-customization replaces binding expressions on the term level (e.g.,
let- or cases-expressions) by standard quantifiers such that non-deterministic
expression evaluation (due to VDM-SL’s loose semantics) and undefined expres-
sions (due to partial functions) are mapped correctly (cf. [8].) It also eliminates
dynamic types and replaces them with their static super-types by relativization
with the type invariants, similar to the standard relativization technique [10].

A second step takes care of the partial functions and translates LPF into
FOL, following [7]. The translation is provability-preserving, i.e., brpr ¢ <=
Frow ¢ holds. It uses a set of signed functions to map any LPF-formula which
contains an undefined subterm to an unprovable FOL-formula. E.g., the LPF-
formula VI : List - hd | = hd [ which has the truth value undefined becomes
Vi : List-1 # [[Ahd | = hd [. Since the quantifiers in LPF range only over proper
(i.e., defined) values, we can optimize the handling of formulas and terms which
contain no occurrences of partial functions.

The original translation by Jones and Middelburg uses infinitary logic to
deal with recursively defined datatypes. Since we translate only into pure FOL
but do not apply proper inductive provers, we need first-order approximations
for those datatypes. This approximation comprises two steps.

In the first step, the free generation property of the datatype is encoded by
additional first-order axioms, similar to [6]. In detail, we have to encode (i) the
constructor property of the constructor functions (i.e., that terms with different
top-level constructors are never equal), (i) the surjectivity of the constructors
wrt. the datatype domain (i.e., that the top-level function symbol of each element
in the domain is one of the constructor functions), and (éii) the freeness or
injectivity of the constructor functions (i.e., if two terms with the same top-level
constructor are equal then their respective arguments are equal, too). Although
these axioms do not capture the finite generation property, they work quite well
in practice. For example, in the usual theory of lists which is freely generated



by nil and cons, the three properties give rise to the following axioms® (i) Vi :
item, 1 : list - nil # cons(i,l), (i) VI : list -1 = nil V Ji : item, m : list -] =
cons(i,m), and (#11) Vi, j : item, I,m : list - cons(i,l) = cons(j,m) =>i=jAl =
m.

However, we can even improve this and incorporate cardinality information
which we can infer from the constructors and the signature information contained
in the theory database. If a sort is freely generated by at least two constructors
and all argument domains are guaranteed to be non-empty (e.g., because the sig-
nature contains constants of the necessary types), then we know that it contains
at least two different elements. In the list example, we can thus add a fourth
axiom (iv) VI : list - Im : list -1 # m.

A second step deals with the induction scheme which follows from a datatype
definition. Obviously, it cannot be encoded by first-order axioms. However, the
special nature of our proof tasks allows the very powerful heuristic to use the
formal parameter(s) of candidate component as induction variable(s) and to
instantiate the induction scheme appropriately.

3.3 Simplification

Unlike the problems in benchmark collections as the TPTP [14], proof tasks in
applications are generated automatically and thus not simplified. E.g., in our
case they may still contain the propositional constants true and false from the
original contracts or redundant equations which may be used to simplify the
task. Hence, rigorous simplification is a necessary first step.

In NORA/HAMMR, we use a rewrite-based simplification procedure, and
since we are working with extensions of FOL, the applied set of rewrite rules
is two-tiered. The core tier deals with the FOL operators and equality. It elim-
inates the propositional constants, rewrites the tasks into conjunctive normal
form and then further into anti-prenex form to minimize quantifier scopes.

The custom tier deals with all other symbols. It can also be separated into
two subsets. One subset contains all rules which can be extracted from “suit-
able” axioms and lemmas in the database, i.e., universally closed unit literals,
equations, and implications. Unit literals are rewritten into true or false, de-
pending on their sign. For equations and implications we only check whether
they decrease the size of the terms but do not use a proper termination order-
ing. The other subset follows from the generator information for datatypes. Of
course, the constructor property and injectivity of the constructor functions in-
duce the usual rewrite rules. The surjectivity gives rise to a witness rule, e.g.,
Jx : List - x = t ~ true (provided that the bound variable z does not occur
free in ¢.) Similarly, the cardinality information can be turned into rewrite rules.
Note that both rules consider the quantifier as an ordinary operator symbol.

% The necessary sort information can easily be obtained from the function specifications
in the theory database (cf. Section 3.5.)



3.4 Rejection

Simplification can also be used in a rejection filter: if a proof task G can be
simplified to false, the candidate may obviously be rejected. Unfortunately, only
very few of the inherent inconsistencies can already be detected by the simpli-
fications so far. For rejection purposes it is necessary to make much more of
them explicit. To this end, we can again exploit the generator information for
datatypes and use the surjectivity of the constructor functions to “unroll” sorted
quantifiers, e.g., VI : list- H[l] becomes H [nil] AVi : item, | : list - H[cons(i,1)]. By
repeated unrolling and re-simplification we are then able to detect almost half
of the mismatches.

Even though this rewrite-based simplification is a good low-cost rejection
filter, it is still too coarse and more methods to show A }£ G formally are
necessary. The obvious approach is to negate the goal and to check A F —G.
However, this is only a sufficient and not a necessary condition and in many
cases we have that A4 = G and A }~ -G both hold.

Another approach is to look for explicit countermodels, i.e., structures in
which the axioms A hold but not G. We have experimented with model check-
ing techniques (cf. [13]) but since A includes the theory of lists, we can only
approximate the necessary finite structures and the approach becomes unsound.
However, as humans we can spot the countermodels easily because usually only
a small part of the structure is required. Moreover, this part is even quite similar
for most tasks. Hence, in order to show A £ G, we formalize the countermodel
by additional axioms CM and try to deduce the negated goal, i.e., we have to
solve the task AU CM + —G. This approach relies of course on the fact that the
extension CM is consistent with the original axioms A. However, this cannot be
proven automatically but must be shown manually by the reuse administrator.

3.5 Axiom Selection

The proof tasks contain a variety of extra-logical symbols which need to be
axiomatized by the reuse administrator. NORA/HAMMR, provides a theory de-
scription kernel which resembles in some ways a logical framework, e.g., Isabelle
[11]. The main difference is that it does not support the specification of new logics
but only of conservative or inductive extensions of order-sorted FOL or theories.
The application of such a dedicated theory description language is nevertheless
worthwhile because it explicitly captures meta-information which is essential for
many specialized techniques and which cannot easily extracted automatically
from a flat list of FOL-formulas.

A theory description comprises a set of sort, function, and predicate declara-
tions together with axioms, lemmas, and rules which describe properties of the
declared symbols. Theories are hierarchically ordered by the extension relation
in the same way modules are ordered by the import relation. The example theory
TList

theory TList = FOL +
classes CListEq :: CEq



types "List" :: CListEq;
"Nil" < "List"

directly extends the base theory FOL. It introduces the class (i.e. collection of
sorts) CListEq of list sorts with equality as a subclass (i.e. subcollection) of the
general equality class CEq. CListEq comprises the sort List and a Nil-subsort.

Based on these domains, predicates and functions can be declared. The theory
kernel supports different operator fixities and priorities as well as variable arity
operators. For the list example, typical declarations are

consts "nil" : "Nil" 0);
i : "[Item; List] => List" (infix 2 45);
nen : "[List; List] => List" (infix 2 45);
"mem" : "[Item; List] => o" (2)

which introduce a nil-constant, two binary infix operators # (cons) and ~ (ap-
pend) with priority 45 and a nonfix binary predicate mem (membership), respec-
tively.

Properties of these symbols can be specified in different ways. As usual, ar-
bitrary FOL-formulas can be used but the kernel allows a distinction between
proper axioms and lemmas where it is assumed (but not checked) that the lem-
mas are inductive consequences of the axioms, e.g.,

axioms
memDef "forall I:Item . forall L:List .

mem(I,L) <-> exists L1:List . exists L2:List . L =1L1 -~ (I # L2)"

lemmas
memNil "forall I:Item . ~ mem(I, nil)"

The kernel also provides explicit notations for properties which are exploited by
other steps, e.g., associative-commutative operators or freely generated datatypes:

"List" freely generated by "nil", "#";

The large number of axioms and lemmas contained in a theory database
requires a reduction mechanism which selects only those which are necessary
to find a proof at all or are likely to shorten it and omits all those which only
increase the search space.

In NORA/HAMMR, we use signature-based heuristics similar to that of Reif
and Schellhorn [12]. Their basic assumption is that rules are redundant if they
contain no symbols which occur in the problem, or more precisely, if they are
defined in redundant theories. A theory is redundant if it introduces only symbols
not occuring in the problem and is not referred (directly or indirectly) by other
non-redundant theories.

Due to the distinction between axioms and lemmas the strategy of Reif and
Schellhorn can be modified in several ways, e.g., (i) select only axioms, (ii)
additionally, select lemmas if they contain only symbols which occur in the
original problem, (#7) additionally, select lemmas if they contain at least one
symbol which occurs in the original problem but no symbol from non-redundant
theories, or (iv) select all axioms and lemmas from non-redundant theories.
NORA/HAMMR currently implements the variants (4) and (iv).



4 Experiments

We used a library of 119 specifications of list processing functions. Approximately
75 of them describe actual functions (e.g., tail, rotate, or delete_minimal) while
the rest simulates queries. We thus included under-determined specifications
(e.g., the result is an arbitrary front segment of the argument list) as well as
specifications which do not refer to the arguments (e.g., the result is not empty).
We then cross-matched each specification against the entire library, using plugin-
compatibility as match relation. This yielded a total of 14161 proof tasks where
1839 or 13.0% were valid.

The theory database used in the experiments comprises 65 theories, in which
24 different function and predicate symbols are axiomatized. The axiomatization
consists of 38 core axioms and approximately 100 additional lemmas which are
(first-order or inductive) consequences of the axioms.

We then used the rewrite-based methods (cf. Section 3.3) to detect and filter
out obvious (mis)matches. We thus ruled out up to 6663 (47.1%) of the tasks as
invalid and another 858 (6.1% or 46.1% of the valid problems) as trivial.

In a first experiment, we used the axiom selection mechanisms to generate
three different variants of the proof tasks. SPASS was able to solve between 933%
and 1089 of the matches (50.7%-59.2%) within one second, depending on the
variant. With an increased time-out of 60 secs., the numbers grew to 67.9%—
71.8%. As expected, competition between the variants significantly increased
the recall, by approx. 7.5%. For short timeouts we even observed a “superlinear”
growth. E.g., for a timeout of 10 secs., competition between all three variants
solved 3.2% more problems than the best variant with a timeout of 30 secs. At
the same time, the total elapsed runtime dropped by approx. 6%.

In a second experiment, we tested competition between the different provers
OTTER, SETHEO, and SPASS. For a small but representative subset we achieved
even better results—up to 56% compared to the best single system. Remarkably,
none of the provers is “subsumed” by another as each solved at least one problem
exclusively.

5 Reuse Administration using ILF

NORA/HAMMR provides some general preprocessing methods, e.g., axiom se-
lection and rewriting mechanisms, and offers, in connection with ILF, an open
system architecture which allows for the easy integration of further deductive
components. However, their combination results in an accepted retrieval tool
only after some domain-specific tuning of the entire system.

Since we consider the ATPs essentially as black boxes, we concentrate on
problem tuning, e.g., through additional lemmas or development of better sim-
plification methods. This requires an experimental testbed which offers

— translation of the proof tasks generated by the application system into a
human readable form,

4 All numbers include the trivial 858 matches detected by simplification.



— translation of example proofs found by an ATP into a human readable form,

— prototyping of user-defined methods which exploit the task structure, and

— good experimental support to gather statistical data and evaluate the meth-
ods.

Our experience has shown that ILF is an excellent testbed and, especially, that
the combination of its presentation and prototyping facilities is very useful. The
former allows the detection of simplification potential, the latter allows the ex-
ploitation of this potential. If a prototyped method turns out to be useful in the
experiments, it can be integrated into the system. This feedback from ILF to
NORA/HAMMR improves its overall performance.

However, “novice” users of NORA/HAMMR never interact with ILF—its ap-
plication as experimental testbed is restricted to the reuse administrator. His
skills must be exploited to achieve better results when the automated methods
and their combinations are exhausted.

We used reuse administration to develop better rejection methods. A spe-
cial property of the generated unprovable tasks is that in most cases only a few
additional countermodel axioms given by the reuse administrator allow a for-
mal refutation of the actual goal by an ATP (cf. Section 3.4.) Fortunately, the
same set of axioms allows to dis-proof a large number of tasks. After inspec-
tion of some failed dis-proof attemps, it turned out that the necessary axioms
are rather simple and consistent with the other theory of lists, e.g., a > b or
memberP (cons(b, cons(a, nil)), b) for some new constants a and b.

Through proof task inspection we discovered that some complicated sub-
formulas occured in many goals, sometimes even more than once, e.g., 3l :
list - app(l, cons(x, nil)) = y. Such formulas can be replaced by simpler terms
(e.g., last(z,y)) before the ATP is started if the appropriate axioms as VaVy -
last(z,y) < 3z - app(z, cons(z, nil)) = y) are added to the task. Because the
axioms are conservative extensions, this definitorial folding does not change the
semantics of a theory.

Both methods (i.e., countermodel axiomatization and folding) can be com-
bined, if suitable lemmas for the defined predicates are added. This combination
improves the results considerably—almost 95 % of the non-matches which re-
main after rewrite-based rejection can be dis-proved if the tasks are simplified
according the sketched approach.

6 Conclusions

In this paper, we described the application of ATPs to solve a problem in software
reuse, the retrieval of components based on their formal specifications. Paradox-
ically, the key success factor of our system NORA/HAMMR is that it defers the
application of ATPs as far as possible.

The problem profile makes it necessary to invest much effort in preprocessing
steps, e.g., logic conversion, simplification, or detection of non-theorems. These
steps require domain-specific (i.e., depending on the particular component li-
brary) tuning. Here, we use the presentation and prototyping facilities of ILF.



Experiences gained with this interactive use of ILF can then be fed back into
NORA/HAMMR and used to optimize the application of automated systems.

On the actual deductive level, our main method of attack is competition,
both between different task variants and between different ATPs. Here, we use
the ILF-system to control the provers. Our results show this attack is successful:
competition increases the recall rates considerably, by up to 50% compared to
single systems. Currently, we thus achieve an overall recall of approximately
80% with moderate timeouts which indicates that deduction-based retrieval may
become feasible with the next hardware generations.
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