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Abstract Acquiring an overview of an unfamiliar discipline and exploring relevant
papers and journals is often a laborious task for researchers.

In this paper we show how exploratory search can be supported on a large
collection of academic papers to allow users to answer complex scientometric ques-
tions which traditional retrieval approaches do not support optimally. We use our
ConceptCloud browser, which makes use of a combination of concept lattices and
tag clouds, to visually present academic publication data (specifically, the ACM
Digital Library) in a browsable format that facilitates exploratory search. We aug-
ment this dataset with semantic categories, obtained through automatic keyphrase
extraction from papers’ titles and abstracts, in order to provide the user with a
uniform keyphrases of the underlying data collection. We use the citations and ref-
erences of papers to provide additional mechanisms for exploring relevant research
by presenting aggregated reference and citation data not only for a single paper
but also across topics, authors and journals, which is novel in our approach.

We conduct a user study to evaluate our approach in which we asked 34 par-
ticipants, from different academic backgrounds with varying degrees of research
experience, to answer a variety of scientometric questions using our ConceptCloud
browser. Participants were able to answer complex scientometric questions using
our ConceptCloud browser with a mean correctness of 73%, with the user’s prior
research experience having no statistically significant effect on the results.
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1 Introduction

The large amount of academic papers that is available for an increasingly large
number of topics makes it difficult for researchers to keep up to date with a field or
to find relevant related work (Parolo et al. 2015). Traditional approaches for finding
relevant academic publications are search-based and rely on users to manually
specify keywords of interest. Other mechanisms for researchers to discover papers
of interest (for example, Mendeley’s (Hoey 2015) or Google Scholar’s (Connor,
James 2012) paper recommendations) are also becoming increasingly relevant.
However, while automatic paper suggestions can be used to highlight possibly
relevant work for researches, they make use of a researcher’s academic profile and
therefore cannot support novice researchers, or those unfamiliar with a topic, in
finding the most relevant work on new topics.

While publication data can be made available to users in different formats
(e.g., paper suggestions or a searchable paper collection), all tasks are typically
supported by an indexed collection of papers which has been classified. Keyphrases
are often assigned to papers for categorization when they are submitted for publi-
cation, and papers can even be manually classified into topics such as ACM’s clas-
sification scheme (Accociation for Computing Machinery 2015). However, author-
assigned keywords are not always available and often not comprehensively de-
scriptive enough for search tasks (Zhang et al. 2016). Moreover, author-assigned
keyphrases are often not uniform for all papers of the same topic which makes re-
trieving papers using author-assigned keyphrases impractical, as multiple searches,
specified slightly differently, may be required to obtain a more complete overview
for a single topic.

Search-based approaches for interacting with publication data are widely sup-
ported, but when a researcher is unfamiliar with a research field or has not yet
formulated a direct query, their task becomes one of exploratory search (Mar-
chionini 2006; White and Roth 2009) rather than direct retrieval. Exploratory
search approaches are concerned with maximizing recall (i.e., showing all relevant
information) as opposed to maximizing precision (i.e., not showing any irrelevant
information) which is the main concern of retrieval approaches (Marchionini 2006).

In this paper we present and evaluate an exploratory search tool for a large
academic publication dataset, the ACM Digital Library (2016). To facilitate ex-
ploration of the data we need a uniform categorization of the papers which is
not provided by the author-assigned keywords or keyphrases. We therefore use an
unsupervised approach to extract relevant keyphrases directly from the titles and
abstracts of academic papers. We choose an unsupervised approach because test
data that is more comprehensive than the manually assigned author keywords,
would need to be manually collected for each paper which renders supervised ap-
proaches impractical for the keyphrase coverage required.

To support exploration of an academic publication dataset we construct a
concept lattice from the papers’ meta-data (e.g., authors, affiliations, publication
years and publishing venues) and the extracted keyphrases as concept lattices have
been shown to be useful for browsing and exploration tasks (Fischer 2000; Lindig
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Fig. 1: Three tag clouds with a selected tag (red), authors (orange), years (cyan),
and keyphrases (green). For each tag cloud the 50 largest tags are shown from
papers associated with the keyphrase “Model Checking” (top), papers that are
referenced by papers associated with the keyphrase “Model Checking” (bottom
left), and papers that cite papers associated with the keyphrase “Model Checking”.

1995; Carpineto and Romano 1996). However, since diagrams of large concept
lattices are difficult to read and interpret, we construct a more scalable, interactive
tag cloud on top of the concept lattice to provide the user with a more intuitive
interface to the underlying data. Figure 1 shows a tag cloud view of papers with
the key-phrase “model checking”. Tag clouds are a simple textual visualization
where the frequency of a word is indicated by its size in the tag cloud. We use tag
clouds to present the aggregated information from the underlying meta-data of the
academic papers. Our tag clouds are interactive, i.e., the user can refine the view of
the publication dataset by selecting appropriate combinations of tags. The view is
then updated to only show the aggregated information of the publications to which
the selected tags apply. This facilitates the exploration of the data since the user is
always presented with aggregated information about publications associated with
current tag selections which in turn can be used to make further refinements.

A list of publications associated with the current tag selections is also available
to the user, so that they can use the paper’s title, author names or journal to
retrieve the paper’s full-text. However, unlike traditional list-based interfaces, we
allow the user to make continued refinements of the data until the list of relevant
publications is small enough to make examination of the full-texts feasible, instead
of presenting large lists of publications that all need to be manually examined.

In addition to relevant keyphrases, a paper’s references and citations are also a
valuable source of information when trying to find related research. In traditional
digital library formats, references and citations are currently only provided in a
list view for a single paper at a time. In our approach we use citation and reference
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data to provide a powerful mechanism for exploring relevant research. We allow
users to view aggregated reference and citation information for a single paper,
for example, the user can quickly get a summary of what topics of papers have
referenced or cited a specific paper. We also allow users to view aggregated citation
and reference data not only for a single paper at a time but for all papers that have
a selected property. For example users can view aggregated citation or reference
information of all papers by a certain author, all papers in a particular conference
or all papers on a certain topic. Figure 1 shows an example of our tag cloud browser
which shows the tags associated to the selected key-phrase (model checking) as
well as the tag clouds of papers that have been referenced by “model checking”
papers (bottom left) and papers that have cited “model checking” papers (bottom
right).

In this paper we present our approach for supporting exploratory search of aca-
demic paper collections using a tag cloud visualization with an underlying concept
lattice to support navigation. We show that our approach provides an alternative
to traditional retrieval and indexing approaches for academic publication data and
allowed users in a study to answer complex scientometric questions with an mean
correctness percentage of 73%. Through our user study and analyzing the par-
ticipants’ efficiency in answering questions, we see that there is a learning effect
for new users of the browser when they are slower than on average to answer
the provided questions. However, after a short learning period (approximately 18
minutes), participants were able to effectively use our ConceptCloud browser.

In this paper we make the following contributions:

– We use a novel combination of concept lattices with tag clouds to index and
visualize a large academic publication dataset.

– We demonstrate an approach for visualizing aggregated information from ci-
tations and references.

– We combine previous approaches to provide a key-phrase extraction technique
to extract uniform key-phrases for academic publication collections

– We showcase the feasibility of using an exploratory search tool to answer com-
plex scientometric questions.

– We demonstrate the visible learning effects of an exploratory search tool through
a controlled user study.

In this paper we first describe our key-phrase extraction approach which com-
bines a number of previous approaches (see Section 2). We then describe our ap-
proach of constructing interactive tag clouds for the academic publication data (see
Section 3). We conduct a controlled user study to evaluate whether untrained users
are able to use our browser to answer questions about a digital library dataset (see
Section 4). We show that, while there is a noticeable learning effect, users are able
to effectively answer complex scientometric questions using our approach with a
mean accuracy of 73% (Section 5 and 6). In Section 7 we discuss other publication
browsing techniques in relation to our approach.

2 Keyphrase Extraction for Academic Papers

The usual motivation to extract or assign keywords and keyphrases to documents is
to classify them into topics, create summaries, or index the documents to support
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search tasks. A good set of keywords or keyphrases describes a document well
(good coverage), is distinctive enough not to be applicable to too many documents
(relevant), and easily understandable to people (descriptive).

In order to acquire keywords or keyphrases for a certain document, the fol-
lowing two steps are typically involved. Firstly, candidate words or phrases are
extracted from the document using a combination of heuristic rules such as using
a stop word list to remove stop words (Liu et al. 2009), using words with certain
part-of-speech tags (Mihalcea and Tarau 2004; Wan and Xiao 2008), identifying n-
grams (Witten et al. 1999; Hulth 2003; Medelyan et al. 2009) or noun phrases that
follow pre-defined lexico-syntactic patterns (Hulth 2003; Nguyen and Kan 2007), or
matching word sequences to external knowledge bases such as Wikipedia (Grineva
et al. 2009; Liu et al. 2009; Medelyan et al. 2009) or WordNet (Li et al. 2006).
The main problem of these approaches is that the list of candidates can become
very long, especially with long articles where full-texts are available. If however,
white-lists such as Wikipedia article titles are used, the candidate list becomes
restricted.

The second step involves classifying the candidate words and phrases as key-
words and keyphrases. This can be achieved through classification (Witten et al.
1999; Frank et al. 1999; Hulth 2003; Medelyan et al. 2009), ranking of phrases
where the top ranked phrases are selected as keyphrases (Mihalcea and Tarau
2004; Wan and Xiao 2008; Jiang et al. 2009), or through pruning of phrases that
are unlikely to be keyphrases (Huang et al. 2006; You et al. 2009).

Fig. 2: An overview of our keyphrase extraction procedure which combines a num-
ber of previously proposed techniques.

In this paper we use an unsupervised approach for keyphrase extraction that
combines a number of previously proposed techniques (Miller 1995; Li et al. 2006;
Van Dogen 2000; Brin and Page 1998). An overview of our keyphrase extraction
procedure is given in Figure 2. Candidate keyphrases are noun-phrases that are
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extracted from paper titles and abstracts and filtered based on a set of heuristic
rules. The keyphrase selection step applies ranking and clustering based on seman-
tic similarity between candidate keyphrases. The following sections describe this
approach in more detail.

2.1 Candidate Word and Phrase Identification

In order to identify candidate words and phrases, the Stanford Parser (Klein and
Manning 2003) is used to parse each sentence of a document and extract noun-
phrases that are shorter than six words. Furthermore, heuristic rules are applied to
filter out improbable keyphrases. For example, if an identified noun-phrase consists
of a single word, it is only included into the candidate phrase set if it is a proper
singular noun. Moreover, certain words within candidate phrases are excluded such
as determiners, personal and possessive pronouns, and numerals.

A graph is constructed from the candidate phrases in which the edge con-
necting two nodes is weighted according to the similarity between the phrases
associated with the two nodes. We use WordNet (Miller 1995) as a basis for the
similarity computation between phrases (Li et al. 2006), Markov Chain Clustering
(MCL) (Van Dogen 2000) to cluster similar keyphrases, and PageRank (Brin and
Page 1998) to rank the phrases according to their importance.

2.2 Word Similarity

WordNet is a lexical database of English words in which nouns, verbs, adjectives
and adverbs are organized into sets of synonyms, where each group (synset) de-
scribes a distinct lexicalized concept (Miller 1995). The power of WordNet is that
synsets are linked to indicate conceptual or semantic relations.

The semantic similarity between two words is computed by locating them in
WordNet and using its hierarchical structure to compute their distance. A simple
approach is to find the minimum path length connecting the two words. In larger
semantic nets such as WordNet, however, this approach is not very accurate since
it does not take the depth of the hierarchy at which the words were matched into
consideration.

In Figure 3 one can see that the distance between “girl” and “animal” and
the distance between “girl” and “teacher” are both 5, although “girl” is arguably
more closely related to “teacher” than “animal”. This problem is addressed by
taking the depth of the lowest common subsumer (i.e., most specific ancestor node)
into consideration. In this example, the lowest common subsumer of both “girl”
and “animal” is “organism” with a depth of 6, compared to the lowest common
subsumer “adult” with a depth of 8 for the words “girl” and “teacher”.

As described by Li et al. (2006), the resulting function for calculating the
similarity between two words is:

simword(wi, wj) = e−αl · e
βd − e−βd

eβd + e−βd

where l is the shortest distance between the two words wi and wj , and d is the
depth from the root to their lowest common subsumer. The parameters α and
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entity: 1

physical entity: 2

causal agent: 4

object: 3

whole: 4

living thing: 5

organism: 6

animal: 7person: 7

male: 8

boy: 9

female: 8 adult: 8

woman: 9

girl: 10

professional: 9

educator: 10

teacher: 11

Fig. 3: WordNet hierarchy example. The root node is “entity” with an associated
depth of 1 as indicated. The node “teacher” is at depth 11.

β control the weighting of the path length and the depth of the lowest common
subsumer, respectively. These parameters can be tuned depending on the semantic
network used. According to Li et al. (2003), the parameters’ optimal values for
WordNet are α = 0.2 and β = 0.45.

2.3 Phrase Similarity

Given two sentences S1 and S2, let s = {S1 ∪ S2} be the lexical vector containing
the set of unique words in S1 and S2 and therefore contain the semantic context
of the two sentences.

For each sentence S1 and S2 a semantic vector si is constructed from the
combined semantic vector s, which has the same length as s. Considering sentence
S1, s1 is constructed by finding the most similar word in S1 for each term in s
and inserting their similarity score. Therefore, if the term appears in the sentence
S1, the corresponding value is set to 1. Otherwise, the similarity score of the most
similar term in the joint list is stored in the vector, given that the similarity score
is above the threshold φ = 0.2, otherwise the value is set to 0 (Li et al. 2006).

Since different words in a phrase contribute toward its meaning in different
degrees, each word t in the vectors si is also weighted by its importance to the
paper d from which it was extracted. For this, the tf -idf value for the word t in
document d is computed as follows:

tf -idf (t, d) = (1 + log(ft,d)) · log
(

|D|
1 + |{d ∈ D : t ∈ d}|

)
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where ft,d is the frequency of word t in paper d and D is the set of papers. WordNet
lemmatization and Porter stemming (Porter 1980) are applied to each word in the
tf -idf corpus.

Considering sentence S1 again, the value of an entry si in the semantic vector
s1 associated with word wi is weighted by multiplying it with the tf -idf of the
word wi in the sentence and the most similar word w∗i in the semantic vector s,
i.e. si = si · tf -idf (wi, d) · tf -idf (w∗i , d), where d is the current documents for which
keyphrase similarity scores are computed.

Finally, the resulting similarity score between two phrases is the cosine distance
between the two vectors s1 and s2:

simphrase(S1, S2) =
s1 · s2
‖s1‖ · ‖s2‖

The word order in a phrase is also important when comparing two phrases and
therefore a word order similarity between two phrases is computed. Again let S be
the set of all unique words in sentences S1 and S2 where each word is associated
with a unique index. Let r1 be the word order vector for sentence S1. Then for
each word in S, find the most common word in S1 and insert the corresponding
index of the word into r1. The same is done for S2 to obtain r2. The word order
similarity score between the two phrases is then:

simorder (S1, S2) = 1− ‖r1 − r2‖
‖r1 + r2‖

The final similarity score of the sentences S1 and S2 is a convex combination
of the phrase semantic similarity and the phrase order similarity scores:

sim(S1, S2) = δ · s1 · s2
‖s1‖ · ‖s2‖

+ (1− δ) ·
(

1− ‖r1 − r2‖
‖r1 + r2‖

)
where δ controls the weight associated with the two similarity scores and is set to
0.85 (Li et al. 2006).

2.4 Candidate Phrase Ranking

Let P be the set of all candidate phrases of a paper. Then a weighted undirected
graph G can be constructed such that each edge E(pi, pj) = sim(pi, pj) is the
similarity between each two phrases pi and pj , given that their similarity score is
larger than 0.

PageRank (Brin and Page 1998) is used to rank all the candidate phrases
according to their importance. PageRank was initially developed to rank web pages
according to their importance or relevance and uses the graph structure of the
Internet for its computation. The idea is that links from important websites should
weigh more than links from unimportant websites. The result of the PageRank
computation is a probability distribution that represents the likelihood that a web
surfer who is randomly clicking on links will arrive at a certain web page. It has
been shown that PageRank works well in many applications where the goal is to
identify important nodes in a graph (Brin and Page 1998; Chen et al. 2007; West
et al. 2010, 2013; Gollapalli and Caragea 2014; Dunaiski et al. 2016).
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At each iteration t of the algorithm the PageRank value PR for a phrase pi is
calculated using the following formula:

PRt(pi) =
1− α
n

+ α ·
∑

pj∈N(pi)

PRt1(pj)

d(pj)

where n is the number of candidate phrases, d(pj) is the degree of the node as-
sociated with phrase pj and N(pi) is the neighbourhood of the node associated
with the phrase pi. The PageRank algorithm is initialized with PR0(p) = 1

n . The

computation stops when a predefined threshold δ = 10−6 is reached:

∑
p

‖PRt(p)− PRt−1(p)‖ < N · δ

2.5 Candidate Phrase Clustering

After the candidate phrases have been ranked, similar phrases are clustered to-
gether using the Markov Chain Cluster (MCL) algorithm (Van Dogen 2000). The
MCL algorithm is based on random walks on the graph with the intuition that
when a random walker starts at a node and follows an edge, she is more likely
to stay within a cluster of nodes than follow an edge that leads her to another
cluster.

With each iteration of the power method, strong links are strengthened and
less popular neighbors are demoted. This process is amplified with each iteration
by taking each column of the matrix to a non-negative power r = 2.6 in an infla-
tion operation. The inflation operation is alternated with an expansion operation,
in which the e-th power of the matrix is taken (e = 2). Inflation controls the gran-
ularity of the clusters, while expansion is responsible for allowing flow to connect
different regions of the graph. After each iteration the matrix is re-normalized to
keep it stochastic to ensure that the method converges.

The computation stops when the matrix is near-idempotent (Van Dogen 2000,
p. 55), i.e., max

{
M2 −M

}
< δ, where δ is the above mentioned precision thresh-

old.

The last step is to find the clusters from the new idempotent matrix M . This
is done by looking at the positive flows of each node. If a node has at least one
positive flow (a positive value in its corresponding row) it is called an attractor.
All nodes that have a positive flow with an attractor are clustered together. For
each cluster the node with the highest rank is chosen.

Using the method described in this section, each paper is processed individu-
ally by extracting candidate keyphrases from the title and the abstract. Semantic
similarity values are computed for these candidate keyphrases which are used for
ranking and clustering to obtain a list of keyphrases for an individual paper. We
then lemmatize and lookup each word in WordNet, to obtain a more uniform dis-
tribution of keyphrases over all papers. We then assign the resulting keyphrases to
each paper which can be used to support navigation in the ConceptCloud browser.
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3 Navigating Concept Lattices With Tag Clouds

We use a concept lattice to index the publication dataset and support navigation
in the dataset. Concept lattices provide a large amount of internal structure for
the data and have been shown to be useful for exploration or browsing tasks
(Fischer 2000; Lindig 1995; Carpineto and Romano 1996). However, since diagrams
of large concept lattices are difficult to visualize and interpret they do not provide
a suitable interface with which to navigate in the underlying dataset. Therefore,
we provide a more intuitive tag cloud interface in which navigation is facilitated
by the underlying concept lattice. Selections (and de-selections) in the tag cloud
drive navigation operations in the underlying concept lattice. Figure 4 shows an
overview of our approach.

3.1 Formal Concept Analysis

Formal concept analysis (FCA) (Wille 1982; Ganter and Wille 1999; Davey and
Priestley 2002) uses lattice-theoretic methods to investigate abstract relations be-
tween objects and their attributes. Such contexts can be imagined as cross tables
where the rows are objects and the columns are attributes.

Definition 1 A formal context is a triple (O,A, I) where O and A are sets of
objects and attributes, respectively, and I ⊆ O ×A is an arbitrary incidence rela-
tion.

Definition 2 Let (O,A, I) be a context, O ⊆ O, and A ⊆ A. The common
attributes of O are defined by α(O) = {a ∈ A | ∀o ∈ O : (o, a) ∈ I}, the common
objects of A by ω(A) = {o ∈ O | ∀a ∈ A : (o, a) ∈ I}.

Concepts are pairs of objects and attributes which are synonymous. They are
maximal rectangles (modulo permutation of rows and columns) in the context
table. For our purpose, academic papers form the objects in the context, while the
attributes in the context table consist of information associated with each paper,
such as the authors, extracted keyphrases or the publication year.

Definition 3 Let C be a context. c = (O,A) is called a concept of C iff α(O) = A
and ω(A) = O. πO(c) = O and πA(c) = A are called c’s extent and intent,
respectively. The set of all concepts of C is denoted by B(C).

Concepts are partially ordered by inclusion of extents such that a concept’s
extent includes the extent of all of its subconcepts; the intent-part follows by
duality. Each concept consists of a set of academic papers (extent) and a set of
attributes (intent) that are common to all papers in the extent. For example, we
may observe a concept where the year 2016 forms the intent (attributes) and all
papers published in 2016 will then be in the concept’s extent.

Definition 4 Let C be a context, c1 = (O1, A1), c2 = (O2, A2) ∈ B(C). c1 and
c2 are ordered by the subconcept relation, c1 ≤ c2, iff O1 ⊆ O2. The structure of
B(C) and ≤ is denoted by B(C).

In our approach, where academic papers themselves comprise the extent of
each concept, the concept lattice stores the full set of papers in the extent of its
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top concept. Therefore, the top concept’s intent contains only attributes that are
common to all papers in the dataset and is therefore likely to be empty. Towards
the bottom of the lattice the concepts have smaller extents (i.e., fewer academic
papers) and larger intents (i.e., more attributes common to the papers in the
concept’s extent). At the atomic level of the concept lattice, a concept’s intent
contains all attributes associated with a single paper that forms the concept’s
extent.

The basic theorem of FCA states that the structure induced by the concepts
of a formal context and their ordering is always a complete lattice. Such concept
lattices have strong mathematical properties and reveal hidden structural and hi-
erarchical properties of the original relation. They can be computed automatically
from any given relation between objects and attributes. The greatest lower bound
or meet and least upper bound or join can also be expressed by the common
attributes and objects.

Theorem 5 (Wille (1982)) Let C be a context. Then B(C) is a complete lattice,
the concept lattice of C. Its meet and join operation for any set I ⊂ B(C) of
concepts are given by

∧
i∈I

(Oi, Ai) =

(⋂
i∈I

Oi, α(ω(
⋃
i∈I

Ai))

)
∨
i∈I

(Oi, Ai) =

(
ω(α(

⋃
i∈I

Oi)),
⋂
i∈I

Ai

)

Each attribute and object has a uniquely determined defining concept in the
lattice. The defining concepts can be calculated directly from the attribute or
object, respectively, and need not be searched in the lattice. If there are multiple
papers which share all of their attributes then there will be more than one paper
in the defining concept’s extent. This concept will be the defining concept for all
of the papers in the extent.

Definition 6 Let B(O,A, I) be a concept lattice. The defining concept of an at-
tribute a ∈ A (object o ∈ O) is the greatest (smallest) concept c such that a ∈ πA(c)
(o ∈ πO(c)) holds. It is denoted by µ(a) (σ(o)). We use the δ(x) to denote µ(x) if
x is an attribute and σ(x) otherwise.

3.1.1 Formal Context Construction

Computing formal contexts is an intermediate step in the construction of concept
lattices. It should be noted that formal contexts can be constructed in various
ways, depending on the choice of objects and attributes, where each choice will
result in different concept lattices. For academic papers, the natural choice is to
use the papers themselves as objects in the context and to assign all additional
information such as the paper’s authors, the publication year, and the extracted
keyphrases as attributes in the context.

Attributes can be multi-faceted and in our approach we distinguish between
various categories of attributes. For example, it is possible for the same value
(e.g. 2000) to appear twice in an attribute set, once representing a year and once
representing a keyphrase.
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Figure 4 shows an example of a context table in which papers are objects
with associated attributes. Each attribute is indicated as a column in the table,
while the papers form the rows in the context table. An “X” in the context table
indicates that an attribute applies to the corresponding paper. Many algorithms
exist that directly convert a formal context into a concept lattice (e.g., Lindig
(2000); Ganter (2010)).

Paper_ID	 Alice	 Ben	 Theorem	
Provers	

Formal	
Concept	
Analysis	

2000	 2005	 2015	

paper-1	 X	 X	 X	 X	 X	

paper-2	 X	 X	 X	

paper-3	 X	 X	 X	

paper-4	 X	 X	 X	

paper-5	 X	 X	

 
 

 
paper-5

 
paper-4

2015
 

2005
paper-3

 
paper-2

Ben
 

 
paper-1

 
 

Theorem Provers
 

Alice
 

2000
 

Formal Concept Analysis
 

 
 

Specification-based retrieval
component libraries
exact content-oriented access
Specification-based browsing
off-line indexing phase
suitable navigation structure
match relations
formal concept analysis
Specification-Based Browsing
Software Component
single-focus property
implicit component similarities
theorem provers
emerging proof problems
component libraries
navigation structure
informal methods
formal methods
exact semantics
interactive navigation
...

0.0655 additional abstractions
0.0619 emerging proof problems
0.0542 formal concept analysis
0.0526 informal methods
0.0505 suitable navigation structure
0.0483 navigation structure
0.0472 single node
0.0465 too much deductive power
0.0465 match relations
0.0464 Software Component Libraries
0.0454 component libraries
0.0448 formal methods
0.0414 off-line indexing phase
0.0404 exact semantics
0.0399 interactive navigation possibilities
0.0380 sensible subset
0.0331 explicit component properties
0.0329 better index
0.0309 current theorem provers
0.0308 exact content-oriented access
0.0282 appropriate index
0.0198 Specification-based retrieval
0.0193 single-focus property
0.0177 Specification-based browsing
0.0166 implicit component similarities
...

0.0655 additional abstractions
0.0542 formal concept analysis
0.0526 informal methods
0.0472 single node
0.0466 too much deductive power
0.0415 off-line indexing phase
0.0405 exact semantics
0.0380 sensible subset
0.0331 explicit component properties
0.0329 better index
0.0309 current theorem provers
0.0308 exact content-oriented access
0.0199 Specification-based retrieval
0.0193 single-focus property

Candidate PhrasesPaper Title and Abstract

Stanford Parser

WordNet

Ranked Candidate Phrases

Key-Phrases

Merging/Selection

MCL
clustering

Phrase Similarity 
Scores

Specification-based retrieval
component libraries
exact content-oriented access
Specification-based browsing
off-line indexing phase
suitable navigation structure
match relations
formal concept analysis
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Fig. 4: An overview of our navigation approach using formal concept analysis. We
construct a formal context table from paper meta-data and extracted keyphrases
which is then used to automatically generate a concept lattice for the publication
data. The initial focus is the top concept in the lattice which generates a tag cloud
for the full dataset. As tags are selected the focus moves down in the lattice and
the tag clouds are refined.

The constructed concept lattice allows us to easily identify which papers share
particular attributes. However, when the dataset becomes large the Hasse diagram
of the concept lattice becomes very difficult to interpret. An image of a large con-
cept lattice of academic publication data can be observed in (Liu et al. 2015, p. 12)
which shows that concept lattices become uninterpretable when they become too
large. We therefore use tag clouds, constructed from concept lattices, to overcome
this limitation.
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3.2 Tag Clouds

Tag clouds (also called word clouds) are a common text visualization method. Tag
clouds can be generated from user-generated tags of a particular content or directly
from tokenized texts. Tags are usually sized according to the frequency of their
occurrence in the text and can be color-coded to reflect additional information.

In our approach, the tag clouds are generated directly from concepts in the
underlying concept lattice. All attributes of the defining concept of each object in
the extent of the focus concept (each academic paper) are collected and added to
a multiset which forms the tag cloud (Greene and Fischer 2014, 2015).

Definition 7 The tag cloud from a concept c = (O,A) ∈ B(C) is defined as
τ(c) = O ]

⊎
o∈O πAσ(o).

The more frequent the occurrence of an attribute is (i.e., the more papers it
applies to) the larger its tag is displayed in the tag cloud. Therefore, tags in the tag
cloud are sized according to how well they characterize the current set of papers
(i.e., the extent of the current focus).

The simplest and most popular tag cloud layout (Lohmann et al. 2009) is as an
alphabetically sorted list of tags in a roughly rectangular shape which was found
by Schrammel et al. (2009) to perform better than random or semantic layouts.
We use this layout because it simplifies textual search within the tag cloud. Each
tag i is scaled between the given minimum and maximum font sizes fmin and fmax ,
according to its weight ti in relation to the minimum and maximum weights in
the context table, tmin and tmax ; hence,

size(i) =

⌈
(fmax − fmin) · (ti − tmin)

tmax − tmin

⌉
+ fmin − 1

for ti > tmin and size(i) = fmin otherwise.

3.3 Navigating Concept Lattices Using Tag Clouds

Navigation in the tag cloud is supported through the underlying concept lattice.
When a tag is selected or de-selected, navigation in the underlying lattice is trig-
gered and the tag cloud is reconstructed from the updated focus concept.

In our approach we maintain a focus concept, from which the current tag cloud
is rendered as described above. When the user selects (or deselects) a tag, the
browser computes the new focus concept and subsequently re-renders the tag
cloud. The focus, or more precisely, its extent contains the subset of objects in
the dataset that share all currently selected tags. Therefore the set of currently se-
lected tags can be regarded as the current query. The initial focus (corresponding
to an empty selection set) is therefore the lattice’s top element, whose extent con-
tains the entire publication set. Therefore, the initial tag cloud contains aggregated
information for the full dataset of publications.

Navigation is refinement-based such that when the user selects an additional
tag, the browser updates the focus by computing the meet of that tag’s defining
concept and the previous focus. Intuitively, deselection should be the inverse of
selection and therefore deselecting the last selected tag should move the focus
back to its previous position. The focus is recomputed as the meet of the defining
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concepts of the remaining selected tags, in order to provide a de-selection operation
which is the inverse of the selection operation. Note that not only the most recently
selected tag is available for de-selection, and therefore the de-selection of a tag does
not only function as an undo operation.

Figure 4 shows an overview of the navigation process. After the context table
has been constructed from the publication data the concept lattice is generated.
The focus in the lattice is initially the top concept, which contains all papers in its
extent. Therefore, the initial tag cloud displays the aggregated attributes from the
full publication dataset, sized according to how many papers the attributes apply
to. When a tag is selected in the tag cloud, the focus in the lattice is updated to
the meet of the defining concept of the new selection and the previous focus. A
new tag cloud is then generated from the updated focus.

3.4 Object Relationships in the Tag Cloud

Concept lattices do not directly provide a mechanism for handling relationships
between objects in a single lattice such as the reference and citation relationships
between academic papers. We overcome this drawback by generating additional
concept lattices on the fly to present the references and citations for a particular
paper or attribute (such as an author or keyphrase) in an additional tag cloud.

The most obvious solution for relating different objects in the context table is
to add references to other objects to the attribute set of a single object. In that
way academic papers would be used as both objects and attributes (i.e., whenever
they are referenced or cited) in the context table. The category of the attribute
could be used to indicate whether the relationship between the two papers is a
reference (i.e., an outgoing link) or citation (i.e., an incoming link). However, fol-
lowing this approach of selecting a paper in the tag cloud would show only tags
for the papers (represented by their paper-ids) that form references and citations
for the selected paper. No additional information about the references and cita-
tions (such as authors, keyphrases or publication years) would be present in the
tag cloud and it would be necessary to select the tag (the paper-id) for each in-
dividual referenced and citing paper to gather any information about the papers
themselves. Therefore, while using referenced and citing papers as attributes in the
context table is possible, this does not provide any additional information about
the referenced and citing papers and is very limited in usefulness in terms of the
navigation options provided.

We instead generate additional concept lattices for the references and citations
for a particular paper or any attribute in the tag cloud on the fly so that we can
present aggregated citation and reference information to the user. Any tag in the
tag cloud can be used to construct an additional tag cloud of the references or
citations for that particular attribute. Therefore, it is possible to generate a tag
cloud which displays aggregated information of the references or citations for an
individual paper, but it is also possible to generate a tag cloud which displays
aggregated information of papers that have cited a particular author, or papers
that have cited papers that apply to a particular keyphrase.

Note that the object types in our citation and reference lattices are no longer
paper-ids but representations of each citation so that we fully exploit the citation
data and record the frequency of each citation. For example, when a paper is
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referenced more than once by a collection of papers (e.g., all papers by a particular
author) this paper will appear as an object in the reference lattice multiple times.
In this way our reference and citation tag clouds not only reflect the citation or
reference but also its importance which is represented by the size of the tag.

When an additional tag cloud of references or citations is created, we create a
new concept lattice which contains only the relevant subset of academic papers as
objects. We then present a tag cloud corresponding to the newly created concept
lattice and allow users to navigate in this tag cloud as well, in order to browse the
references and citations of a paper or attribute.

For example, selecting the keyphrase “Model Checking”, as can be seen in
the top image in Figure 1, and generating the the two additional tag clouds for
references (bottom left) and citations (bottom right), provides the user not only
with an overview of papers associated with “Model Checking”, but also papers
that either cited “Model Checking” papers or are referenced by “Model Checking”
papers. From these tag clouds we see what other keyphrases are associated with
“Model Checking”, as well as which authors have provided the foundational (ref-
erenced work) for the field of “Model Checking”. We can restrict the tag cloud to
show which authors, and over which time period, have published papers referenc-
ing “Model Checking” papers. Similarly, the reference and citation tag clouds can
also let researchers discover authors that they have frequently referenced, as well
as which authors are referencing their work.

3.5 Tool Support

We built a customized publication browser on top of our generic ConceptCloud
framework (Greene and Fischer 2014, 2015) suited for handling academic pub-
lication data. Our ConceptCloud browser framework allows users to generate a
concept lattice and tag cloud visualization for semi-structured data collections
that can be provided as JSON or XML input. The browser provides various pre-
processing steps (such as stemming and stop word removal) which can be applied
to data sets that are input. The browser can be used to generate a concept lattice
from a dataset and since the concept lattice is a generic structure, the tag cloud
visualization can be then used to present the information in any concept lattice
and support navigation. Our browser framework has previously been applied to
software development repository data (Greene and Fischer 2014, 2015, 2016) but
is generic enough to be applied to any semi-structured data collection.

Tags in the tag clouds generated by ConceptCloud are colored according to
the type of information that they represent (e.g. author tags are orange). Hovering
over a tag will display its category as well as its count. The tag clouds can also
be filtered to include only tags of certain sizes, as well as to include only specific
categories.

Figure 5 shows the initial interface for our publication browser. The user can
start exploring the information displayed in the tag clouds without first having to
come up with any search terms. When a tag is selected it will be indicated in the
cloud as red, so that users can easily keep track of their tag selections.

The search functionality provided in this adaption of the ConceptCloud is an
extension of selecting a tag. In other words, suggestions that match the search
query are tags, colored according to their tag category, from which the user has
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Fig. 5: Overview of the initial interface for ConceptCloud publication browsing.
A search feature is provided to be able to easily identify and select tags that are
selectable in the current cloud.

to select an appropriate tag. Multiple searches are possible by further filtering the
current tags. In Figure 6, for example, the second search only searches through
tags applicable to the current selection of “Model Checking”. Therefore, two con-
secutive searches provide the intersection and not the union of the two tags.

Fig. 6: Tag suggestions displayed on start of typing a tag name. Tags in the sug-
gestion list are colored according to the tag category they belong to in the tag
cloud.

Furthermore, all the papers in the current focus’s extent are listed in a table
below the tag cloud as shown in Figure 7. Therefore, users are able to see a
traditional list of papers (including titles and abstracts) to which the current tag
selections apply and updates each time a tag is selected or deselected.
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Fig. 7: Table view for “Model Checking” selection in ConceptCloud. The papers are
automatically sorted in descending order of citation count and provide information
not present in the tag cloud, such as the paper’s title and abstract.

3.5.1 Linked Views

Categories can also be separated into their own tag cloud views, to provide a
multi-faceted view. All the viewers are linked such that when a selection is made
in any of the tag clouds, all of the linked clouds are updated with the new selection.
Figure 8 shows an example in which different categories (keyphrases, authors and
years) have been separated into their own individual viewers.

Fig. 8: Category viewers in ConceptCloud. From left to right, keyphrases, authors
and years all applying to the selection of the keyphrase “Model Checking”. Viewers
are linked so that when a selection is made all viewers will update according to
the new selection.
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A viewer can also be constructed with its own unique tag selection that applies
only to that viewer; these are called “sticky tags”. Any tag can be used to construct
a sticky tag viewer, which will then be presented in a new viewer window where all
the selections of the main cloud will also be applied along with the selection of the
sticky tag. While additional tags can be selected and de-selected in all viewers, the
sticky tag can never be de-selected from its sticky tag viewer. Sticky tags enable
the selection of tags which would otherwise not be selectable at the same time,
such as years which cannot be selected together as each paper is only published
in a single year. Sticky tags also allow the comparison of different tag selections.
Figure 9 shows an example of sticky tag viewers for two years. The global selections
still apply to the sticky tag viewers but the sticky tags apply only to the particular
viewer.

Note that sticky tag viewers are not the same as the viewers used to represent
the citation and reference clouds, as they are still derived from the main concept
lattice whereas the citation and reference clouds are each derived from their own
new lattices which are generated on the fly. In the browser interface all viewers look
the same, however, sticky tag viewers are labeled according to their sticky tags
and citation and reference clouds are labeled according to the paper or property
used to generate them (e.g., the keyphrase “model checking”).

Fig. 9: Sticky tag viewers in ConceptCloud enabling the comparison of “Model
Checking” papers in different years.

4 User Study Methodology

We performed a user study to evaluate whether users understand and are able
to make use of all the functionalities provided by our publication browser. Par-
ticipants were asked a wide variety of scientometric questions and evaluated on
whether they can find and retrieve the correct information, such as papers related
to a particular topic of interest, prominent researchers in a field, and journals
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and conferences best suited to different research topics. For this user study we
used the ACM DL dataset to populate the publication browser with 1 848 048
papers of which 1 399 805 have abstracts that are necessary for the keyphrase ex-
traction. Therefore, the user study was set up primarily to evaluate the usability
of the publication browser. Secondarily, in context of the ACM DL dataset, the
scientometric questions served to test whether the participants were able to use
the publication browser’s functionalities to retrieve the correct information and
whether they interpret the visualized information correctly.

It should be noted that since we used the ACM DL dataset to populate the
publication browser, it only contains citation and reference information from the
closed citation network of the ACM DL. Therefore, the citation counts displayed
in our browser may differ from other indexing services and the correctness of the
participants’ answers in the user study are judged strictly in the context of the
ACM DL data. However, our browser is flexible enough to be used with any other
academic publication datasets and new data sources could simply be added by
merging paper and author entities, should new data sources become available.

We grouped the publication browser’s functionalities into eight main categories,
such as selecting tags and creating viewers, and formulated the questions so that
participants are required to use all of the tool’s functionalities to answer the ques-
tions successfully. The list of function categories with the number of questions
requiring the corresponding functionalities is given in Table 1.

Functionality Nr. of Questions
F1 Selecting/Deselecting Tags 17
F2 Searching for tags using the provided search functionality 12
F3 Filtering categories and creating category-specific viewers 18
F4 Filtering viewers by number or size of tags 15
F5 Sorting the tags according to tag count 15
F6 Creating viewers with “Sticky Tags” 2
F7 Creating Citation and Reference clouds 4
F8 Interpreting the table view 3

Table 1: Main functionalities provided by the publication browser grouped into
categories. The second column shows the number of questions in the user study
that require the associated browser functionality to answer the question.

It should be noted that the number of questions associated with the various
functionality categories differ substantially. This is due to the fact that certain
functions are prerequisites for others. For example, selecting or searching for a
tag is required before creating a citation or reference cloud. Rather than forcing
an equal number of questions for each functionality, the distribution more closely
reflects a real-world use case.

Similar to the study conducted in Osborne et al. (2013), we performed a non-
comparative study since most academic indexing platforms and digital libraries do
not provide the required functionality to answer the type of complex questions that
our publication browser has been designed to answer. Therefore, a comparative
study between two or more tools would unfairly favor one tool over the others
depending on how complex the questions would have been constructed.
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Participants first watched an introductory video1 about the tool to familiarize
them with the usage of the tool. Each user study was conducted separately and
the authors observed each participant and made notes of exactly which tool func-
tionalities they made use of and how long they took to answer each question. We
used a stopwatch to time the participants on each question and did not include
the time they required to write down their answers on paper. We applied a total
time limit of 90 minutes per participant to complete the study. We checked that
answering all questions was feasible with this time limit and confirmed it through
the pilot and the actual user study.

4.1 Question Set

We constructed 22 questions that cover various topics in scientometrics to estab-
lish whether users are able to answer common scientometric questions using the
publication browser. The questions cover eight broadly defined topics such as ci-
tation analysis (de Solla Price 1965; Garfield 1979), author collaboration (Abt
2007; Wallace et al. 2012), author ranking (West et al. 2013; Hirsch 2005), topic
trends (Rosvall and Bergstrom 2010), and university rankings (Eccles 2002; Aguillo
et al. 2010). The complete list of topics covered by the questions is given in Table 2.

Topic Nr. of Questions
T1 Citation analysis 6
T2 Author ranking 2
T3 Author activity 4
T4 Author collaboration 5
T5 Topic trends 3
T6 University ranking 2

Table 2: The number of questions for each topic proposed to participants in the
user study.

We have formulated some of the questions in our study more generally to
evaluate how the participants would make use of the tool in order to answer
scientometric questions according to their own interpretation. For example, finding
a prominent author depends on the participant’s interpretation of whether citation
counts or the number of publications are used as a metric to define “prominent”.
We have phrased question Q1 as “Who is the most prominent author in the field
of Machine Learning?” rather than directly asking participants to select the tag
for the keyphrase “Machine Learning” and evaluate which author has the largest
tag size in the tag cloud (i.e., the most publications on this topic) as that would
only measure the participant’s ability to select tags and follow instructions and
not their ability to answer scientometric questions with the tool. As a result of the
question phrasing, there are multiple “correct” answers for some of the questions,
and during the study we recorded how the participants made use of the tool to
answer the questions.

1 The introductory video of the ConceptCloud Browser for academic papers is available at
https://www.youtube.com/watch?v=8zJ618yOWBI.
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Table 3 lists the questions that the participants had to answer during the user
study. The table indicates the category in which each question falls (T1-T6), as
well as the tool functionalities (F1-F8) that need to be used to answer the question
successfully. However, in the user study the participants were only provided with
the questions without any additional hints, such as the topic of the question or
the required tool functionalities. We also randomized the order of the questions
for each participant to allow us to identify any learning effects during the course of
the participants’ usage of the tool. It should be noted that the names of authors,
series and years are arbitrarily selected, and replacing these variables with other
values would still require participants to answer the questions in the same way.

Osborne et al. (2013) performed a non-comparative user study in which they
posed four tasks (including a warm-up task) to participants. One task that had
to be completed was formulated as follows: “Find the top 5 authors with the
highest number of publications in Semantic Web and rank them in terms of number
of publications in Artificial Intelligence. For each of them find their most cited
paper.” Their study is only based on the fields of “Semantic Web” and “Artificial
Intelligence” and they do not use a cross-disciplinary library of publications, such
as the one our study is based on. Therefore, our questions are formulated less
restrictively and are closer to real-world questions that researchers would ask.

Dunne et al. (2012) also performed a non-comparative user study for which they
recruited participants that were researchers in computational linguistics, which is
the same field as the papers in the dataset they used for their tool. The study con-
ducted in (Dunne et al. 2012) asked participants to “(a) Identify and make note
of important authors and papers and (b) find an important paper and collect evi-
dence to determine why it is important”. We posed a similar question in our study
which also asks the participants to identify the important authors in a field (Q1).
However, we have extended our question set to cover a wide variety of scientomet-
ric topics that are of interest in the literature. Alternative evaluation approaches
have included deploying the evaluated tool and collecting usage data (Dörk et al.
2012). While we have not followed this approach, we have observed and taken note
of each participant’s usage of our tool individually to identify whether they were
able to use the functionalities successfully.

4.2 Population

We asked post-graduate students and post-doc researchers from various depart-
ments at Stellenbosch University to participate in our user study. Participation
in the study was voluntary and participants were not compensated in any way. A
total of 39 participants from various academic fields took part in the user study.

We performed a pilot user study with five participants after which we made
changes to the tool and the question set. The results shown in this paper are
obtained from conducting the user study with the remaining 34 participants. Fig-
ure 10a shows the distribution of postgraduate research experience in years for the
34 participants, while Figure 10b indicates their academic ranks.
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Question Functionalities Topic
Q1 Who is the most prominent author in field of

“Machine Learning”?
F1/F2, F3, F4/F5 T2

Q2 (a) Which country does “Germany” collaborate
with the most?

F1/F2, F3, F4/F5 T4

Q2 (b) In which year did authors from these countries
publish the first collaboration paper?

F1, (F3) T4

Q2 (c) How many authors collaborated in this year
from these two countries?

F1, F3 T4

Q3 Which are the top 5 affiliations according to
publication counts in 2010?

F1/F2, F3, F4/F5 T6

Q4 (a) List the three main topics author “Ivan
Bratko” works on.

F1/F2, F3, F4/F5 T3

Q4 (b) Create a viewer showing the years he pub-
lished papers about his most prominent re-
search topic. Show the viewer to the observer
of the study.

F1/F2, F3 T3

Q4 (c) In which years did he publish the most papers
overall?

F1, F4/F5 T3

Q4 (d) With whom does he co-author the most pa-
pers?

F3, F4/F5 T4

Q4 (e) Name the author who cites him the most. F3, F4/F5, F7 T4
Q5 What are the 3 main keyphrases of papers

that cite papers with the keyphrase“Machine
Learning”?

F1/F2, F3, F4/F5, F7 T1

Q6 (a) In what year were the first papers published
about “Internet of Things”?

F1/F2, (F3) T5

Q6(b) If you had a paper about “Internet of Things”,
in which journal/conference would you publish
if you’re only interested in being cited as often
as possible?

F3, F4/F5, F7 T1

Q7 (a) Compare the topics in the first and last year
of the series “International World Wide Web
Conference”. How have they changed over
time?

F1/F2, F3, F4/F5, F6 T5

Q7 (b) What is the title of the paper with the most
citations in this conference?

F8 T1

Q7 (c) Who published the most papers in the first
year of this conference?

F1, F3, F4/F5 T2

Q7 (d) Where did this author publish most papers? F1, F3, F4/F5 T3
Q7 (e) In which journal/conference is this author’s

most cited paper?
F1, F2, F8 T1

Q8 What are the most prominent keyphrases cov-
ered by the “International Conference on Soft-
ware Engineering” and how do these differ
from the conference “Foundations of Software
Engineering”?

F1/F2, F3, F4/F5, F6 T5

Q9 (a) Which is the most cited “International Confer-
ence on Software Engineering” paper and what
is its topic?

F1/F2, F8 T1

Q9 (b) Which journal/conference is most referenced
in “International Conference on Software En-
gineering”?

F3, F4/F5, F7 T1

Q10 If you had to advise “Ben Carterette” on
choosing the most relevant university to collab-
orate with, which university would you suggest
and why?

F1, F2, F3, F4/F5 T6

Table 3: The questions asked in the user study. Each answer requires the use of
one or more functionalities of the publication browser, given in the second column.
Some functionalities are optional, indicated with round braces, while sometimes
two different functions can be used to get to the correct answer (indicated with
‘/’). The third column gives the topic associated with the question.
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(b) Participants’ academic ranks.

Fig. 10: Population characteristics.

4.3 Pilot Study

Initially, we performed a pilot study with five participants after which we re-
evaluated the user study setup before continuing. The tool initially included a
traditional search interface which allowed users to search for tags by submitting
free-text queries. In addition, all questions were self-contained without any contin-
uation from one question to another. The combination of these two factors led the
users to approach the tool as a traditional search tool because of the familiarity
with the concept of search.

After noticing the heavy reliance on the search functionality, we adapted the
question set slightly to encompass more continuation between questions. For exam-
ple, we changed the follow-up question of “List the three main topics author “Ivan
Bratko” works on”, from “In which years did “Ivan Bratko” publish most papers
overall” to “In which years did he publish the most papers overall”. Furthermore,
we added additional follow-up questions. For example, we added questions Q2 (b)
and Q2 (a) to question Q2 (see Table 3), to encourage users to keep current tag
selections and to engage in browsing and exploratory search (White and Roth
2009) instead of using the search functionality at the beginning of each question.

We also changed the search interface so that participants could no longer search
using free-text queries but instead would have to select a tag from a list of sugges-
tions that would appear after they started typing as shown in Figure 6. Further-
more, using the associated color for the suggestions according to the color of the
tag categories in the tag cloud would help users realized that the search function
was simply another mechanism of selecting a tag, instead of manually looking for
a specific tag in the tag cloud.

In the pilot study we provided participants with only a user manual detailing
the tool’s features, however, since not all participants observed the manual, we
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showed an introductory video describing the use and functionalities of the tool to
the participants before beginning the user study.

5 User Study Results

In the user study we collected detailed information about each participant’s usage
of the tool. For each question we recorded the time taken to complete the question,
the functionalities that the participant used to answer the question, as well as,
the correctness of the answer according to the participant’s interpretation of the
question. Note that each participant received the questions in a random order.

5.1 Time Taken per Question

To evaluate whether there was an observable learning effect for participants we
plot the average time taken for questions in question order (Figure 11a) and the
average time taken for questions in the order that the participants received them
(Figure 11b). For example, Figure 11b shows the average time taken by the par-
ticipants to answer their first questions despite the fact that the actual question
they were answering was random. Figure 11c shows the normalized time for each
participants’ questions in the order that they received them. More precisely, the
normalized time for participant A’s first question (Q7) is the time they required
to answer Q7 minus the average time that all participants required for answering
Q7.
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Fig. 11: Average time taken per question in (a) question order (b) the order that
the participants received them (c) the order that the participants received them
normalized by the average time of all participants per question.

A comparison between Figures 11a and 11b shows that the patterns of question
timings differ substantially when the average time was calculated according to
question number or question sequence. From 11a we can see that participants took
the longest time to answer question Q7 followed by Q4, both of which comprise of
multiple subquestions. Figure 11b shows that, on average, participants took the
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longest to answer their first question, regardless of what question this was, and
the time decreased as participants answered more questions. Figure 11c confirms
this learning effect and shows that when a participant received their first question
they took more than 100 seconds longer to answer it than the average time needed
on that question by all participants. By the third question the participants were
able to answer it as fast as the average time required for that particular question.
On average, the participants started with their third question after 10 minutes
and 55 seconds. After the fourth question the participants were able to answer
all questions faster than the average time taken by all participants to answer
the respective questions, which corresponds to 18 minutes and 47 seconds until
effective usage of the tool.

5.2 Correctness Percentages

We also analyzed the participants’ answers for correct results to compute cor-
rectness percentages over all their questions. Figure 12a shows the participants’
percentages of correct answers from which one can see that most participants
answered more than 60% of the question correctly. Figure 12b shows a box and
whisker diagram for the correctness percentages achieved which shows that the
highest score achieved was 100% with a median score of 78%.
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Fig. 12: Correctness Percentages Achieved

We performed the same analysis as in Figure 11 using the correctness scores in-
stead of the timing information. Figure 13b shows that more participants got their
first question incorrect, regardless of which question they received first. However,
as can also be seen in Figure 13c, after the first question there is no other indica-
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tion that the sequence of the question affected the correctness of the participants
answers.
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Fig. 13: Average correctness for questions in (a) question order (b) the sequence
that participants received them (c) the sequence that participants received them
normlized by the average correctness that all participants obtained for the corre-
sponding questions.

5.3 Results per Question

Figure 14 shows a box and whisker diagram for each individual question showing
the variation in times required per question. In the heading of each box and whisker
diagram we indicate the average percentages that were achieved by all participants
and whether the corresponding question required making use of a more complex
tool functionality (F6 - use of a sticky tag viewer, F7 - use of a citation or reference
clouds, F8 - use of the table view) to answer the question.

From Figure 14 we can see that no questions are outliers, in terms of time
taken to answer the question, and that there is no identifiable pattern between the
use of an advanced tool functionality and the participants’ completion time. From
the results of the individual questions, we see that Q5 and Q10 were the only ques-
tions in which the participants obtained an average correctness percentage below
50%. While question Q5 required the construction of a citation cloud, question
Q10 only required straight-forward tool functionalities but the question itself was
more complex and required the participants to suggest a relevant university for
a particular author to collaborate with. Note that some questions (e.g., Q9 and
Q10) have outliers in terms of the average completion time, which could be due
to the random order in which participants received the questions.

5.4 Participant Feedback

After each participant completed the user study we asked them to fill out an
anonymous feedback form about their experience using the tool. We asked partic-
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Fig. 14: Boxplots per individual question. The question number is indicated in
the heading for each boxplot along with the average correctness achieved for the
question. The heading of each boxplot also indicates whether the question required
any of the advanced functionalities sticky tag viewers (F6), citation or reference
clouds (F7) or the table view (F8).

ipants to rate the different tool features on a Likert scale (1-5) according to how
useful the participant found them and how easy the participant found the feature
to use. In addition, the participants were asked to give feedback on any areas of
the tool that could be improved and provide any additional comments about their
experience using the tool.

Table 4 shows the mean and median scores for each tool feature. While partici-
pants found selecting tags and searching for tags both very useful and easy to use,
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the feedback for filtering the tag cloud views to show only certain categories was
indicated as very useful but not as easy to use. Filtering the number of tags shown
in a particular view was indicated as less useful but still easy to use. However,
the sticky tag views were shown to be less useful and more difficult to use. The
citation and reference clouds were indicated as the most difficult features to use
but were rated as more useful than both the filtering of the tag clouds according to
tag category and tag count. Participants also scored the tool with a mean of 4.49,
when asked to indicate how likely they would use the tool in their own research.

Feature Mean Median Mean Median
Useful- Useful- Ease Ease

ness ness of Use of Use
(F1) Selecting/Deselecting Tags 4.27 5 4.64 5
(F2) Searching for Tags 4.86 5 4.46 5
(F3) Filtering Categories and creat-
ing category views

4.46 5 4.00 4

(F4) Filtering the number of tags 3.55 4 4.41 5
(F6) Sticky Tags 3.59 4 3.91 4
(F7) Citation and reference clouds 4.18 4 3.82 4

Table 4: Mean and median of participant scores for the usefulness and usability of
tool features.

We used a process of open coding on the free-text feedback answers provided
by participants to the questions “Are their any areas of the tools you feel could
be improved” and “Please provide any comments on your experience of the tool”.
We identified the major themes of the participants responses and noted that out
of the 32 participants who were willing to provide anonymous feedback on the tool
the themes identified were as follows.

47% of participants felt that some additional functionality would have improved
their experience of the tool. For example one participant noted that they would
like to “[be] able to create a new viewer from a selected tag. [They] could search
for a tag, but [it] was unclear on how to make that tag a new viewer”. 40 % of
participants indicated that they had difficulty understanding at least one feature
of the tool. These included features such as where the tag counts were derived
from (citation count or publication count) and the effect of filtering the number
of tags.

25% percent of participants indicated that at least one function of the tool did
not behave as expected and 25% also indicated that they experienced a definite
learning curve in their use of the tool. For example, one participant noted that
“Once [they] got the hang of it, [they] found it very user friendly and can imagine
it being very useful for researchers...”.

Participants labeled the tool as useful (38%), easy to use (19%), powerful (19%)
and fun to use (16%). For example, participants noted that “[t]his could come in as
a very useful tool in the future”. There were also some participants that reported
feeling impartial to the tool (6%) and found it complicated (6%).
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6 Analysis of Results

6.1 Effect of participant’s background on correctness results achieved

We performed one-way ANOVA tests to determine whether a participant’s back-
ground (years of research and academic rank) had any effect on the time required
to answer all questions or the correctness percentage they achieved. We first per-
formed a Shapiro-Wilk test on the participants timing information to confirm that
the timing information was normally distributed and therefore appropriate for an
ANOVA test.

When grouping the participants according to their years of research experi-
ence we found that the number of years of research experience did not make a
statistically significant difference to the time it took the participants to answer
the questions (p-value 0.937). When grouping participants into their academic
ranks of Masters, PhD and Post-Doc we found that the academic rank also does
not have a statistically significant effect on the time taken to answer questions
(p-value 0.306).

We also tested whether the participants’ academic ranks and years of research
experience made a statistically significant difference to their correctness percent-
ages obtained. However, since the correctness percentages were not normally dis-
tributed (according to the Shapiro-Wilk test) we performed a Kruskal-Wallis test
instead of an ANOVA test. We found that the correctness percentages were not
statistically significantly different for any of the academic ranks of the participants
as we could not reject the null hypothesis (p-value 0.123). We also tested whether
the participants’ years of research affected their correctness percentages and again
could not reject the null hypothesis (p-value 0.129) indicating no statistically sig-
nificant difference between the correctness results of participants with different
years of research.

6.2 Effect of use of a specific tool function on correctness results achieved

We also evaluated whether the required use of a specific more complex tool feature
influences the correctness percentage achieved.

We tested this effect using a Pearson Chi-Square test since, for each question,
we had categorical data stating whether or not a specific tool function was required.
We found that for all questions requiring more complex tool functions F6 (sticky
tags), F7 (citation and reference clouds) and F8 (use of the table view) we could
not reject the null hypothesis that there is no association between the presence
of the tool function and the correctness achieved. For the questions requiring F6
vs questions not requiring F6 we obtained a p-value of 0.27, for F7 we obtained a
p-value of 0.1 and for F8 we obtained a p-value of 1. Therefore, we see that the
involved tool function does not affect the correctness results.
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6.3 Threats to Validity

6.3.1 Internal Validity

There are various uncontrolled factors that might have influenced the results of
our user study.

Computer Equipment: The user study was conducted using a centralized lab
server and so it is possible that some participants experienced slower loading times
than others. However, since there were no time limits to specific questions in this
study this is unlikely to have affected the user study responses.

Participants: To make sure all the subjects were competent enough to take
part in our study we only used participants at the post-graduate level who would
have been familiar with the concept of references and citations.

Training: The effect of the training that we provided to participants might have
influenced the experimental results. However, since we provided a user manual and
let the participants watch an introductory video the same training was provided
to all participants.

Tasks: The choice of tasks might have been biased towards the types of ques-
tions that can be answered using out ConceptCloud browser. To mitigate this risk,
our tasks were formulated using common scientometric questions as a baseline so
that the tasks provided were real-world questions.

6.3.2 External Validity

There are a few factors which may influence the generalizability of our user study
results.

Participants: The participants involved in the user study might not be repre-
sentative of a real-world sample of academic researchers. However, all participants
were pursuing post-graduate degrees or were post-doctorate researchers at the
time of the study. We also have participants of varying levels of research expe-
rience (from 1-8 years of research experience) which did not have a statistically
significant impact on the correctness achieved or the time taken by the partici-
pants.

Marking of Question Answers: Answers to questions in the user study were
marked by the authors, which can introduce subjectiveness, especially since some
questions were stated vaguely and multiple correct answers existed. For example,
the interpretation of “prominent author” will inevitably vary between partici-
pants. However, the participants answers were only marked as correct, if their
understanding of “prominent author” was scientometrically plausible.

Participant Feedback: The results from the feedback of participants described
in Section 5.4 might contain response biases. Participants were aware that the tool
had been developed at their home university which may have influenced them to
give the tool higher scores. However, since we were not directly comparing our tool
to another tool their is no risk of the participants unfairly favoring our tool over
another. We also told each participant that their feedback form was anonymous
before they filled out the form.
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7 Related Work

In this section we discuss closely related work on approaches and tools that support
the browsing of academic publication data as these can be best contrasted to our
approach. Background on keyphrase extraction and formal concept analysis is
described in Sections 2 and 3.1, respectively.

SurVis (Beck et al. 2016) allows users to construct an interactive visualization
of paper collections that appear in literature survey papers. SurVis also provides a
word cloud visualization for papers contained in a literature survey where different
types of meta-information are presented in separate word clouds. Our publication
browser also allows different categories to be separated into their own tag clouds
as well as providing the option to have all tags in the same tag cloud, differentiated
by color.

Medlar et al. (2016) developed the PULP system for exploratory search of
scientific literature. PULP presents information about topics covered in graphical
format, where topics for each year are listed and lines between the different years
are used to indicate how the topics over the different years are related. The user can
select topics in the visualization to show keywords associated with the topic and
once these selections have been made a search interface is used to display academic
papers related to the selections. The user then provides relevance feedback on
the set of documents that has initially been provided and can then load more
documents which will be based on which of the previous documents were marked
as relevant. PULP also supports an exploratory search approach and allows users
to select topics from a visualization as we do in our approach as well. However,
we also allow users to select other fields of interest such as authors or affiliations.
We also present the titles of the papers in a list format but present the full list
to the user and allow them to continue refining the list by making additional tag
selections.

The ASE tool (Dunne et al. 2012) allows users to familiarize themselves with a
new research field. ASE operates on “citation text” which details citing papers that
refer to the paper’s content compared to our approach of using text extracted from
the papers’ titles and abstracts. ASE presents multiple inter-linked views (as can
also be constructed in ConceptCloud) showing citation network visualizations as
well as citation numbers for a specific group of papers. An in-cite summary which
lists text surrounding a citation is also present in ASE to provide an overview
of a paper. ASE operates on a smaller subset of data compared to the ACM DL
dataset and therefore the goals of the analysis are somewhat different. The tool
allows users to explore a subset of papers that have been retrieved through other
means (search) as opposed to our approach which functions as an interface for
discovering new fields and papers in the broader library.

Dörk et al. (2012) use a “strolling” technique which allows users to explore
publication data. Instead of refinements the PivotPaths tool uses pivots to change
the information currently displayed in the browser, to allow users to not only
explore a dataset by making refinements but also by navigating laterally in the
dataset. Using our ConceptCloud browser, tags in the tag cloud can be de-selected
in any order (not simply as an undo operation) which facilitates lateral navigation
in the concept lattice, and therefore also in the underlying dataset.

Osborne et al. (2013) do not make use of keyphrases but instead use the OWL
ontology supplied by the Klink algorithm to define the relationships between pa-
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pers. Rexplore also provides a multiple interlinked view interface which describes
the various facets in different views which is also possible using our ConceptCloud
browser. The Rexplore tool provides a topic analysis, which graphs how a topic
has evolved over time as well as providing an author view which can indicate col-
laborative patterns. Topic evolution and author collaboration information can also
be gathered using our ConceptCloud browser.

8 Conclusions

In this paper we have presented and evaluated an exploratory search tool for
a large academic publication collection. Our approach supports exploration of a
publication dataset and does not require users to conduct a free-text search of the
dataset but rather allows them to dynamically refine the set of publications by
selecting tags of interest. While traditional list-based approaches for visualizing
publication data require users to examine and manually aggregate a large list of
publications, our approach presents users with the aggregated information directly
and allows them to make continued refinements until the list of papers is small
enough to make manual examination feasible.

We use a combination of concept lattices and interactive tag clouds in order
to support exploratory search tasks on publication data. We have also developed
a new approach for key-phrase extraction on a large academic publication dataset
in order to provide a uniform categorization for the papers in the ACM DL (ACM
Digital Library 2016) in order to allow identification of relevant papers according
to their topic.

We have also developed a mechanism for supporting relationships between
objects using concept lattices, so that we can provide support for browsing the
references and citations of academic papers. While the digital library format tra-
ditionally shows a linear list of a paper’s references and citations, in our approach
we present aggregated information from the references and citations. We present
aggregated citation and reference data for a single paper (e.g., presenting a sum-
mary of topics of the papers that cite a selected paper) and also support aggre-
gation of citation or reference data for a selected property (e.g., authors, topics
or conferences) which enables researchers to identify, for example, which authors
they reference often or the topics of papers that cite their work. The presentation
of aggregated citation and reference data is novel to our approach.

We have conducted a user study to evaluate whether untrained users are able
to use our publication browser to answer complex scientometric questions, many
of which are not directly supported by traditional indexing services of academic
publication data. Our user study shows that users are able to answer complex
scientometric questions using our browser with a mean correctness percentage of
73%. We also see that there is a learning effect for new users of the tool which
according to White and Roth (2009) correlates well to the exploratory search
approach. Additionally, our analysis shows that the prior research experience of
the participants does not have a statistically significant impact on their ability to
use the tool effectively.
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