
Solving Software Reuse Problems

with Theorem Provers

Thomas Baar

1

and Bernd Fis
her

2

1

Inst. f. Mathematik, HU Berlin

baar�mathematik.hu-berlin.de

2

Abt. Softwarete
hnologie, TU Brauns
hweig

fis
h�ips.
s.tu-bs.de

Abstra
t. In NORA/HAMMR, we investigate the appli
ation of auto-

mated theorem provers to retrieve software
omponents based on their

formal spe
i�
ations. The problem pro�le has major impa
ts on the prob-

lem solving pro
ess. Integration and prepro
essing steps, e.g., simpli�
a-

tion, be
ome as important as the a
tual proving pro
ess.

NORA/HAMMR thus uses a pipeline of �lters of in
reasing dedu
tive

strength. Only in the �nal �lter provers are applied. Here, we use ILF to

ontrol
ompetition between di�erent systems. Experiments
on�rm this

approa
h. With moderate timeouts we already a
hieve an overall re
all

of approximately 80%.

1 Introdu
tion

Progress in automated dedu
tion has made the appli
ation of automated theo-

rem provers (ATPs) to problems in software engineering a more realisti
 idea than

ever before. With NORA/HAMMR (
f. [5℄ for a detailed a

ount) we investigate

an appli
ation in software reuse, dedu
tion-based software
omponent retrieval.

It uses formal spe
i�
ations as
omponent indexes and as queries, builds proof

tasks from these, and
he
ks the validity of the tasks using an ATP. A
omponent

is retrieved if the prover su

eeds on the asso
iated task|retrieval be
omes a

dedu
tive problem.

Solutions of this dedu
tive problem, however, are
onstrained by pe
uliari-

ties of its software engineering roots whi
h set it apart from other appli
ations

domains, e.g., mathemati
s:

{ The users are no ATP experts; they are not even interested in su

essful

proofs but only in retrieved
omponents.

{ Response times matter; from the user's point of view it is better to be fast

than
omplete (\results-while-u-wait".)

{ Every single user task spawns a large number of proof tasks.

{ If a task is provable, its proof is rather simple but in most
ases it is unprov-

able (i.e., no valid theorem) be
ause it belongs to a non-mat
h.

The di�erent user and problem pro�les have major impa
ts on a realisti
 imple-

mentation of dedu
tive retrieval. First, the dedu
tive
omponent must be en
ap-

sulated
ompletely. The \novi
e" users must be able to formulate their problems

in their own, appli
ation-oriented language (e.g., NORA/HAMMR uses VDM-SL).

Thus, an eÆ
ient and automati

onstru
tion of prover-spe
i�
 tasks be
omes

an important part of the problem-solving pro
ess. Then, the time requirements

and the large number of tasks render a na��ve generate-and-test approa
h infeasi-

ble. Instead, more intelligent ar
hite
tures are required whi
h prevent the a
tual

ATP from \drowning." Finally, simpli�
ation of the proof tasks and dete
tion

and removal of non-theorems
an no longer be taken for granted and must be

done expli
itely.

These requirements prompt an open system ar
hite
ture (
f. Se
tion 3.1),

in whi
h di�erent dedu
tive
omponents work in
ombination on a pra
ti
al

appli
ation whi
h is too diÆ
ult for a single monolithi
 system. However, the

single
omponents still require a substantial amount of system tuning whi
h

must be done by an \expert user" or reuse administrator. For this pro
ess (
f.

Se
tion 5), intera
tive theorem proving systems with good presentation and

prototyping fa
ilities as for example the ILF-system proved to be suitable.

2 Appli
ation Ba
kground

Component retrieval is one of the te
hni
al key issues in software reuse: \You

must �nd it before you
an reuse it!"

1

A variety of di�erent approa
hes has

been investigated, dedu
tion-based retrieval being the most ambitious (
f. [9℄

for an overview.) In
ontrast to the other approa
hes, it exploits exa
t semanti

information about the
omponents and retrieves proven mat
hes only. Its basi

idea is very simple.

1. Ea
h
omponent
 is asso
iated with a
ontra
t, a formal spe
i�
ation whi
h

aptures the relevant behaviour in form of a pre- and post
ondition, e.g.,

run (l : list) r : list

pre true

post exists l1 : list & l = r

y

l1 ^ ordered(r)

^ forall i : item, l2 : list & l = r

y

[i℄

y

l2) :ordered(r

y

[i℄)

whi
h
omputes the longest ordered initial subsegment (i.e., run) of a list.

2

2. Contra
ts also serve as queries q, e.g.,

segment (l : list) r : list

pre true

post exists l1, l2 : list & l = l1

y

r

y

l2

an be used to retrieve any fun
tion whi
h returns an arbitrary
ontinuous

sublist of the argument.

1

The First Golden Rule of Software Reuse, attributed to W. Tra
z.

2

In VDM-SL,

y

denotes list
on
atenation, [℄ the empty list, [i℄ a singleton list with

item i. & reads as \su
h that" and ordered is a user-de�ned predi
ate.

3. For ea
h possible
andidate, a proof task is
onstru
ted
omprising the re-

spe
tive pre- and post
onditions.

4. A
omponent quali�es if an ATP
an establish the validity of the asso
iated

task.

The exa
t form of the proof task determines the nature of the reuse. The most

ommon form is plug-in
ompatibility

(pre

q

) pre

) ^ (pre

q

^ post

) post

q

)

whi
h supports bla
k box reuse|retrieved
omponents may be reused \as is",

without further proviso or modi�
ation. Other notions of
ompatibility support

white box reuse but then manual
he
ks or
ode modi�
ations are required in

order to guarantee the appli
ability of the retrieved
omponents.

3 The Dedu
tive Infrastru
ture

3.1 System Ar
hite
ture

The key problem in dedu
tion-based software retrieval is to maintain a balan
e

between fast responses and high re
all (i.e., number of proofs found.) The large

number of tasks makes it also a hard problem. Thus, a ar
hite
ture is required

whi
h prevents the a
tual ATP from \drowning". NORA/HAMMR uses a pipeline

of �lters of in
reasing dedu
tive strength in order to redu
e the number of proof

problems stepwise. Several pre�lters based on signature mat
hing and rewrit-

ing try to identify non-mat
hes as fast and early as possible and only for the

remaining proof problems a real ATP is started.

Yet, all experiments show that still no single ATP on its own is powerful

enough to be \the" dedu
tive
omponent for all the tasks passing the pre�lters.

NORA/HAMMR thus integrates di�erent ATPs, using the ILF-system [4℄ as an

\ATP-s
heduler" to
ontrol them. ILF provides easy a

ess to the resour
es of

an entire lo
al
omputer network for time-
onsuming proof attempts and ob-

viates the ne
essity to generate spe
i�
 input-�les for every ATP. This allows

us to use di�erent methods for the same problem in parallel. Currently, we use

resolution (OTTER and SPASS) and tableau style systems (SETHEO.) Even a

proper
ombination of methods following the TECHS-approa
h [3℄ is supported.

Further parallelization is a
hieved along another dimension. NORA/HAMMR
an

generate di�erent variants of the same problem, e.g., using di�erent axiom sets

whi
h are handled by ILF in the same way.

Figure 1 shows the resulting system ar
hite
ture. Users
ommuni
ate only

with NORA/HAMMR, using a simple graphi
al user interfa
e des
ribed in [5℄.

The tasks are piped through the di�erent pre-pro
essing stages provided by

NORA/HAMMR. At the end of the pipeline, ILF takes over
ontrol and dis-

pat
hes the tasks to the ATPs. Sin
e the users need no proofs, ILF just returns

whether a proof has been found at all, and NORA/HAMMR eventually displays

the
omponent.

OTTER

NORA/HAMMR

De-Customization ILFAxiom-SelectionSimplification

SPASS SETHEO

User

Pipeline

Application

Provers

Fig. 1. System ar
hite
ture

3.2 De-Customization

VDM-SL o�ers a wide variety of synta
ti

onstru
ts, e.g., let-expressions, pat-

tern mat
hing, built-in datatypes, dynami
 types using type invariants and many

more. The pro
ess to
ut this down is
alled de-
ustomization. It translates the

proofs tasks into LPF, the logi
 of partial fun
tions [1℄ whi
h we use as
ore

language. De-
ustomization repla
es binding expressions on the term level (e.g.,

let- or
ases-expressions) by standard quanti�ers su
h that non-deterministi

expression evaluation (due to VDM-SL's loose semanti
s) and unde�ned expres-

sions (due to partial fun
tions) are mapped
orre
tly (
f. [8℄.) It also eliminates

dynami
 types and repla
es them with their stati
 super-types by relativization

with the type invariants, similar to the standard relativization te
hnique [10℄.

A se
ond step takes
are of the partial fun
tions and translates LPF into

FOL, following [7℄. The translation is provability-preserving, i.e., `

LPF

' ()

`

FOL

'

0

holds. It uses a set of signed fun
tions to map any LPF-formula whi
h

ontains an unde�ned subterm to an unprovable FOL-formula. E.g., the LPF-

formula 8l : List � hd l = hd l whi
h has the truth value unde�ned be
omes

8l : List � l 6= [℄^hd l = hd l. Sin
e the quanti�ers in LPF range only over proper

(i.e., de�ned) values, we
an optimize the handling of formulas and terms whi
h

ontain no o

urren
es of partial fun
tions.

The original translation by Jones and Middelburg uses in�nitary logi
 to

deal with re
ursively de�ned datatypes. Sin
e we translate only into pure FOL

but do not apply proper indu
tive provers, we need �rst-order approximations

for those datatypes. This approximation
omprises two steps.

In the �rst step, the free generation property of the datatype is en
oded by

additional �rst-order axioms, similar to [6℄. In detail, we have to en
ode (i) the

onstru
tor property of the
onstru
tor fun
tions (i.e., that terms with di�erent

top-level
onstru
tors are never equal), (ii) the surje
tivity of the
onstru
tors

wrt. the datatype domain (i.e., that the top-level fun
tion symbol of ea
h element

in the domain is one of the
onstru
tor fun
tions), and (iii) the freeness or

inje
tivity of the
onstru
tor fun
tions (i.e., if two terms with the same top-level

onstru
tor are equal then their respe
tive arguments are equal, too). Although

these axioms do not
apture the �nite generation property, they work quite well

in pra
ti
e. For example, in the usual theory of lists whi
h is freely generated

by nil and
ons, the three properties give rise to the following axioms

3

(i) 8i :

item ; l : list � nil 6=
ons(i; l), (ii) 8l : list � l = nil _ 9i : item; m : list � l =

ons(i;m), and (iii) 8i; j : item; l;m : list �
ons(i; l) =
ons(j;m)) i = j ^ l =

m.

However, we
an even improve this and in
orporate
ardinality information

whi
h we
an infer from the
onstru
tors and the signature information
ontained

in the theory database. If a sort is freely generated by at least two
onstru
tors

and all argument domains are guaranteed to be non-empty (e.g., be
ause the sig-

nature
ontains
onstants of the ne
essary types), then we know that it
ontains

at least two di�erent elements. In the list example, we
an thus add a fourth

axiom (iv) 8l : list � 9m : list � l 6= m.

A se
ond step deals with the indu
tion s
heme whi
h follows from a datatype

de�nition. Obviously, it
annot be en
oded by �rst-order axioms. However, the

spe
ial nature of our proof tasks allows the very powerful heuristi
 to use the

formal parameter(s) of
andidate
omponent as indu
tion variable(s) and to

instantiate the indu
tion s
heme appropriately.

3.3 Simpli�
ation

Unlike the problems in ben
hmark
olle
tions as the TPTP [14℄, proof tasks in

appli
ations are generated automati
ally and thus not simpli�ed. E.g., in our

ase they may still
ontain the propositional
onstants true and false from the

original
ontra
ts or redundant equations whi
h may be used to simplify the

task. Hen
e, rigorous simpli�
ation is a ne
essary �rst step.

In NORA/HAMMR, we use a rewrite-based simpli�
ation pro
edure, and

sin
e we are working with extensions of FOL, the applied set of rewrite rules

is two-tiered. The
ore tier deals with the FOL operators and equality. It elim-

inates the propositional
onstants, rewrites the tasks into
onjun
tive normal

form and then further into anti-prenex form to minimize quanti�er s
opes.

The
ustom tier deals with all other symbols. It
an also be separated into

two subsets. One subset
ontains all rules whi
h
an be extra
ted from \suit-

able" axioms and lemmas in the database, i.e., universally
losed unit literals,

equations, and impli
ations. Unit literals are rewritten into true or false, de-

pending on their sign. For equations and impli
ations we only
he
k whether

they de
rease the size of the terms but do not use a proper termination order-

ing. The other subset follows from the generator information for datatypes. Of

ourse, the
onstru
tor property and inje
tivity of the
onstru
tor fun
tions in-

du
e the usual rewrite rules. The surje
tivity gives rise to a witness rule, e.g.,

9x : List � x = t ; true (provided that the bound variable x does not o

ur

free in t.) Similarly, the
ardinality information
an be turned into rewrite rules.

Note that both rules
onsider the quanti�er as an ordinary operator symbol.

3

The ne
essary sort information
an easily be obtained from the fun
tion spe
i�
ations

in the theory database (
f. Se
tion 3.5.)

3.4 Reje
tion

Simpli�
ation
an also be used in a reje
tion �lter: if a proof task G
an be

simpli�ed to false, the
andidate may obviously be reje
ted. Unfortunately, only

very few of the inherent in
onsisten
ies
an already be dete
ted by the simpli-

�
ations so far. For reje
tion purposes it is ne
essary to make mu
h more of

them expli
it. To this end, we
an again exploit the generator information for

datatypes and use the surje
tivity of the
onstru
tor fun
tions to \unroll" sorted

quanti�ers, e.g., 8l : list �H [l℄ be
omes H [nil ℄^8i : item; l : list �H [
ons(i; l)℄. By

repeated unrolling and re-simpli�
ation we are then able to dete
t almost half

of the mismat
hes.

Even though this rewrite-based simpli�
ation is a good low-
ost reje
tion

�lter, it is still too
oarse and more methods to show A 6j= G formally are

ne
essary. The obvious approa
h is to negate the goal and to
he
k A ` :G.

However, this is only a suÆ
ient and not a ne
essary
ondition and in many

ases we have that A 6j= G and A 6j= :G both hold.

Another approa
h is to look for expli
it
ountermodels, i.e., stru
tures in

whi
h the axioms A hold but not G. We have experimented with model
he
k-

ing te
hniques (
f. [13℄) but sin
e A in
ludes the theory of lists, we
an only

approximate the ne
essary �nite stru
tures and the approa
h be
omes unsound.

However, as humans we
an spot the
ountermodels easily be
ause usually only

a small part of the stru
ture is required. Moreover, this part is even quite similar

for most tasks. Hen
e, in order to show A 6j= G, we formalize the
ountermodel

by additional axioms CM and try to dedu
e the negated goal, i.e., we have to

solve the task A[CM ` :G. This approa
h relies of
ourse on the fa
t that the

extension CM is
onsistent with the original axioms A. However, this
annot be

proven automati
ally but must be shown manually by the reuse administrator.

3.5 Axiom Sele
tion

The proof tasks
ontain a variety of extra-logi
al symbols whi
h need to be

axiomatized by the reuse administrator. NORA/HAMMR provides a theory de-

s
ription kernel whi
h resembles in some ways a logi
al framework, e.g., Isabelle

[11℄. The main di�eren
e is that it does not support the spe
i�
ation of new logi
s

but only of
onservative or indu
tive extensions of order-sorted FOL or theories.

The appli
ation of su
h a dedi
ated theory des
ription language is nevertheless

worthwhile be
ause it expli
itly
aptures meta-information whi
h is essential for

many spe
ialized te
hniques and whi
h
annot easily extra
ted automati
ally

from a
at list of FOL-formulas.

A theory des
ription
omprises a set of sort, fun
tion, and predi
ate de
lara-

tions together with axioms, lemmas, and rules whi
h des
ribe properties of the

de
lared symbols. Theories are hierar
hi
ally ordered by the extension relation

in the same way modules are ordered by the import relation. The example theory

TList

theory TList = FOL +

lasses CListEq :: CEq

types "List" :: CListEq;

"Nil" < "List"

dire
tly extends the base theory FOL. It introdu
es the
lass (i.e.
olle
tion of

sorts) CListEq of list sorts with equality as a sub
lass (i.e. sub
olle
tion) of the

general equality
lass CEq. CListEq
omprises the sort List and a Nil-subsort.

Based on these domains, predi
ates and fun
tions
an be de
lared. The theory

kernel supports di�erent operator �xities and priorities as well as variable arity

operators. For the list example, typi
al de
larations are

onsts "nil" : "Nil" (0);

"#" : "[Item; List℄ => List" (infix 2 45);

"^" : "[List; List℄ => List" (infix 2 45);

"mem" : "[Item; List℄ => o" (2)

whi
h introdu
e a nil-
onstant, two binary in�x operators # (
ons) and ^ (ap-

pend) with priority 45 and a non�x binary predi
ate mem (membership), respe
-

tively.

Properties of these symbols
an be spe
i�ed in di�erent ways. As usual, ar-

bitrary FOL-formulas
an be used but the kernel allows a distin
tion between

proper axioms and lemmas where it is assumed (but not
he
ked) that the lem-

mas are indu
tive
onsequen
es of the axioms, e.g.,

axioms

memDef "forall I:Item . forall L:List .

mem(I,L) <-> exists L1:List . exists L2:List . L = L1 ^ (I # L2)"

lemmas

memNil "forall I:Item . ~ mem(I, nil)"

The kernel also provides expli
it notations for properties whi
h are exploited by

other steps, e.g., asso
iative-
ommutative operators or freely generated datatypes:

"List" freely generated by "nil", "#";

The large number of axioms and lemmas
ontained in a theory database

requires a redu
tion me
hanism whi
h sele
ts only those whi
h are ne
essary

to �nd a proof at all or are likely to shorten it and omits all those whi
h only

in
rease the sear
h spa
e.

In NORA/HAMMR, we use signature-based heuristi
s similar to that of Reif

and S
hellhorn [12℄. Their basi
 assumption is that rules are redundant if they

ontain no symbols whi
h o

ur in the problem, or more pre
isely, if they are

de�ned in redundant theories. A theory is redundant if it introdu
es only symbols

not o

uring in the problem and is not referred (dire
tly or indire
tly) by other

non-redundant theories.

Due to the distin
tion between axioms and lemmas the strategy of Reif and

S
hellhorn
an be modi�ed in several ways, e.g., (i) sele
t only axioms, (ii)

additionally, sele
t lemmas if they
ontain only symbols whi
h o

ur in the

original problem, (iii) additionally, sele
t lemmas if they
ontain at least one

symbol whi
h o

urs in the original problem but no symbol from non-redundant

theories, or (iv) sele
t all axioms and lemmas from non-redundant theories.

NORA/HAMMR
urrently implements the variants (i) and (iv).

4 Experiments

We used a library of 119 spe
i�
ations of list pro
essing fun
tions. Approximately

75 of them des
ribe a
tual fun
tions (e.g., tail, rotate, or delete minimal) while

the rest simulates queries. We thus in
luded under-determined spe
i�
ations

(e.g., the result is an arbitrary front segment of the argument list) as well as

spe
i�
ations whi
h do not refer to the arguments (e.g., the result is not empty).

We then
ross-mat
hed ea
h spe
i�
ation against the entire library, using plugin-

ompatibility as mat
h relation. This yielded a total of 14161 proof tasks where

1839 or 13.0% were valid.

The theory database used in the experiments
omprises 65 theories, in whi
h

24 di�erent fun
tion and predi
ate symbols are axiomatized. The axiomatization

onsists of 38
ore axioms and approximately 100 additional lemmas whi
h are

(�rst-order or indu
tive)
onsequen
es of the axioms.

We then used the rewrite-based methods (
f. Se
tion 3.3) to dete
t and �lter

out obvious (mis)mat
hes. We thus ruled out up to 6663 (47.1%) of the tasks as

invalid and another 858 (6.1% or 46.1% of the valid problems) as trivial.

In a �rst experiment, we used the axiom sele
tion me
hanisms to generate

three di�erent variants of the proof tasks. SPASS was able to solve between 933

4

and 1089 of the mat
hes (50.7%{59.2%) within one se
ond, depending on the

variant. With an in
reased time-out of 60 se
s., the numbers grew to 67.9%{

71.8%. As expe
ted,
ompetition between the variants signi�
antly in
reased

the re
all, by approx. 7.5%. For short timeouts we even observed a \superlinear"

growth. E.g., for a timeout of 10 se
s.,
ompetition between all three variants

solved 3.2% more problems than the best variant with a timeout of 30 se
s. At

the same time, the total elapsed runtime dropped by approx. 6%.

In a se
ond experiment, we tested
ompetition between the di�erent provers

OTTER, SETHEO, and SPASS. For a small but representative subset we a
hieved

even better results|up to 56%
ompared to the best single system. Remarkably,

none of the provers is \subsumed" by another as ea
h solved at least one problem

ex
lusively.

5 Reuse Administration using ILF

NORA/HAMMR provides some general prepro
essing methods, e.g., axiom se-

le
tion and rewriting me
hanisms, and o�ers, in
onne
tion with ILF, an open

system ar
hite
ture whi
h allows for the easy integration of further dedu
tive

omponents. However, their
ombination results in an a

epted retrieval tool

only after some domain-spe
i�
 tuning of the entire system.

Sin
e we
onsider the ATPs essentially as bla
k boxes, we
on
entrate on

problem tuning, e.g., through additional lemmas or development of better sim-

pli�
ation methods. This requires an experimental testbed whi
h o�ers

{ translation of the proof tasks generated by the appli
ation system into a

human readable form,

4

All numbers in
lude the trivial 858 mat
hes dete
ted by simpli�
ation.

{ translation of example proofs found by an ATP into a human readable form,

{ prototyping of user-de�ned methods whi
h exploit the task stru
ture, and

{ good experimental support to gather statisti
al data and evaluate the meth-

ods.

Our experien
e has shown that ILF is an ex
ellent testbed and, espe
ially, that

the
ombination of its presentation and prototyping fa
ilities is very useful. The

former allows the dete
tion of simpli�
ation potential, the latter allows the ex-

ploitation of this potential. If a prototyped method turns out to be useful in the

experiments, it
an be integrated into the system. This feedba
k from ILF to

NORA/HAMMR improves its overall performan
e.

However, \novi
e" users of NORA/HAMMR never intera
t with ILF|its ap-

pli
ation as experimental testbed is restri
ted to the reuse administrator. His

skills must be exploited to a
hieve better results when the automated methods

and their
ombinations are exhausted.

We used reuse administration to develop better reje
tion methods. A spe-

ial property of the generated unprovable tasks is that in most
ases only a few

additional
ountermodel axioms given by the reuse administrator allow a for-

mal refutation of the a
tual goal by an ATP (
f. Se
tion 3.4.) Fortunately, the

same set of axioms allows to dis-proof a large number of tasks. After inspe
-

tion of some failed dis-proof attemps, it turned out that the ne
essary axioms

are rather simple and
onsistent with the other theory of lists, e.g., a > b or

memberP(
ons(b;
ons(a;nil)); b) for some new
onstants a and b.

Through proof task inspe
tion we dis
overed that some
ompli
ated sub-

formulas o

ured in many goals, sometimes even more than on
e, e.g., 9l :

list � app(l;
ons(x;nil)) = y. Su
h formulas
an be repla
ed by simpler terms

(e.g., last(x; y)) before the ATP is started if the appropriate axioms as 8x8y �

last(x; y) $ 9z � app(z;
ons(x;nil)) = y) are added to the task. Be
ause the

axioms are
onservative extensions, this de�nitorial folding does not
hange the

semanti
s of a theory.

Both methods (i.e.,
ountermodel axiomatization and folding)
an be
om-

bined, if suitable lemmas for the de�ned predi
ates are added. This
ombination

improves the results
onsiderably|almost 95 % of the non-mat
hes whi
h re-

main after rewrite-based reje
tion
an be dis-proved if the tasks are simpli�ed

a

ording the sket
hed approa
h.

6 Con
lusions

In this paper, we des
ribed the appli
ation of ATPs to solve a problem in software

reuse, the retrieval of
omponents based on their formal spe
i�
ations. Paradox-

i
ally, the key su

ess fa
tor of our system NORA/HAMMR is that it defers the

appli
ation of ATPs as far as possible.

The problem pro�le makes it ne
essary to invest mu
h e�ort in prepro
essing

steps, e.g., logi

onversion, simpli�
ation, or dete
tion of non-theorems. These

steps require domain-spe
i�
 (i.e., depending on the parti
ular
omponent li-

brary) tuning. Here, we use the presentation and prototyping fa
ilities of ILF.

Experien
es gained with this intera
tive use of ILF
an then be fed ba
k into

NORA/HAMMR and used to optimize the appli
ation of automated systems.

On the a
tual dedu
tive level, our main method of atta
k is
ompetition,

both between di�erent task variants and between di�erent ATPs. Here, we use

the ILF-system to
ontrol the provers. Our results show this atta
k is su

essful:

ompetition in
reases the re
all rates
onsiderably, by up to 50%
ompared to

single systems. Currently, we thus a
hieve an overall re
all of approximately

80% with moderate timeouts whi
h indi
ates that dedu
tion-based retrieval may

be
ome feasible with the next hardware generations.

Referen
es

[1℄ H. Barringer, J. H. Cheng, and C. B. Jones. "A Logi
 Covering Unde�nedness in

Program Proofs". A
ta Informati
a, 21(3):251{269, O
tober 1984.

[2℄ W. Bibel and P. H. S
hmitt, (eds.). Automated Dedu
tion - A Basis for Appli
a-

tions. Kluwer, Dordre
ht, 1998. To Appear.

[3℄ J. Denzinger and D. Fu
hs. "Enhan
ing
onventional sear
h systems with multi-

agent te
hniques: a
ase study". In Pro
. Intl. Conf. on Multi Agent Systems

(ICMAS'98), 1998. To Appear.

[4℄ B. I. Dahn, J. Gehne, T. Honigmann, and A. Wolf. "Integration of Automated and

Intera
tive Theorem Proving in Ilf". In Pro
. CADE-14, LNAI 1249, pp. 57{60,

Springer, 1997.

[5℄ B. Fis
her, J. M. P. S
humann, and G. Snelting. "Dedu
tion-Based Software Com-

ponent Retrieval". In Bibel and S
hmitt [2℄. To Appear.

[6℄ J. Harrison. "Indu
tive de�nitions: automation and appli
ation". In Pro
. 8th

Intl. Workshop on Higher Order Logi
 Theorem Proving and Its Appli
ations,

LNCS 971, pp. 200{213. Springer, 1995.

[7℄ C. B. Jones and K. Middelburg. "A Typed Logi
 of Partial Fun
tions Re
onstru
ted

Classi
ally". A
ta Informati
a, 31(5):399{430, 1994.

[8℄ K. Middelburg. Logi
 and Spe
i�
ation | Extending VDM-SL for advan
ed formal

spe
i�
ation. Computer S
ien
e: Resear
h and Pra
ti
e. Chapman & Hall, 1993.

[9℄ A. Mili, R. Mili, and R. Mittermeir. "A Survey of Software Reuse Libraries". Annals

of Software Engineering, 1998. To appear.

[10℄ A. Obers
help. "Untersu
hungen zur mehrsortigen Quantorenlogik". Mathema-

tis
he Annalen, 145:297{333, 1962.

[11℄ L. C. Paulson. Isabelle: A Generi
 Theorem Prover, LNCS 828. Springer, 1994.

[12℄ W. Reif and G. S
hellhorn. "Theorem Proving in Large Theories". In Bibel and

S
hmitt [2℄. To Appear.

[13℄ J. M. P. S
humann and B. Fis
her. "NORA/HAMMR: Making Dedu
tion-Based

Software Component Retrieval Pra
ti
al". In Pro
. 12th Intl. Conf. Automated Soft-

ware Engineering, pp. 246{254, Lake Tahoe, November 1997.

[14℄ G. Sut
li�e, C. B. Suttner, and T. Yemenis. "The TPTP Problem Library". In

Pro
. CADE-12, LNCS 814, pp. 252{266. Springer, 1994.

