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Abstract. Extracting information from data, often also called data
analysis, is an important scientific task. Statistical approaches, which
use methods from probability theory and numerical analysis, are well-
founded but difficult to implement: the development of a statistical data
analysis program for any given application is time-consuming and re-
quires knowledge and experience in several areas.
In this paper, we describe AutoBayes, a high-level generator system
for data analysis programs from statistical models. A statistical model
specifies the properties for each problem variable (i.e., observation or
parameter) and its dependencies in the form of a probability distribu-
tion. It is thus a fully declarative problem description, similar in spirit to
a set of differential equations. From this model, AutoBayes generates
optimized and fully commented C/C++ code which can be linked dy-
namically into the Matlab and Octave environments. Code is generated
by schema-guided deductive synthesis. A schema consists of a code tem-
plate and applicability constraints which are checked against the model
during synthesis using theorem proving technology. AutoBayes aug-
ments schema-guided synthesis by symbolic-algebraic computation and
can thus derive closed-form solutions for many problems. In this pa-
per, we outline the AutoBayes system, its theoretical foundations in
Bayesian probability theory, and its application by means of a detailed
example.

1 Introduction

Data analysis denotes the transformation of data (i.e., pure numbers) into more
abstract information. It is at the core of all experimental sciences—after all,
experiments result only in new data, not in new information. Consequently, sci-
entists of all disciplines spend much time writing and changing data analysis
programs, ranging from trivial (e.g., linear regression) to truly complex (e.g.,
image analysis systems to detect new planets). A variety of methods is used
for data analysis but all rigorous approaches are ultimately based on statistical
methods [BH99]. Amongst these, Bayesian methods offer conceptual advantages
in handling prior information and missing data and have thus become the meth-
ods of choice for many applications.
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We believe that data analysis, especially data analysis based on Bayesian
statistics, is a very promising application area for program generation. Proba-
bility theory provides an established, domain-specific notation which can form
the basis of a specification language. Probability theory and numerical analysis
provide a wide variety of solution methods and potentially applicable algorithms.

Manual development of a customized data analysis program for any given
application problem is a time-consuming and error-prone task. It requires a rare
combination of profound expertise in several areas—computational statistics,
numerical analysis, software engineering, and of course the application domain
itself. The algorithms found in standard libraries need to be customized, opti-
mized, and appropriately packaged before they can be integrated; the model and
its specific details usually influence many algorithmic design decisions. Most im-
portantly, the development process for data analysis programs is typically highly
iterative: the underlying model is usually changed many times before it is suit-
able for the application; often the need for these changes becomes apparent only
after an initial solution has been implemented and tested on application data.
However, since even small changes in the model can lead to entirely different
solutions, e.g., requiring a different approximation algorithm, developers are of-
ten reluctant to change (and thus improve) the model and settle for sub-optimal
solutions.

A program generator can help to solve these problems. It encapsulates a
considerable part of the required expertise and thus allows the developers to
program in models, thereby increasing their productivity. By automatically syn-
thesizing code from these models, many programming errors are prevented and
turn-around times are reduced. We are currently developing AutoBayes, a
program generator for data analysis programs. AutoBayes starts from a very
high-level description of the data analysis problem in the form of a statisti-
cal model and generates imperative programs (e.g., C/C++) through a process
which we call schema-based deductive synthesis. A schema is a code template
with associated semantic constraints which describe the template’s applicability.
Schemas can be considered as high-level simplifications which are justified by
theorems in a formal logic in the domain of Bayesian networks. The schemas are
applied recursively but AutoBayes augments this schema-based approach by
symbolic-algebraic calculation and simplification to derive closed-form solutions
whenever possible. This is a major advantage over other statistical data analy-
sis systems which use slower and possibly less precise numerical approximations
even in cases where closed-form solutions exist.

The back-end of AutoBayes is designed to support generation of code for
different programming languages (e.g., C, C++, Matlab) and different target
systems. Our current version generates C/C++ code which can be linked dynam-
ically into the Octave [Mur97] or Matlab [MLB87] environments; other target
systems can be plugged in easily.

This paper describes work in progress; design rationales and some preliminary
results of the AutoBayes-project have been reported in [BFP99]. In Section 2,
we give a short overview over Bayesian networks and their application for data
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analysis. We then proceed with a detailed description of the system architec-
ture, the process of synthesizing the algorithm, and the steps to produce actual
code. Section 4 contains a worked example which illustrates the operation of
AutoBayes on a small, yet non-trivial example. We compare our approach to
related work in Section 5 before we discuss future work in in Section 6.

2 Bayesian Networks and Probabilistic Reasoning

Bayesian networks or graphical models are a common representation method in
machine learning [Pea88,Bun94,Fre98,Jor99]; AutoBayes uses them to repre-
sent the data analysis problem internally. Figure 1 shows the network for the
example used throughout this paper.
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Fig. 1. Bayesian network for the mixture of Gaussians example.

A Bayesian network is a directed, acyclic graph that defines probabilistic
dependencies between random variables. Its arcs can sometimes be interpreted
as causal links but more precisely the absence of an arc between two vertices
denotes the conditional independence of the two random variables, given the
values of their parents. Hence, since the example network has no arc between
the vertices µ and c, the joint probability P (µ, c) to observe certain values of µ
and c at the same time is the same as the product of P (µ) and P (c | ρ), the
conditional probability of c given ρ. The network thus superimposes a structure
on the global joint probability distribution which can be exploited to optimize
probabilistic reasoning. Hence, the example defines the global joint probability
P (x, c, ρ, σ, µ) in terms of simpler, possibly conditional probabilities:

P (x, c, ρ, σ, µ) = P (ρ) · P (c |ρ) · P (µ) · P (σ) · P (x |c, µ, σ)

The central theorem of probabilistic reasoning is Bayes rule

P (h |d) =
P (d |h) · P (h)

P (d)

which expresses the probability P (h | d) that hypothesis h holds under given
data d in terms of the likelihood P (d |h) and the prior P (h); the probability of
the data, P (d), is usually only a normalizing constant.
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AutoBayes uses an extended version of hybrid Bayesian networks, i.e.,
nodes can represent discrete as well as continous random variables. Shaded ver-
tices denote known variables, i.e., input data. Distribution information for the
variables is attached to the vertices, e.g., the input x is Gaussian distributed.
Boxes enclosing a set of vertices denote vectors of independent, co-indexed ran-
dom variables, e.g., µ and σ are both vectors of size Nclasses which always occur
indexed in the same way. As a consequence, a box around a single vertex denotes
the familiar concept of a vector of identically distributed and indexed random
variables.

An Example: Mixture of Gaussians

We illustrate how AutoBayes works by means of a simple but realistic classi-
fication example. Figure 2 shows the raw input data, a vector of real values. We
know that each data point falls into one of three classes; each class is Gaussian
distributed with mean µi and standard deviation σi. The data analysis problem
is to infer from that data the relative class frequencies (i.e., how many points be-
long to each class) and the unknown distribution parameters µi and σi for each
class. Although this example is deliberately rather simple, it already demon-
strates the potential of generating data analysis programs; it also illustrates
some of the problems.

Figure 3 shows the statistical model in AutoBayes’s input language. The
model (called “Mixture of Gaussians” – line 1) assumes that each of the data
points (there are n points – line 5) belongs to one of n classes classes; here
n classes has been set to three (line 3), but n points is left unspecified. Lines
16 and 17 declare the input vector and distributions for the data points1. Each
point x(I) is drawn from a Gaussian distribution c(I) with mean mu(c(I)) and
standard deviation sigma(c(I)). The unknown distribution parameters can be
different for each class; hence, we declare these values as vectors (line 11). The
unknown assignment of the points to the classes (i.e., distributions) is repre-
sented by the hidden (i.e., not observable) variable c; the class probabilities or
relative frequencies are given by the also unknown vector rho (lines 9–14). Since
each point belongs to exactly one class, the sum of the probabilities must be
equal to one (line 10). Additional constraints (lines 4,6,7) express further basic
assumptions. Finally, we specify the goal inference task (line 19), maximizing
the probability P (x|ρi, µi, σi). Due to Bayes’ rule, this calculates the most likely
values of the parameters of interest, ρi, µi, and σi.

3 System Architecture

The system architecture of AutoBayes (cf. Figure 4) has been designed for
high flexibility and modularity granting easy extensibility of the system for in-
teractive refinement of specifications. Here, we describe the main components

1 Vector indices start with 0 in a C/C++ style.
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Fig. 2. Artificial input data for the mixture of Gaussians example: 2400 data points in
the range [290.2, 292.2]. Each point belongs in one of three classes which are Gaussian
distributed with µ1 = 290.7, σ1 = 0.15, µ2 = 291.13, σ2 = 0.18, and µ3 = 291.55, σ3 =
0.21. The relative frequencies ρ for the points belonging to the classes are 61%, 33%,
and 6%, respectively.

of the system (synthesis kernel, intermediate language, back-end, and genera-
tion of artificial data). The entire system has been implemented in SWI-Prolog
[SWI99]. For symbolic mathematical calculations, a small rewriting engine has
been built on top of Prolog. A set of system utilities (e.g., pretty-printer, graph
handling, set representations, I/O functions) facilitates the implementation of
AutoBayes. Since AutoBayes requires a combination of symbolic mathemat-
ical calculation, rewriting, general purpose operations (e.g., input/output), and
reasoning over graphs, Prolog is a reasonable choice as the underlying implemen-
tation language. The main reason not to choose a symbolic algebra system as for
example Mathematica is its possible unsoundness. During symbolic calculation,
simplifications are done by such systems without explicitly stating all assump-
tions. These unsound transformations can lead to incorrect results and hence
incorrect programs. AutoBayes keeps track of all assumptions (e.g., an expres-
sion being non-zero) and either discharges them during synthesis or generates
assertions to be checked during run-time.
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1 model mog as ’Mixture of Gaussians’;
2
3 const int n_points as ’number of data points’
4 with 0 < n_points;
5 const int n_classes := 3 as ’number of classes’
6 with 0 < n_classes
7 with n_classes << n_points;
8
9 double rho(0..n_classes - 1) as ’class probabilites’

10 with 1 = sum(idx(I, 0, n_classes - 1), rho(I));
11 double mu(0..n_classes - 1), sigma(0..n_classes - 1);
12
13 int c(0..n_points) as ’class assignment vector’;
14 c ~ discrete(vec(idx(I, 0, n_classes - 1), rho(I)));
15
16 data double x(0..n_points - 1) as ’data points (known)’;
17 x(I) ~ gauss(mu(c(I)),sigma(c(I)));
18
19 max pr(x | {rho,mu,sigma}) wrt {rho, mu, sigma};

Fig. 3. AutoBayes-specification for the mixture of Gaussians example. Line numbers
have been added for reference in the text. Keywords are underlined.

3.1 Synthesis Kernel

The synthesis kernel takes the model specification and builds an initial Bayesian
network. Each variable declaration in the model corresponds directly to a net-
work node. Each distribution declaration, e.g., x ∼ gauss(Θ), induces edges
from the distribution parameters Θ to the node corresponding to the random
variable x; these edges reflect the dependency of the (random) values of x on
the values of the parameters Θ. Building the network is relatively straightfor-
ward and requires no sophisticated dataflow analysis because the model is purely
declarative. However, Θ needs to be flattened, i.e., nested random variables need
to be lifted and fresh index variables need to be introduced in their place in
order to represent the dependencies properly. Hence, the example declaration
x(i) ∼ gauss(µ(c(i)), σ(c(i))) induces not only the two obvious edges but three:
µ(j) −→ x(i), σ(j) −→ x(i), and c(i) −→ x(i) (cf. Figure 1). Note that x and c
are still co-indexed but that each x(i) now depends on all µ(·) and σ(·), reflecting
the unknown values of their original indices c(i). A compact representation of
the indexed nodes and their dependencies is achieved by using Prolog-variables
to represent index variables.

Synthesis proceeds from this initial network and the original probabilistic in-
ference task by exhaustive application of schemas. A schema can be understood
as an “intelligent macro”: it comprises a pattern, a parameterized code template,
and a set of preconditions or applicability constraints. An example will be shown
below. The pattern and code template are similar to the left- and right-hand
side of a traditional macro definition; they comprise the syntactic part of the
schema. Schema-guided synthesis, however, is not just macro expansion. Differ-
ent schemas can match the same pattern, possibly in different ways. AutoBayes
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Fig. 4. System architecture for AutoBayes.

covers this search space by a depth-first, left-to-right search, with backtracking
over possible multiple solutions.

The constraints refine the semantics of the schema: a schema can be under-
stood as an axiom which asserts that the program (i.e., the appropriately instan-
tiated template) solves the probabilistic inference task specified by the pattern if

the constraints are satisfied; however, checking the constraints may instantiate
the template parameters further. The search process mentioned above is thus a
proof search; the proof is constructive in the sense that it actually generates a
program (the witness) and does not just assert its existence.
Network decomposition schemas. AutoBayes uses four different kinds of
schema. Network decomposition schemas are encodings of independence theo-
rems for Bayesian networks. They describe how a probabilistic inference task
over a given network can be decomposed equivalently into several simpler tasks
over simpler networks and, hence, how a complex data analysis program can
be composed from simpler components. The applicability constraints for these
schemas can be checked by pure graph reasoning. Consider for example the fol-
lowing decomposition theorem.

Theorem 1 ([BFP99]) Let U, V be sets of vertices in a Bayesian network with

U ∩ V = ∅. Then V ∩ descendants(U) = ∅ and parents(U) ⊆ V hold iff

P (U |V ) = P (U |parents(U)) =
∏

u∈U

P (u |parents(u))



8 Bernd Fischer, Johann Schumann, and Tom Pressburger

The theorem allows us to simplify the conditional probability P (U | V ) into
P (U | parents(U)) (i.e., it allows us to ignore all assumptions not reflected in
the network by incoming edges) and then further into a finite product of atomic
probabilities (i.e., each variable depends only on the parameters of its associated
distribution), provided that the applicability constraints hold over the network;
here, descendants(U) is defined as children∗(U) − U with children∗ being the
full graph reachability relation. This theorem then induces the following schema
for maximizing the probability P (U |V ) with respect to a set of variables X.

schema( max P (U |V ) wrt X, Template ) :-

U ∩ V = ∅
∧ U ∩ descendants(V ) = ∅
∧ parents(U) ⊆ V
→ Template = begin

〈max P ({u}|parents({u})) wrt X | u ∈ U〉
end

The schemas are written as Prolog-rules. During the search for applicable
schemas, pattern-matching with the rule head (first line) is tried. When the
match succeeds, the variables (U, V,X) are bound, and the body of the rule
(separated by the :-) is processed. Here, the body is a logical implication.
The implication’s antecedents directly encode the applicability constraints as
AutoBayes’s symbolic reasoning engine contains an operationalization of the
graph predicates. The schema’s code template consists of a sequence of simpler
maximization tasks. Their ordering is irrelevant because the u ∈ U are inde-
pendent of each other; this is a consequence of the applicability constraints. A
number of similar decomposition theorems have been developed in probability
theory; AutoBayes currently includes three different schemas based on such
theorems, with the one shown above being by far the simplest.
Formula decomposition schemas. Formula decomposition schemas are sim-
ilar to the network decomposition schemas above but they work on complex
formulae instead of a single probability. A typical schema in this class is index
decomposition. It applies to an inference task for a formula which contains pos-
sibly multiple occurrences of probabilities involving vectors and “unrolls” this
task into a loop over the simpler inference task for a single vector element. Most
of the applicability constraints for index decomposition can still be checked by
graph reasoning but some checks involving the formula structure require proper
symbolic reasoning.
Statistical algorithm schemas. Proper statistical algorithm schemas are also
graph-based but they are not simple consequences of the independence theorems.
Instead, their correctness is proven independently, or they are just empirically
validated during construction of the domain theory. These schemas involve larger
modifications of the graph, e.g., introduction of new nodes with known values,
and storing the results of intermediate calculations. These schemas thus enable
the further application of the decomposition schemas; however, they are much
more intricate and less theorem-like. They also have much larger code templates
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associated and they can require substantial symbolic reasoning during instanti-
ation. AutoBayes currently implements two such algorithms which are known
in the literature as expectation maximization (or simply EM algorithm [DLR77])
and k-Means, respectively. Both schemas are applicable to general mixture mod-
els which underpin many classification tasks similar to the running example.

Numerical algorithm schemas. The graph-based reasoning continues until
all conditional probabilities P (U | V ) have been converted into atomic form,
i.e., V are all parameters of U ’s distribution. These can then be replaced by
the appropriately instantiated probability density functions. AutoBayes’s do-
main theory contains rewrite rules for the most common probability density
functions, e.g., Gaussian and Poisson distributions. With this rewrite step the
original probabilistic inference task becomes a pure optimization problem which
can be solved either symbolically or numerically. AutoBayes first attempts to
find closed-form symbolic solutions, which are much more time-efficient during
run-time than the usually iterative numeric approximation algorithms. In order
to solve the optimzation problem, AutoBayes symbolically differentiates the
formula with respect to the optimization variables, sets the result to zero and
tries to solve this system of simultaneous equations. Symbolic differentiation is
implemented as a term rewrite system; however, the need to check for whether a
term depends on the variable that the derivative is taken with respect to implies
that some rules are conditional rewrite rules. Equation solving currently employs
only a variant of Gaussian variable elimination: whenever a variable can be iso-
lated modulo the symbolic model constants, the remaining equation is solved by
a polynomial solver.

If no symbolic solution can be found, AutoBayes applies iterative numerical
algorithm schemas, e.g., the Newton-Raphson method or the Nelder-Mead sim-
plex algorithm. Such algorithms are also provided by general-purpose numeric
libraries, e.g., [PF+92], but program generation can substantially improve this
black-box style reuse, because it can instantiate actual parameters symbolically
and evaluate the inlined expressions partially. This provides further optimization
opportunities, often in the inner loops of the algorithms.

Control. During synthesis, these schemas are tried exhaustively in a left-to-
right, depth-first manner. Whenever a dead end is encountered (i.e., no schema
is applicable), AutoBayes backtracks. This search allows AutoBayes to gen-
erate program variants if more than one of the schemas are applicable and opens
up possibilities to generate multiple solutions for the same problem, which then
can be assessed using tests on the given data.

3.2 Generating Explanations

Certification procedures for safety-critical applications (e.g., in aircrafts or space-
crafts) often mandate manual code inspection. This inspection requires that the
code is readable and well documented. Even for programs not subject to certi-
fication, understandability is a strong requirement as manual modifications are
often neccessary, e.g., for performance tuning or system integration. However,
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existing program generators often produce code that is hard to read and under-
stand. In order to overcome this problem, AutoBayes generates explanations
along with the programs which make the synthesis process more transparent and
provide traceability from the generated program back to the model specifiation.

AutoBayes generates heavily commented code: approximately a third of
the output is automatically generated comments (cf. Figure 8 for an example).
This is achieved by embedding documentation templates into the code templates.
Future versions of AutoBayes will not only generate fully documented code;
we are aiming at producing a detailed design-document for the generated code.
This document will also show the “synthesis decisions” made by AutoBayes

(e.g., which algorithm schema has been used) and the reasons which led to them.
Open proof obligations and model assumptions will be laid out clearly.

Reliability of generated code entails that the code is robust (e.g., robustness
against erroneous inputs or sensor failures). Thus, all assumptions from the spec-
ification or made by AutoBayes which cannot be discharged during synthesis
are brought to the user’s attention and are listed in the documentation. Impor-
tant assumptions which can be checked efficiently during run-time are converted
into assertions which are inserted into the code (e.g., Nclasses < Npoints).

3.3 Intermediate Language

The synthesis kernel of AutoBayes generates code for an intermediate language
before code for the actual target system is produced. This intermediate language
is a simple procedural language with several domain-specific extensions (e.g., for
convergence loops, vector normalization, and simultaneous vector assignment).
Each statement of the intermediate language can be annotated. In the current
version, annotations carry the generated explanations. In future versions an-
notations will also be used to guide optimization and to carry out automatic
instrumentation of the generated code for evaluation and testing purposes.

Using an intermediate language offers major benefits because it allows to
perform code optimization independently from the selected target language and
target system without excessive overhead. For example, we are able to extract
loop-independent expressions without having to apply data-flow analysis to the
generated code, because the structure of the loops is known from the instantiated
algorithm schema.

The intermediate code is close enough to allow for a simple translation into
the target language (e.g., C, C++, Matlab). The additional domain-specific con-
structs facilitate target-specific transformations. For example, the language con-
struct for calculating the sum of array elements (sum) can be converted into a
usual for-loop (C, C++), an iterator construct (e.g., when using sparse matri-
ces), or a direct call of a summation-operator (e.g., when generating interpreted
Matlab code).
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3.4 Backend and Code generation

The actual code-generator can be adapted easily to a specific target language
and a given environment. With the help of rewrite rules all constructs of the
intermediate language are transformed into constructs of the target language
and printed using a simple pretty-printer. On this target-specific level, another
set of optimization steps are performed (e.g., replacing of E−1 by 1/E, or E2 by
E×E for an expression E). Standard optimizations (e.g., evaluation of constant
expressions) are left for the subsequent compilation phase—there is no need to
perform the same optimization steps as any modern compiler. The back-end also
generates code for interfacing the algorithm with the target system, and to check
for correct types of arguments.

Our current prototype produces C++-code for Octave [Mur97] and C-code
for Matlab [MLB87]. Future work will include code-generators for design-tools
for embedded systems, e.g., ControlShell [Con99] or MatrixX [Aut99].

3.5 Synthesis of Artificial Test Data

The given input specification contains enough information to generate artificial
data with properties corresponding to the specified statistical model. AutoBayes

is capable of generating code producing artificial data. For this task we use the
same underlying machinery and back-end as described above. This feature of
AutoBayes offers several benefits: using artificial data, the performance (e.g.,
speed or convergence) of the generated code can be evaluated and assessed; com-
parisons between different algorithm schemas can be made easily. Artificial data
can also be used to test the generated code. For example, by using different sets
of parameters, the behavior of the generated analysis algorithm can be tested
for stability.

4 A Worked Example

In this section, we discuss synthesis and execution of the example described in
Section 2. The specification in Figure 3 comprises the entire input to AutoBayes.
After parsing this specification, AutoBayes generates the dependency graph
(see Figure 1) and tries to break it down into independent parts. When trying
to solve the optimization problem, the system fails to find a closed-form sym-
bolic solution. Therefore, the EM algorithm schema is tried and instantiations
are sought. This algorithm schema consists of an iterative loop which has to be
executed until a convergence criterion is met. Within this loop, new estimates
for ρ, σ, µ are calculated and compared to the old values. When the difference
becomes small enough, the loop can be exited (cf. Figure 8).

For our example, AutoBayes generates a C++ file consisting of 477 lines
(including comments and separation lines). This code is then compiled into a dy-
namically linkable function for Octave. Thus, when invoking the function “mog”
(line 1 of the specification) from inside Octave, our compiled C++ code is in-
voked automatically. As shown in Figure 5, AutoBayes also synthesizes a usage
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line and produces a short help-text. The entire synthesis process of AutoBayes,
including compilation of the generated C++ code takes about 35s on a G3 power-
book under Linux.

The following results have been obtained using artificial data. Starting with
a total of 2400 points falling into 3 classes (cf. Figure 2), the algorithm searches
for the values of mu, sigma, and rho for each class. For the final result, this run
required 1163 iteration steps, taking approximately 54 sec on a G3 notebook2.
The convergence, i.e., the normalized change of the parameters to be optimized
during each iteration cycle, is shown in Figure 6.3 AutoBayes automatically
instruments the generated code to produce these run-time figures for debugging
and testing purposes.

octave:2> mog
usage: [vector mu,vector rho,vector sigma] = mog(vector x)

octave:3> help mog
mog is a builtin function

Mixture of Gaussians. Maximize the conditional probability
pr([c,x]|[rho,mu,sigma]) w.r.t. [rho, mu, sigma ], given
data x and n_classes=3.
...
octave:4> x = [ ... ];
octave:4> [mu,rho,sigma] = mog(x)
mu =

291.12
291.28
290.69

...

Fig. 5. Octave sample session using code (function “mog”) generated by AutoBayes.

Although this example has been run with artificial data, there are several
real applications for this kind of model. For example, when molecules (or atoms)
in a gas are excited with a specific energy (e.g., light from a laser), they can
absorb this energy by excitation or by emission by one or more of their electrons,
respectively. This basic mechanism generates spectral lines, e.g., in the light of
stars. Single atoms usually have sharp, well-defined spectral lines but molecules
which are more complex (e.g., CH4 or NH3) can have several peaks of binding

2 This figure can change from run to run, since the algorithm starts with a random
initial class assignment for each data point.

3 This algorithm does not converge monotonically. It can reach some local minimum,
from which it has to move away by increasing the error again. After some ups and
downs the global minimum (i.e., an optimal estimate for the parameters) is reached
and the loop ends. This behavior is typical for parameter estimation processes, e.g.,
as found in artificial Neural Networks [MR88].
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Fig. 6. Convergence behavior: differences between old and new parameters (log-scale)
over iteration step. Only the first 1000 iteration cycles are shown.

energy, depending on their internal configuration. Thus, they can absorb (or
emit) energy at different levels.

The example here (cf. Figure 7) is taken from [Ber79] and shows the spectrum
of the energy of emitted photoelectrons that is directly related to the excess
energy of the photon over the photoionization potential of the molecule CH4

(for details see [Ber79], caption of Figure 67). In a simple statistical model,
each of the peaks is assumed to be Gaussian distributed and the percentage
of molecules being in a specific configuration is known. When we measure the
binding energy for a large number of (unknown) molecules, we obtain a set of
data, similar to that shown in Figure 2 above. If we suspect that the molecules
might be CH4 which has 3 distinct configurations, we can use the generated code
to classify the data into these three classes and to obtain the parameters. The
histogram of the data is shown in Figure 7, super-imposed with Gaussian curves
using the parameter values as estimated by the program.

5 Related Work

Work related to AutoBayes appears mainly in two different fields. In the first
field, statistics, there is a long tradition of composing programs from library com-
ponents but there are only a few, recent attempts to achieve a similar degree of



14 Bernd Fischer, Johann Schumann, and Tom Pressburger

0

10

20

30

40

50

60

70

80

90

100

289 289.5 290 290.5 291 291.5 292 292.5 293

re
l. 

de
ns

ity

binding energy [eV]

data
class 1

0

10

20

30

40

50

60

70

80

90

100

289 289.5 290 290.5 291 291.5 292 292.5 293

re
l. 

de
ns

ity

binding energy [eV]

data
class 1
class 2

0

10

20

30

40

50

60

70

80

90

100

289 289.5 290 290.5 291 291.5 292 292.5 293

re
l. 

de
ns

ity

binding energy [eV]

data
class 1
class 2
class 3

Fig. 7. Histogram (spectrum) of the artificial test data (Figure 2, number of bins =
100) and Gaussian distributions as obtained by running the generated code.

automation as AutoBayes does. The Bayes Net Toolbox [Mur00] is a Matlab-
extension which allows users to program models; it provides several Bayesian
inference algorithms which are attached to the nodes of the network. However,
the Toolbox is a purely interpretive system and does not generate programs.
The widely used Bugs-system [TSG92] also allows users to program in models
but it uses yet another, entirely different execution model: instead of execut-
ing library code or generating customized programs, it interprets the statistical
model using Gibbs sampling, a universal—but less efficient—Bayesian inference
technique. Bugs, or more precisely, Gibbs sampling, could thus be integrated
into AutoBayes as an algorithm schema.

The other field, deductive synthesis, is still an active research area. Some sys-
tems, however, have already been applied to real-world problems. The Amphion

system [SW+94] has been used to assemble programs for celestial mechanics
from a library of Fortran components, for example the simulation of a Saturn
fly-by. Amphion is more component-oriented than AutoBayes, i.e., the gener-
ated programs are linear sequences of subroutine calls into the library. It uses a
full-fledged theorem prover for first-order logic and extracts the program from
the proof. [EM98] describes a system for the deductive synthesis of numerical
simulation programs. This system also starts from a high-level specification of
a mathematical model—in this case a system of differential equations—but is
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again more component-oriented than AutoBayes and does not use symbolic-
algebraic reasoning. Planware [BG+98] (which grew out of the Kids system
[Smi90]) synthesizes schedulers for military logistics problems. It is built on the
concept of an algorithm theory which can be considered as an explicit hierarchy
of schemas.

[Big99] presents a short classification of generator techniques (albeit cast in
terms of their reuse effects). AutoBayes falls most closely into the category
of inference-based generators but also exhibits some aspects of pattern-directed
and reorganizing generators, e.g., the typical staging of the schemas into multiple
levels.

6 Conclusions

We have presented AutoBayes, a prototype system that automatically gener-
ates data analysis programs from specifications in the form of statistical models.
AutoBayes is based on deductive, schema-guided synthesis. After construct-
ing the initial Bayesian network from the model, a variety of different schemas
are tried exhaustively. These schemas are guarded by applicability constraints
and contain code-blocks which are instantiated. By way of an intermediate lan-
guage, AutoBayes generates executable, optimized code for a target system.
The current version of AutoBayes produces C/C++-code for dynamic link-
ing into Octave and Matlab; future versions of AutoBayes will include code
generation for sparse matrices and for design-tools for embedded systems (e.g.,
ControlShell).

We have applied AutoBayes successfully to a number of textbook prob-
lems where it was able to find closed-form solutions equivalent to those in the
textbooks. The largest iterative solution generated so far comprises 477 lines of
C++ code. Synthesis times (including compilation of the generated code) are
generally well below one minute on standard hardware. We are currently testing
AutoBayes in two major case studies concerning data analysis tasks for finding
extra-solar planets either by measuring dips in the luminosity of stars [KB+00],
or by measuring Doppler effects [MB97], respectively. Both projects required sub-
stantial effort to manually set up data analysis programs. Our goal for the near
future is to demonstrate AutoBayes’s capability to handle major subproblems
(e.g., the CCD-sensor registration problem) arising in these projects.

AutoBayes has two unique features which result from using program gen-
eration (instead of compilation) and which make it more powerful and versa-
tile for its application domain than other tools and statistical libraries. First,
AutoBayes generates efficient procedural code from a high-level, declarative
specification without any notion of data- or control-flow. Thus, it covers a rel-
atively large semantic gap. Second, by combining schema-guided synthesis with
symbolic calculation, AutoBayes is capable of finding closed-form solutions
for many problems. Thus, the generated code for these kinds of problems is
extremely efficient and accurate, because it does not rely on numeric approxi-
mations.
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The explanation technique provides further benefits, especially in safety-
critical areas. Code is not only documented for human understanding, but as-
sumptions made in the specification and during synthesis are checked by asser-
tions during run-time. This makes the generated code more robust with respect
to erroneous inputs or sensor failures.

AutoBayes is still an experimental prototype and has to be extended in
several ways before it can be released to users. In particular, further schemas
have to be added and the expressiveness of the kernel with respect to the model
descriptions has to be increased. However, since the schemas cannot be derived
automatically from the underlying theorems, more machine support for this man-
ual domain engineering process may become necessary, e.g., type-checking of the
schemas [Bjø99]. Nevertheless, we are confident that the paradigm of schema-
guided synthesis is an appropriate approach to program generation in this do-
main which will lead to a powerful yet easy-to-use tool.

Acknowledgements: Wray Buntine contributed much to the initial devel-
opment of AutoBayes and the first version of the prototype. We would like to
thank the anonymous reviewers for their helpful comments.
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// Mixture of Gaussians

proc(mog) {

const: int n_classes := 3; // Number of classes

int n_points := size(x, 1); // Number of data points

input: double x[0:n_points - 1];

output: double mu[0:n_classes-1],rho[0:n_classes-1],sigma[0:n_classes-1];

local: ...

{ ...

// Initialization

// Randomize the hidden variable c

for( [idx(pv64, 0, n_points - 1)])

c(pv64) := random_int(0, n_classes - 1);

// Initialize the local distribution; the initialization is "sharp",

// i.e., q1 is set to zero almost everywhere and to one at the index

// positions determined by the initial values of the hidden variable.

for( [idx(pv154, 0, n_points - 1), idx(pv155, 0, n_classes - 1)])

q1(pv154, pv155) := 0;

for( [idx(pv156, 0, n_points - 1)])

q1(pv156, c(pv156)) := 1;

// EM-loop

while( converging([vector([idx(pv157, 0, n_classes-1)], rho(pv157)),

vector([idx(pv158, 0, n_classes-1)], mu(pv158)),

vector([idx(pv159, 0, n_classes-1)], sigma(pv159))]) )

{

// Decomposition I;

// the problem to optimize the conditional probability

// pr([c, x] | [rho, mu, sigma]) w.r.t. the variables rho, mu,

// and sigma can under the given dependencies by Bayes rule be

// decomposed into independent subproblems.

...

// using the Lagrange-multiplier l1.

l1 := sum([idx(pv68, 0, n_classes - 1)],

sum([idx(pv66, 0, n_points - 1)], q1(pv66, pv68)));

for( [idx(pv68, 0, n_classes - 1)])

rho(pv68) := l1 ** -1 * sum([idx(pv66, 0, n_points - 1)],

q1(pv66, pv68));

// The conditional probability pr([x] | [sigma, mu, c]) is

// under the given dependencies by Bayes rule equivalent to

// prod([idx(pv126, 0, n_points-1)],

// pr([x(pv126)] | [c(pv126), mu, sigma]))

// The probability occuring here is atomic and can be

// replaced by the respective probability density function.

...

for( [idx(pv64, 0, n_points-1), idx(pv65, 0, n_classes-1)])

q1(pv64, pv65) := select(norm([idx(pv163, 0, n_classes-1)],

exp(-1 / 2 * (-1 * mu(pv163) + x(pv64)) ** 2 *

sigma(pv163) ** -2) * rho(pv163) * 2 ** (-1 / 2) *

pi ** (-1 / 2) * sigma(pv163) ** -1), [pv65]);

} } }

Fig. 8. Pseudo-code for the Mixture of Gaussians example (excerpts).


