
p ()
URL: http://www.elsevier.nl/locate/entcs/volume59.html 15 pages

Interpreting Abstract Interpretations in
Membership Equational Logic

Bernd Fischer and Grigore Ro�su

Research Institute for Advanced Computer Science

Automated Software Engineering Group

NASA Ames Research Center

Mo�ett Field, California, 94035, USA

ffisch,grosug@ptolemy.arc.nasa.gov

Abstract

We present a logical framework in which abstract interpretations can be naturally

speci�ed and then veri�ed. Our approach is based on membership equational logic

which extends equational logics by membership axioms, asserting that a term has

a certain sort. We represent an abstract interpretation as a membership equational

logic speci�cation, usually as an overloaded order-sorted signature with member-

ship axioms. It turns out that, for any term, its least sort over this speci�cation

corresponds to its most concrete abstract value. Maude implements membership

equational logic and provides mechanisms to calculate the least sort of a term ef-

�ciently. We �rst show how Maude can be used to get prototyping of abstract

interpretations \for free." Building on the meta-logic facilities of Maude, we fur-

ther develop a tool that automatically checks an abstract interpretation against a

set of user-de�ned properties. This can be used to select an appropriate abstract

interpretation, to characterize the speci�c loss of information during abstraction,

and to compare di�erent abstractions with each other.

1 Introduction

Abstract interpretation [5] has become a unifying framework for a variety of

program analysis techniques. It is also increasingly �nding application in other

areas of computer science, e.g., model checking [2,13] and theorem proving [12].
Its appeal is precisely the involved abstraction which simpli�es calculation and

search, thus allowing us to eÆciently �nd approximate but correct solutions

to problems which may otherwise be too hard.

In practice, however, �nding the right abstraction for a problem at hand

is often all but trivial. Di�erent abstractions o�er di�erent trade-o�s be-

tween eÆciency and approximation which can often be validated and evalu-

ated only with a prototype implementation of the abstract interpretation. A

c2001 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Fischer and Ros�u

more de�nitive evaluation of the abstraction, e.g., in the form of a correctness

or completeness proof, even requires support for formal veri�cation.

In this paper, we are addressing these validation and veri�cation issues.

We show how abstract interpretation can be speci�ed and interpreted in mem-

bership equational logic (MEL) [11,1], an expressive logic which generalizes

the various forms of equational logics used in algebraic speci�cation tech-

niques. With this re-interpretation, we can use the Maude system [4,3] as

environment to execute the speci�cation of an abstraction, or in other words,

we get a prototyping environment \for free." We further developed a tool

which uses Maude's meta-logic capabilities to verify abstract interpretations

against properties that are also speci�ed as MEL sentences. More precisely,

we provide a Maude module that allows us to write commands like

Maude> reduce verify PROPERTIES on ABSTRACTION .

where ABSTRACTION is a speci�cation of an abstract interpretation and PROPERTIES

is another MEL speci�cation. verify on returns a list of warnings showing

all sentences in PROPERTIES that are violated by the abstract interpretation,

together with (abstract) counterexamples. We can see at this stage three

applications of such a tool, depending on what the speci�cation PROPERTIES

actually represents:

� If PROPERTIES is a set of desired properties an abstract interpretation should
have in order to be employed in a certain context, then we can use our tool
to retrieve from a library abstract interpretations that satisfy them;

� If PROPERTIES is an axiomatic presentation of the concrete domain, then
we can use the tool to see how much and what kind of information the
abstraction looses and then decide if it is acceptable for a speci�c task;

� If PROPERTIES is another abstract interpretation of the same concrete do-
main, then an empty list of warnings means that ABSTRACTION re�nes this
second abstraction.

The basic idea of our approach is relatively straightforward. If we think of
an abstract interpretation as a lattice, then a sort is associated to each node

in the lattice and a subsort is associated to each edge. The tables de�ning
the abstract operations are replaced by a series of overloaded operators, while
properties that cannot be captured by tables are declared via MEL sentences.

sorts Bottom Neg Pos Real .

subsorts Bottom < Neg Pos < Real .

op _+_ : Neg Neg -> Neg .

op _+_ : Pos Pos -> Pos .

op _*_ : Neg Pos -> Neg .

op _*_ : Neg Neg -> Pos .

op _/_ : Real Real -> Real .

op _/_ : Real Zero -> Bottom .

mb X / X : Pos-one .

is a fragment of the usual sign abstraction 1 . The abstract value of an ex-

1 The precise formalism used here will be explained later.

2

Fischer and Ros�u

pression in the concrete domain then corresponds to its least sort over the

speci�ed signature; an eÆcient automatic least sort calculation is provided by

Maude.

Our approach to abstract interpretation in MEL is more logic-oriented

than the usual lattice-oriented approach. We advocate a loose semantics for

the speci�cations corresponding to abstract interpretations. The intended

abstract interpretation is then just one model of the speci�cation, namely

that one that adds exactly one new element to each carrier, besides those

resulting from the inclusion of carriers required by the subsort declarations.

Another model is the one that structures the concrete domain into subsets

of elements of the same \type". This model is thus similar to the powerset

construction usually used as concrete domain in the lattice-oriented approach.

The ultimate goal of abstract interpretations is to simplify reasoning about

the concrete domain. We thus prefer to add to the speci�cation as many

sentences that are valid properties of the concrete domain as needed rather

than to add exactly those that make the intended abstract interpretation an

initial model. Our approach requires no structure on the concrete domain and

the abstract domain need not be a complete lattice or a lower semilattice.

Instead, the associated speci�cation is expected to be regular [1] in order for
Maude to correctly compute the least sort of a term. Interestingly, the fact
that the partial order on sorts is a lattice tends to be suÆcient for regularity

in practice.

Our work here represents only �rst steps towards a full re-interpretation

of abstract interpretations in MEL. Our approach is currently restricted to
�nite number of sorts, or abstract types, and we cannot yet handle �xpoint
operators. These restrictions will be subject to further investigation. The

focus of this paper is on the tool aspects rather than on the theoretical aspects.

The remainder of the paper is organized as follows. In the next section
we briey introduce the fundamental notions and notations of membership
equational logic and the Maude-system, as far as they are required for our

purposes. We then show in Section 3 how abstract interpretations can be
seen as membership algebras. Section 4 shows how a MEL speci�cation can
be associated to an abstract interpretation and how abstract types can be

automatically calculated at the level of that speci�cation. Section 5 �nally
discusses how abstract interpretations can be veri�ed in the framework pro-

posed in this paper.

2 Membership Equational Logic and Maude

Membership equational logic [11,1] extends many-sorted equational logic [8]
with membership assertions t : s stating that a term t belongs to a sort s.

It subsumes a wide variety of speci�cation formalisms, including order-sorted
[7,9] and partial equational logics. Despite its generality, it still enjoys the good

properties of equational logics: it is simple, eÆciently implementable, and

3

Fischer and Ros�u

admits sound and complete deduction as well as free models. In this section

we informally present membership equational logic and some of the notational

conventions used, referring to [11,1,4,3] for a comprehensive exposition. We

assume basic familiarity with many-sorted equational logic.

In membership equational logic, sorts are grouped in kinds and operations

are de�ned on kinds. A signature
 consists of a set S of sorts, a setK of kinds,

a map �:S ! K, and a K? � K-indexed set � = f�w;k j (w; k) 2 K? �Kg

of operations. An
-algebra is a �-algebra A together with a subset As � Ak

for each k 2 K and each s 2 ��1(k). For any K-indexed set of variables X,

T�(X) is the usual (K;�)-algebra of terms. The sentences of MEL generalize

the conditional equations (8X) t = t0 if C of equational logics by allowing

membership assertions. They are universally quanti�ed Horn clauses of the

form (8X) t : s if C. In both cases, the condition C is a �nite set fu1 =

v1; :::; un = vn; t1 : s1; :::; tm : smg and t; t0; t1; :::tm; u1; v1; :::; un; vn are terms

in T�(X). If n = m = 0 then the sentence is called unconditional or atomic.

We discuss only satisfaction of atomic sentences in this paragraph; the

general case follows easily. For an
-algebra A and an assignment a:X ! A

we use a?:T�(X)! A to denote the unique extension of a to a morphism of

(K;�)-algebras. We then say that A satis�es (8X) t = t0 (or (8X) t : s) if and
only if for each assignment a we also have that a?(t) = a?(t0) (or a?(t) 2 As).
A MEL speci�cation or theory is a pair (
;�), where � is a set of
-sentences,

and it de�nes a class of
-algebras (those that satisfy it) denoted Alg(
;�).

The MEL proof theory is derived from the standard proof theory of equa-

tional logic. Its distinctive characteristic is that it allows to infer the member-
ships of terms to sorts in addition to the standard equalities of terms. Given
a speci�cation (
;�), there are two inference rules that facilitate that. One

is a modi�cation of the modus ponens rule to deduce a membership from a
(conditional) sentence in � once its condition has been proven. The second

rule is an extensionality rule asserts that equal terms have the same sort.

Membership:
� `
 (8X) t = t0 � `
 (8X) t : s

� ` (8X) t0 : s

Maude [4,3] is a high-performance rewrite system in the OBJ family [10]
that supports both membership equational logic and rewriting logic. Its cur-

rent version processes up to 3 million rewritings per second on standard hard-
ware. We use Maude notation in this paper not only to represent abstract

interpretations in membership equational logic but also to verify them. A few

notational conventions are introduced next. Equations and conditional equa-
tions are declared via the keywords eq and ceq, respectively; membership and

conditional membership assertions are declared with mb and cmb. Operations
can be declared using mix-�x notation. They can also be overloaded; however,

this is only syntactic sugar for appropriate conditional membership assertions.

For example, * : Pos Neg -> Neg can be replaced by cmb X * Y : Neg if

X : Pos and Y : Neg, where * is de�ned on appropriate kinds. Declarations

of the form var X : S are used to introduce variables; their scope is bounded

4

Fischer and Ros�u

by the enclosing module, introduced by fmod ... end. Kinds need not to

be declared explicitly. They are automatically calculated as the connected

components of the partial order de�ned by subsort declarations.

A typical problem of speci�cation formalisms that allow order-sorting and

operator overloading is that some terms may have various correct sorts at the

same time. The possible sorts of a term can be deduced using the complete

deduction system of MEL, i.e., sorts(t) is the set fs 2 S j � `
 (8X) t : sg.

A speci�cation (
;�) is called regular if and only if for each term t, sorts(t) is

either empty or has a minimal element w.r.t. the subsort relation. A detailed

discussion on regularity can be found in [1], together with decidability results

and various syntactic criteria that imply regularity. Maude implements some

of these criteria. We can thus assume that each valid speci�cation is regular

and that we can calculate the least sort of any term eÆciently.

3 Abstract Interpretations as
-Algebras

To illustrate our approach, we describe a generalized sign/range abstraction
for the real numbers, in which both the positive and the negative numbers

are split into large and small. This interpretation is a simpli�ed version of
a more complex one that we implemented in a program synthesis system for

the statistical data analysis domain [6]. In this domain, probabilities (i.e., the
interval [0; 1]) and thus the real numbers \0" and \1" are of speci�c interest. In
order to handle division by zero appropriately, we need to make an assumption

about the real numbers. We can consider division either as a partial function
and leave the set of real numbers unchanged, or as a total function, in which
case we need to add a new element to the real numbers which represents

unde�nedness. For simplicity, we choose the second assumption; note that
MEL also supports partiality, so our choice does not reect a limitation of the

framework. Let ? be the special symbol denoting \unde�ned"; we use the
same symbol ? for the set f?g, and let IR? denote the set of real numbers
plus ?. The abstract domain then consists of eleven intervals of IR? which are

partially ordered by inclusion. Each interval of real numbers also contains ?,
reecting the intuition that the result of an expression can be either a number

within that interval or unde�ned. This domain can, as usual, be represented

by the following lattice:

(�1;+1)?

��
��

��
��

��
��

��
��

(�1; 0]?

���
� ��

� [0;+1)?

��
� ���

�

(�1;�1]?

���
� [�1; 0]?

��
� ���

� [0;+1]?

			
	

 [+1;+1)?

			
	

�1?

��
��

��
��

� 0? +1?

��
��

��
��

�

?

5

Fischer and Ros�u

We can now provide the abstract versions of operations. The typical, concise

way to do it is by tables, as for example the following table for division 2 :

X=Y (�1;1) (�1; 0] [0;1) (�1;�1] [�1; 0] [0;+1] [+1;1) �1 0 +1 ?

(�1;1) (�1;1) (�1;1) (�1;1) (�1;1) (�1;1) (�1;1) (�1;1) (�1;1) ? (�1;1) ?

(�1; 0] (�1;1) [0;1) (�1; 0] [0;1) [0;1) (�1; 0] (�1; 0] [0;1) ? (�1; 0] ?

[0;1) (�1;1) (�1; 0] [0;1) (�1; 0] (�1; 0] [0;1) [0;1) (�1; 0] ? [0;1) ?

(�1;�1] (�1;1) [0;1) (�1; 0] [0;1) [+1;1) (�1;�1] (�1; 0] (+1;1] ? (�1;�1] ?

[�1; 0] (�1;1) [0;1) (�1; 0] [0;+1] [0;1) (�1; 0] [�1; 0] [0;+1] ? [�1; 0] ?

[0;+1] (�1;1) (�1; 0] [0;1) [�1; 0] (�1; 0] [0;1) [0;+1] [�1; 0] ? [0;+1] ?

[+1;1) (�1;1) (�1; 0] [0;1) (�1; 0] (�1;�1] [+1;1) [0;1) (�1;�1] ? [+1;1) ?

�1 (�1;1) [0;1) (�1; 0] [0;+1] [+1;1) (�1;�1] [�1; 0] +1 ? �1 ?

0 0 0 0 0 0 0 0 0 ? 0 ?

+1 (�1;1) (�1; 0] [0;1) [�1; 0] (�1;�1] [+1;1) [0;+1] �1 ? +1 ?

? ? ? ? ? ? ? ? ? ? ? ?

However, it is known that tables are often not suÆcient to fully describe the

intended behavior of abstract operations. For example, there is no possibility

to specify that the abstract value of X=X is +1?. Hence, the abstraction
becomes less precise than one may wish. We will show in the next section how

MEL allows us to use membership assertions to specify such properties.

In the context of MEL, it is more convenient to regard the lattice and

the tables associated with an abstract interpretation as an
-algebra over an
appropriate signature
. This general algebraic view gives us the freedom to
consider an abstract interpretation as \just one particular model" of an (
;�)-

speci�cation. Since a speci�cation can have many di�erent models, this allows
us also to relate di�erent abstractions to each other. In the remainder of this

section we concentrate on showing how abstract interpretations can be seen as

-algebras. In the next sections we will then show how a MEL speci�cation
can naturally be associated with an intended abstract interpretation and how

we can prove properties at the level of that speci�cation rather than at the
level of the abstract model.

The lattice actually gives some structure to the originally at concrete
domain of real numbers. It is now natural to associate a MEL-signature
 to

the lattice above by providing a sort for each node in the lattice and using
subsort relations to reect the lattice structure. In Maude, this is represented

as:

sorts Real --- =̂ (�1; +1)?
Neg --- =̂ (�1; 0]?
Neg-l --- =̂ (�1; �1]?
Neg-s --- =̂ [�1; 0]?
Neg-one --- =̂ � 1?
Pos --- =̂ [0; +1)?
Pos-l --- =̂ [+1; +1)?
Pos-s --- =̂ [0; +1]?
Pos-one --- =̂ + 1?
Zero --- =̂ 0?
Bottom . --- =̂ ?

2 For typographical reasons we omit the ?-subscript here.

6

Fischer and Ros�u

subsorts Neg Pos < Real .

subsorts Neg-one < Neg-l Neg-s < Neg .

subsorts Pos-one < Pos-s Pos-l < Pos .

subsorts Zero < Neg-s Pos-s .

subsorts Bottom < Neg-one Zero Pos-one .

Since the lattice is a single connected component, all sorts belong to the same

kind k and all operations are declared on that kind, i.e., we have �; =;+;� :

k � k ! k and � : k! k, or again using the Maude notation,

ops _*_, _/_, _+_, _-_ : Real Real -> Real .

op -_ : Real -> Real .

Now, the extended real numbers IR? can be viewed as an
-algebra A as

follows. For each sort s we de�ne as its carrier As the appropriate subset of

IR?. For example, we de�ne Ak = AReal = IR?, APos = IR+
?
= fx 2 IR j x �

0 or x = ?g and so on, until we get to ABottom = f?g. A's operations are

the usual arithmetic operations on IR?. Notice that most of the carriers are

in�nite sets.

However, A is not the only interesting
-algebra we can construct. Instead

of using the set of the real numbers within the respective intervals as carrier we

can as well use the intervals themselves. We thus get ABottom = BBottom =

f?g and APos-one = BPos-one = f+1;?g but BPos-s = f[0;+1]; 0;+1;?g
and BPos-s = f[+1;+1];+1;?g and so on. Hence, B's carrier Bk is �nite|

in fact, it consists of exactly the same eleven elements as the lattice. B's
operations are de�ned via operator tables, as for example the division table.

The main di�erence between the two
-algebras A and B above is obvi-
ously that B is �nite. Hence, it is easy to handle in practice but it looses

information about the concrete domain of real numbers, so that many useful
properties of real numbers do not hold anymore. A just structures the at
concrete domain but still carries all the burden of analyzing the real numbers

directly. Ideally, we would want to keep both algebras, as opposed to just
discard A and keep B as it often happens in practice. We next show that

MEL is a framework under which we can write a (�nite) speci�cation which
accepts both A and B as models. This speci�cation can be seen as a \�nite
abstraction" of the concrete domain that can contain as many properties of

the domain as needed.

4 Interpreting Abstract Interpretations

We present our technique on the example in the previous section. We start in

Maude with a module ABSTRACTION-REAL by de�ning the abstract domain as
a partial order via sorts and subsorts:

fmod ABSTRACTION-REAL is

sorts Real Neg Pos Neg-l Pos-l Neg-s Pos-s

Neg-one Zero Pos-one Bottom .

subsorts Neg-one < Neg-l Neg-s < Neg < Real .

subsorts Zero < Neg-s Pos-s .

subsorts Pos-one < Pos-s Pos-l < Pos < Real .

subsorts Bottom < Neg-one Zero Pos-one .

7

Fischer and Ros�u

Note that we can declare more than one subsort in a subsorts declaration; a

sort is smaller than any other sort occurring between any subsequent < symbol

and the next period. The concrete real numbers will be provided in Maude 2.0

in a module MACHINE-REAL. This module is imported by the abstract interpre-

tation using the protecting MACHINE-REAL clause; the reals are abstracted via

a map | | : MachineReal -> Real de�ned using membership assertions:

protecting MACHINE-REAL .

op |_| : MachineReal -> Real .

var R : MachineReal .

mb | 0 | : Zero .

mb | 1 | : Pos-one .

mb | -1 | : Neg-one .

cmb | R | : Neg-l if R <= -1 .

cmb | R | : Neg-s if R >= -1 and R <= 0 .

cmb | R | : Pos-s if R >= 0 and R <= 1 .

cmb | R | : Pos-l if R >= 1 .

Note that | 0 |, the abstraction of 0, can be of three sorts: Zero, Neg-s and

Pos-s. However, Maude automatically calculates for each term its smallest

sort, so | 0 | has the sort Zero.

The next step is to abstract the operations de�ned on the concrete domain,
in our case addition, multiplication, negation, subtraction and division. We

do this by making use of operator overloading, which basically represents an
elegant way to encode the tables often used to de�ne abstract interpretations:

op _+_ : Bottom Real -> Bottom .

op _+_ : Real Bottom -> Bottom .

op _+_ : Neg-one Zero -> Neg-one .

op _+_ : Zero Neg-one -> Neg-one .

op _+_ : Zero Zero -> Zero .

op _+_ : Neg-one Pos-one -> Zero .

op _+_ : Pos-one Neg-one -> Zero .

op _+_ : Pos-one Zero -> Pos-one .

op _+_ : Zero Pos-one -> Pos-one .

op _+_ : Neg-l Neg -> Neg-l .

op _+_ : Neg Neg-l -> Neg-l .

op _+_ : Neg-s Zero -> Neg-s .

op _+_ : Zero Neg-s -> Neg-s .

op _+_ : Pos-s Zero -> Pos-s .

op _+_ : Zero Pos-s -> Pos-s .

op _+_ : Pos-l Pos -> Pos-l .

op _+_ : Pos Pos-l -> Pos-l .

op _+_ : Neg Neg -> Neg .

op _+_ : Neg-l Pos-s -> Neg .

op _+_ : Pos-s Neg-l -> Neg .

op _+_ : Pos Pos -> Pos .

op _+_ : Pos-l Neg-s -> Pos .

op _+_ : Neg-s Pos-l -> Pos .

op _+_ : Real Real -> Real .

op _*_ : Bottom Real -> Bottom .

op _*_ : Real Bottom -> Bottom .

op _*_ : Neg-one Pos-one -> Neg-one .

op _*_ : Pos-one Neg-one -> Neg-one .

op _*_ : Real Zero -> Zero .

op _*_ : Zero Real -> Zero .

op _*_ : Pos-one Pos-one -> Pos-one .

op _*_ : Neg-one Neg-one -> Pos-one .

op _*_ : Neg-l Pos-l -> Neg-l .

op _*_ : Pos-l Neg-l -> Neg-l .

op _*_ : Neg-s Pos-s -> Neg-s .

op _*_ : Pos-s Neg-s -> Neg-s .

op _*_ : Pos-s Pos-s -> Pos-s .

op _*_ : Neg-s Neg-s -> Pos-s .

op _*_ : Neg-l Neg-l -> Pos-l .

op _*_ : Pos-l Pos-l -> Pos-l .

op _*_ : Neg Pos -> Neg .

op _*_ : Pos Neg -> Neg .

op _*_ : Pos Pos -> Pos .

op _*_ : Neg Neg -> Pos .

op _*_ : Real Real -> Real .

In this case, we are able to de�ne the intended abstractions of addition
and multiplication completely by operator overloading (i.e., in table form). In

practice, however, tables are often not suÆcient to properly de�ne abstract

versions of operators. Some important domain speci�c properties of operators
cannot be speci�ed only looking at the abstract type of their arguments. For

example, there is no way to declare that the abstract type of X/X is Pos-one

8

Fischer and Ros�u

by just analyzing the arity (or the table) of (the abstraction of) division.

Fortunately, membership equational logic allows us to declare membership as-

sertions, which then can be used to infer the smallest type of an abstract term:

op -_ : Bottom -> Bottom .

op -_ : Pos-one -> Neg-one .

op -_ : Zero -> Zero .

op -_ : Neg-one -> Pos-one .

op -_ : Pos-l -> Neg-l .

op -_ : Pos-s -> Neg-s .

op -_ : Neg-s -> Pos-s .

op -_ : Neg-l -> Pos-l .

op -_ : Pos -> Neg .

op -_ : Neg -> Pos .

op -_ : Real -> Real .

vars X Y : Real .

mb X + (- X) : Zero .

op _-_ : Real Real -> Real .

eq X - Y = X + (- Y) .

op _/_ : Bottom Real -> Bottom .

op _/_ : Real Zero -> Bottom .

op _/_ : Neg-one Pos-one -> Neg-one .

op _/_ : Pos-one Neg-one -> Neg-one .

op _/_ : Zero Real -> Zero .

op _/_ : Pos-one Pos-one -> Pos-one .

op _/_ : Neg-one Neg-one -> Pos-one .

op _/_ : Neg-l Pos-s -> Neg-l .

op _/_ : Pos-l Neg-s -> Neg-l .

op _/_ : Neg-s Pos-l -> Neg-s .

op _/_ : Pos-s Neg-l -> Neg-s .

op _/_ : Pos-s Pos-l -> Pos-s .

op _/_ : Neg-s Neg-l -> Pos-s .

op _/_ : Neg-l Neg-s -> Pos-l .

op _/_ : Pos-l Pos-s -> Pos-l .

op _/_ : Neg Pos -> Neg .

op _/_ : Pos Neg -> Neg .

op _/_ : Neg Neg -> Pos .

op _/_ : Pos Pos -> Pos .

op _/_ : Real Real -> Real .

mb X / X : Pos-one .

mb (- X) / X : Neg-one .

endfm

Notice that we can use the equation \eq X - Y = X + (- Y) ." to eliminate
the abstract subtraction in a way consistent with its concrete de�nition, thus

reducing the size of the speci�cation.

It may be worth mentioning here that Maude provides internal algorithms

to insure the regularity of a signature and that it warned us a few times while
testing the overloaded signature above that the signature was not regular.

After careful examination, we discovered that our \table" was not consistent,
in the sense that certain concrete expressions couldn't have a most precise
abstract value. For example, we forgot to add the third declaration of * ;

then Maude issued a warning saying that the regularity check failed: indeed,
the product of negative one and positive one could have any sort in the set
fNeg-s,Neg-l,Neg,Realg, but this set has no minimal element. The regular-

ity checks thus helped us cover all the situations. We strongly believe that
there is a deep relationship between the regularity of order-sorted overloaded

signatures and the existence of most concrete abstract values for abstract inter-
pretations where the abstract values form a lattice, and that this relationship

is worth investigating.

The module above can now be used as a decision procedure to abstract

expressions. The following are a few examples showing how it works:

red | 1 - 1 | . red | 2 - 2 | .

red | 1 | - | 1 | . red | 2 | - | 2 | . red | 1 | + | -1 | .

red | 2 | + | -2 | .

red (| -1 | + | 1 |) + | 1 | .

red | -1 | + (| 1 | + | 1 |) .

9

Fischer and Ros�u

red | -2 | / (| 3 | / | 3 |) .

red (| -2 | * | 3 |) / | 3 | .

The �rst �ve expressions are all correctly abstracted to Zero; that is, they all

reduce to terms of sort Zero, but for di�erent reasons: the �rst two reduce to

| 0 | whose sort is Zero, the next two �rst use the equation eq X - Y = X +

(- Y) to eliminate the subtraction and then use the membership assertion mb

X + (- X) : Zero, and the last one �rst calculates the sorts of | 1 | and |

-1 | and then use the declaration op + : Pos-one Neg-one -> Zero. The

following is the Maude output for the other �ve reductions:

result Real: | 2 | + | -2 |

result Pos-one: (| -1 | + | 1 |) + | 1 |

result Pos: | -1 | + (| 1 | + | 1 |)

result Neg-l: | -2 | / (| 3 | / | 3 |)

result Neg: (| -2 | * | 3 |) / | 3 |

The reductions above reect the intuition that abstract interpretations loose

information. For example, since the most speci�c abstract values of 2 and -2

are Pos-l and Neg-l, respectively, we cannot say anything about the abstract

type of | 2 | + | -2 |, so the returned type is Real. The next two reductions

show that the abstraction of addition is not associative anymore, which was

an unexpected problem that we encountered in our data analysis synthesis

system. Finally, the last two reductions show that other expected equational
properties of the concrete domain do not hold at the abstract level either, in

this case the equation eq X / (Y / Z) = (X * Z) / Y.

5 Proving Properties about Abstract Interpretations

Since by abstraction of a concrete domain one actually looses information, a

natural and important question is \how much information is lost?". This is
a diÆcult question both to ask and to answer, and probably new theoretical
results are behind it; instead of pursuing theoretical research, we decided to

take a pragmatic attitude and develop an environment in which one can test
an abstract interpretation as a Maude module for various equational or mem-

bership properties that it is expected or not to satisfy. For example, suppose
that one considers the following properties (also written as a Maude module):

fmod PROPERTIES is

sorts Pos Neg Real .

subsorts Pos Neg < Real .

op -_ : Real -> Real .

ops (_+_) (_-_) (_*_) (_/_) : Real Real -> Real .

vars X Y Z : Real .

eq X + Y = Y + X . ***> true

eq X * Y = Y * X . ***> true

eq X + (Y + Z) = (X + Y) + Z . ***> false

eq X * (Y * Z) = (X * Y) * Z . ***> true

eq X * (Y + Z) = (X * Y) + (X * Z) . ***> false

eq - (- X) = X . ***> true

eq X * (- Y) = - (X * Y) . ***> true

eq (- X) / Y = - (X / Y) . ***> true

eq (X / Y) / Z = X / (Y * Z) . ***> true

10

Fischer and Ros�u

eq X / (Y / Z) = (X * Z) / Y . ***> false

eq (X + Y) / Z = (X / Z) + (Y / Z) . ***> false

eq X * X = X * X * X * X . ***> true

mb X * X : Pos . ***> true

mb ((X * X) + (Y * Y)) + (X * Y) : Pos . ***> false

mb (X - Y) * (Y - X) : Neg . ***> false

endfm

All one needs to know in order to write up desired properties of an abstract

interpretation are the sorts and the operations one wants to refer to. Notice

that the sorts Pos and Neg are only needed for the last three properties, so one

could remove them if one was not interested in the membership properties.

The fact that the main sort Real has 10 subsorts in our previous abstract

interpretation is part of the abstraction, not of its desired properties w.r.t.

the concrete domain. Since one may want to test the same properties against

many di�erent abstract interpretations of the same domain and to chose one

that best �ts one's purpose, one should refer to as few sorts speci�c to only

one abstraction as possible when writing properties.

One can now test the properties above against the abstract interpretation

presented in the previous section using the simple command

red verify PROPERTIES on ABSTRACTION-REAL .

after �rst loading the module which de�nes the operation verify on and its
semantics, whose implementation is briey presented in the appendix. The
ftrue, falseg comments in the module above summarize the execution of

this command. In fact, for each of the properties above, Maude detected
all counterexamples, i.e., possible abstract values for X, Y, Z), that violated

it; there were 780 counterexamples in total and it took Maude about 30s on
a 1.5GHz linux machine to �nd all of them. For example, the associativity
of addition does not hold when X : Neg-one, Y : Pos-one, Z : Pos-one, and

the last membership assertion does not hold when X : Pos-one, Y : Pos, Z :

Zero. Interestingly, notice the last equation holds for the presented abstract
interpretation, even if it does not hold for the concrete domain of real numbers.

The lesson that we learned from experiments with this system is that the loss
of information due to an abstraction is reected not only by lost properties of

the concrete domain, but also by properties the abstraction has that do not
hold in the concrete domain.

The meta level of Maude was needed to implement the above environment,
that is, the functionality of the operation verify on . At the meta level, the

modules are just terms of sort FModule, so verify on has the arity FModule

FModule -> Warnings, where Warnings is a list of warnings. In our current
implementation, we traverse the �rst module and for each equation or mem-

bership assertion, we take the second module and generate all possible abstract
sorts for variables and then calculate the least sorts of the terms involved (two

terms if the statement is an equation and one if it is a membership). If the

statement is an equation then we output a warning if and only if the two terms

11

Fischer and Ros�u

have di�erent least sorts, and if the statement is a membership assertion then

a warning is output if and only if the calculated least sort is not smaller than

or equal to the sort speci�ed in the membership statement. The interested

reader may consult the appendix for more detail on the implementation.

The presented tool is still in an experimentation stage. One of our major

goals was to keep it simple and exible, such that to easily adapt it for concrete

uses. We can currently foresee three applications of this tool, depending on

what the speci�cation PROPERTIES is:

Abstract interpretation retrieval. If it is a collection of required prop-

erties manually or automatically generated in the context of a concrete

situation where an abstract interpretation is needed, then one can use our

tool to automatically retrieve from a library those abstract interpretations

that satisfy the requirements;

Comparison with the concrete domain. If it is an axiomatic presenta-

tion of the concrete domain, such as a Peano speci�cation of natural num-

bers, then one can use the tool to understand or test how much and what

kind of information a certain abstract interpretation looses and then decide

whether it is acceptable or not for a speci�c task;

Abstract interpretation re�nement. If it is another abstract interpreta-

tion of the same concrete domain, then an empty list of warnings means
that ABSTRACTION re�nes this second abstraction.

6 Conclusion and Future Work

We presented a new way to represent and verify abstract interpretations. We

abstracted a concrete domain by a �nite membership equational logic speci�ca-
tion, which, under loose semantics, also admits as model the common abstract

interpretations whose abstract values form a lattice and whose abstract oper-
ations are given by a table. This exible framework allows one to add needed
properties of the concrete domain that cannot be captured by tables via equa-

tions and membership assertions. Then we showed how one can use Maude,
an eÆcient rewriting engine that implements membership equational logic,
to execute such speci�cations and thus calculate the most concrete abstract

type (or the least sort) of an expression. Building on the meta-capabilities

of Maude, we further implemented a tool by which one can actually verify

an abstract interpretation, given as a MEL speci�cation, against equational
or membership properties. Such a tool can be used to retrieve appropriate

abstract interpretations from a library, to characterize the loss of information

due to an abstraction, and to show re�nements of abstract interpretations.

We use this approach in a programming synthesis tool that generates data

analysis C programs from stochastic speci�cations, in order to symbolically

prove the conditions of algorithm schemas before they are applied. However,

there is much interesting research to be done to prove the viability of our

12

Fischer and Ros�u

approach for a broader range of practical situations. For example, we do not

know at this stage how to represent in�nite abstract interpretations, such as

arbitrary integer intervals. Should the sort representation of the lattice be

given up? Or should membership equational logic be extended to allow free

generated algebras of sorts? What would regularity mean in such a context?

Another important aspect of abstract interpretations that we didn't investi-

gate is the computation of �xed points. Is there any relationship between

regularity of MEL signatures and �xpoints?

Acknowledgments: We thank Jos�e Meseguer and Steven Eker for encour-

agements and productive discussions. We also thank Steven Eker for providing

us an alpha version of Maude 2.0 which uses the membership assertions in cal-

culating the least sort of a term, so we could test our programs and claims.

References

[1] Adel Bouhoula, Jean-Pierre Jouannaud, and Jos�e Meseguer. Speci�cation and

proof in membership equational logic. Theoretical Computer Science, 236:35{

132, 2000.

[2] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and

abstraction. ACM Trans. Programming Languages and Systems, 16(5):1512{

1542, September 1994.

[3] Manuel Clavel, F. Dur�an, Steven Eker, Patrick Lincoln, N. Mart��-Oliet, Jos�e

Meseguer, and J. F. Quesada. The Maude system. In P. Narendran and

M. Rusinowitch, editors, Proc. 10th Intl. Conf. Rewriting Techniques and

Applications, volume 1631 of Lect. Notes Comp. Sci., pages 240{243, Trento,

Italy, July 1999. Springer. System Description.

[4] Manuel Clavel, Francisco J. Dur�an, Steven Eker, Patrick Lincoln, Narciso

Mart��-Oliet, Jos�e Meseguer, and Jos�e F. Quesada. Maude: Speci�cation and

Programming in Rewriting Logic, March 1999. Maude System documentation

at http://maude.csl.sri.com/papers.

[5] Patrick M. Cousot and Radhia Cousot. Abstract Interpretation: A

Uni�ed Lattice Model for Static Analysis of Programs by Construction

or Approximation of Fixpoints. In Proc. 4th ACM Symp. Principles of

Programming Languages, pages 238{252, Los Angeles, California, January 1977.

ACM Press.

[6] Bernd Fischer, Johann Schumann, and Thomas Pressburger. Generating data

analysis programs from statistical models (position paper). In Walid Taha,

editor, Proc. Intl. Workshop Semantics Applications, and Implementation of

Program Generation, volume 1924 of Lect. Notes Comp. Sci., pages 212{229,

Montreal, Canada, September 2000. Springer.

[7] Joseph Goguen. Order sorted algebra. Technical Report 14, UCLA Computer

Science Department, 1978. Semantics and Theory of Computation Series.

13

Fischer and Ros�u

[8] Joseph Goguen and Jos�e Meseguer. Completeness of many-sorted equational

logic. Houston Journal of Mathematics, 11(3):307{334, 1985.

[9] Joseph Goguen and Jos�e Meseguer. Order-sorted algebra I: Equational

deduction for multiple inheritance, overloading, exceptions and partial

operations. Theoretical Computer Science, 105(2):217{273, 1992.

[10] Joseph Goguen, Timothy Winkler, Jos�e Meseguer, Kokichi Futatsugi, and

Jean-Pierre Jouannaud. Introducing OBJ. In Joseph Goguen and Grant

Malcolm, editors, Software Engineering with OBJ: algebraic speci�cation in

action. Kluwer, 2000.

[11] Jos�e Meseguer. Membership algebra as a logical framework for equational

speci�cation. In Proceedings, WADT'97, volume 1376 of Lecture Notes in

Computer Science, pages 18{61. Springer, 1998.

[12] David A. Plaisted. Theorem proving with abstraction. Art. Intell., 16(1):47{

108, 1981.

[13] Willem Visser, S. Park, and John Penix. Using predicate abstraction to reduce

object-oriented programs for model checking. In Proceedings of the 3rd ACM

SIGSOFT Workshop on Formal Methods in Software Practice, August 2000.

To appear.

A Some Implementation Details

In this appendix we give a few details on how we implemented the operation
verify on : FModule FModule -> Bool that veri�es an abstract interpreta-

tion against user de�ned properties, both represented as Maude modules. The
interestead reader can download all the Maude source code discussed in this

paper at http://ase.arc.nasa.gov/grosu/download/absint-code.html.

We �rst implemented some auxiliary operations on top of Maude's meta-

level. The code below is not executable; because of space limitations we
replaced straightforward code by three dots:

fmod META-AUXILIARY is including META-LEVEL .

...

sort VarDeclTuple .

op |_| : VarDeclSet -> VarDeclTuple .

...

op getVarTuples : FModule VarDeclSet -> VarDeclTupleList .

var M : FModule . var Var : VarDecl . var Vars : VarDeclSet .

eq getVarTuples(M, none) = | none | .

eq getVarTuples(M, Var Vars)

= mergeVarDeclSet(getVarsFromVar(M, Var),getVarTuples(M, Vars)) .

op mergeVarDeclSet : VarDeclSet VarDeclTupleList -> VarDeclTupleList .

op mergeVarDecl : VarDecl VarDeclTupleList -> VarDeclTupleList .

var Ts : VarDeclTupleList .

eq mergeVarDeclSet(none, Ts) = nil .

eq mergeVarDeclSet(Var Vars, Ts)

= mergeVarDecl(Var, Ts) mergeVarDeclSet(Vars, Ts) .

eq mergeVarDecl(Var, nil) = nil .

eq mergeVarDecl(Var, | Vars | Ts) = | Var Vars | mergeVarDecl(Var, Ts) .

14

Fischer and Ros�u

op getVarsFromVar : FModule VarDecl -> VarDeclSet .

vars V S : Qid .

eq getVarsFromVar(M, var V : S .)

= getVarsFromNameAndSorts(V, lesserSorts(M, S)) .

...

endfm

Notice the use of the builtin operation lesserSorts which takes a module

and a sort name and gives a set of all smaller sorts. This set of sorts is then

used to generate all possible combinations of declarations of variables, which

will be subsequently used to calculate the least sorts of the terms involved in

properties.

The next module implements the main operation. It imports both the

auxiliary operations and a module de�ning warnings which we skipped; the

warnings are currently some adhoc messages concatenated by @.

fmod VERIFY-TYPE is including META-AUXILIARY + WARNING .

op verify_on_ : FModule FModule -> Warnings .

vars ABS, PROP : FModule .

eq verify PROP on ABS =

verifyEqns(getName(ABS), getVarTuples(ABS, getVars(PROP)), getEqns(PROP))

@ verifyMbs(getName(ABS), getVarTuples(ABS, getVars(PROP)), getMbs(PROP)) .

op verifyEqns : Qid VarDeclTupleList EquationSet -> Warnings .

op verifyEqn : Qid VarDeclTupleList Equation -> Warnings .

var Name : Qid . var Ts : VarDeclTupleList . var Vars : VarDeclSet .

var Eqn : Equation . var Eqns : EquationSet .

eq verifyEqns(Name, Ts, none) = ok .

eq verifyEqns(Name, Ts, Eqn Eqns) =

verifyEqn(Name, Ts, Eqn) @ verifyEqns(Name, Ts, Eqns) .

eq verifyEqn(Name, nil, Eqn) = finishedEqn(Eqn) .

eq verifyEqn(Name, | Vars | Ts, Eqn) =

(if leastSort(buildModule(Name, Vars), leftHandSide(Eqn)) ==

leastSort(buildModule(Name, Vars), rightHandSide(Eqn))

then ok else errorEqn?(Vars, Eqn) fi) @ verifyEqn(Name, Ts, Eqn) .

op verifyMbs : Qid VarDeclTupleList MembAxSet -> Warnings .

op verifyMb : Qid VarDeclTupleList MembAx -> Warnings .

var Mb : MembAx . var Mbs : MembAxSet .

eq verifyMbs(Name, Ts, none) = ok .

eq verifyMbs(Name, Ts, Mb Mbs) =

verifyMb(Name, Ts, Mb) @ verifyMbs(Name, Ts, Mbs) .

eq verifyMb(Name, nil, Mb) = finishedMb(Mb) .

eq verifyMb(Name, | Vars | Ts, Mb) =

(if sortLeq(buildModule(Name, Vars),

leastSort(buildModule(Name, Vars), leftHandSide(Mb)),

rightHandSide(Mb))

then ok else errorMb?(Vars, Mb) fi) @ verifyMb(Name, Ts, Mb) .

endfm

All equations and membership assertions are thoroughly tested on the speci-

�cation representing the abstract interpretation. In the case of equations, the

least sorts of both terms are calculated (using the builtin operation leastSort)

and if they are di�erent, a warning is issued. In the case of membership as-
sertions, the least sort of the declared term is calculated and then compared
with the declared sort (using the builtin operation sortLeq); if it is not smaller

then a warning is generated.

15

